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Abstract

Phonocardiogram (PCG) conveys crucial information
for cardiac health evaluation in ambulatory care and is
an essential diagnostic test for heart assessment. Thus,
identification and positioning of the first and second heart
sound within PCG is a vital step in automatic heart sound
analysis.

This study proposes a solution for individual cardiac
cycle segmentation of PCG recordings. It extracts a rich
set of features that are used for the segmentation of each
cardiac cycle in a PCG recording by localizing the PCG
peaks, S1 and S2. To accomplish this objective, a rich set of
66 discriminative features are selected and extracted from
each frame in a PCG recording and several classifiers are
evaluated to find out the one that achieves the highest seg-
mentation accuracy. Finally, a post-processing method is
proposed to reduce the classification noise and hence im-
prove the segmentation performance

Contrary to the earlier methods proposed in the litera-
ture, this method is evaluated on one of the largest datasets
available consisting of 48 877s PCG recordings. The
proposed method has achieved F1-score of 93.45%, and
Sensitivity and Specificity values of 94.23% and 98.16%
respectively. Moreover, it has been tested on the Pas-
cal benchmark dataset, and has achieved Sensitivity and
Specificity values of 96.42% and 98.12%, respectively.

1. Introduction

According to World Health Organization (WHO) report
in 2015, an estimated 17.7 million people died from car-
diovascular diseases only in 2015, representing 37% of
all premature deaths worldwide. The most common, and
possibly the cheapest and the earliest clinical examina-
tion is heart auscultation, which can reveal several car-
diac anomalies. However, there are several limitations and
practical problems in the human auditory system when it
comes to phonocardiogram (PCG) signal analysis, despite
the cognitive skills and expertise of the medical examiner.
This brought the need for an automated, cost-effective and
robust anomaly detection method for PCG signals.

A typical cardiac cycle consists of two main compo-
nents: S1 heart sound, occurring at the beginning of the
systole, and the second heart sound (S2), which marks the
beginning of diastole. The PCG segmentation for locating
each cardiac cycle is crucial for an accurate anomaly de-
tection. Although it has been shown in the recent studies
that anomaly detection can be performed without segmen-
tation (e.g. [1]), providing a robust segmentation method
can lead to more medically interpretable results.

Some earlier PCG segmentation methods include
threshold-based methods [2, 3] and envelope extraction
based methods [4, 5]. More recently, methods such
as a Hidden Markov Model (HMM) and a Hidden
Semi-Markov Model (HSMM) have been used [6, 7].
Currently, the most advanced method is the Logistic
Regression-HSMM-based algorithm [8]. These methods
have achieved reasonable results in heart sound segmenta-
tion, but many of them have been evaluated only on small
or hand-picked datasets.

In order to address the aforementioned limitations and
drawbacks, in this study a novel PCG segmentation
method is proposed by framing the PCG recordings into
non-overlapping frames of 250 ms and classifying each
frame into one of the three classes (S1, S2 , other). The
main contributions are: 1) proposing a large set of dis-
criminative features for PCG segmentation (Section 2.2).
2) introducing a systematic post-processing approach to
decrease the amount of noise in the predicted labels (Sec-
tion 2.4). The proposed method is evaluated on the largest
publicly available dataset and the results are discussed and
compared with the other state-of-the-art methods in this
domain in Section 3.

2. Methods and material

2.1. Benchmark dataset

Within this study, we used the Physionet/Computing in
Cardiology 2016 challenge dataset [9, 10]. In this study,
the focus is to classify frames in normal heart sounds. All
the PCG recordings containing S1 and S2 peaks closer to
each other than our selected frame length (125 ms) were
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left out of the dataset (1% of the recordings). This gives
us a dataset of a total of 2200 different PCG recordings
with 13.3 hours of recorded PCG data with a sampling fre-
quency of 2000 Hz. In this dataset, the number of S1 and
S2 heart sounds is 63 094 and 62 985 respectively.

2.2. Feature Engineering

In this study, first, the PCG recordings are windowed
into non-overlapping frames of 250 samples (125 ms).
Then, 66 features in the time, frequency, and time-
frequency domains are extracted from each frame. The
extracted features can be categorized into seven types:
• Shannon energy: The Shannon energy of each frame is
calculated.
• Linear Predictor Coefficients (LPC): The coefficients
of 8th order linear predictor (8 coefficients).
• Polynomial fitting: A 12th degree polynomial is fitted
to each frame and coefficients are used as features.
• Sub-band energy: The frequency spectrum of S1 con-
tains components within the interval of 10-50 Hz and 50-
140 Hz, while for S2 the frequency bands 10-80 Hz, 80-
200 Hz and 220-400 Hz are considered more informative
[3]. Sub-band energies are extracted within an interval of
0-300 Hz using equally divided spectrum with a spacing of
50 Hz. This gives us a total of 6 sub-band energy features.
• Mel-scale features: Mel-spaced filter banks offer a
simple way of extracting spectral characteristics from an
acoustic signal. In this method, an equally spaced triangu-
lar filter banks are created across the spectrum. They are
defined in Eq. (1),

Mel(f) = 2595 log10(1 +
1

700
) (1)

where Mel(f) is the frequency f in Mel-scale. Because
the most of the energy of heart sounds is located at the
lower frequencies, this gives us a good way to extract fea-
tures [11]. A filter bank of 15 triangular filters was used
in the range of 10-430 Hz. Each filter is multiplied with
discrete Fourier transform of a heart sound frame and then
summed. This gives us the total of 15 features from each
heart sound frame.
• Regression coefficients: Regression coefficients repre-
sent changes in each feature over time [11]. Regression
coefficients are calculated from the Mel-scale features for
each frame with Eq. (2),

dt =

∑N
n=1 n(ct+n − ct−n)

2
∑N

n=1 n
2

(2)

where ct is the Mel-scale feature of the tth frame. We use
N = 2 to refer for the previous and next 2 frames.
• Wavelet energy: Discrete wavelet transform (Daubechies
4) is applied to each PCG frame and the approximation co-
efficients of level 7 (a5) and the detail coefficients of level

1 to 7 (d1, . . . , d7) are as features as we calculate the en-
ergy of each level of approximation and detail coefficients.
This gives us a total of 8 wavelet energy features.

2.3. Classification

The performances of different classifiers were evaluated
in 10-fold cross-validation experimentation. The perfor-
mance metrics used in the evaluation are average of sensi-
tivity (Se), specificity (Sp) and accuracy (Acc) in all folds.
The evaluation metrics are defined as:
Se = TP/(TP + FN), Sp = TN/(TN + FP ) and
Acc = (TP +TN)/(TP +TN +FP +FN), where T/F
denotes true/false and P/N denotes positive/negative.

In the first phase, the performance was evaluated by sep-
arating S2 peaks from the rest of the data. Tested methods
included k-nearest neighbor classifier (k-NN), Linear Dis-
criminant Analysis (LDA) and Neural networks (NN) with
different architectures (best results with 2 hidden layers
with 25 neurons on both hidden layers). The performance
of different classifiers can be seen in Table 1.

Table 1. Comparison among different classifiers.

Classifier avg Se std Se avg Sp std Sp avg Acc std Acc
k-NN 0.8785 0.0062 0.8805 0.0088 0.8801 0.0088
LDA 0.8446 0.0038 0.7600 0.0025 0.7768 0.0017
NN 0.8068 0.0061 0.8109 0.0043 0.8100 0.0041

The best performance was found with k-NN classifier us-
ing Manhattan distance and value k = 16.

The training data was balanced in a way that there is
an equal number of elements in each class using oversam-
pling. The size of the class with a lower number of ele-
ments is increased by randomly duplicating elements until
all classes are equal in size. [12]

2.4. Post-processing

The used classifier has a tendency to detect extra peaks,
but the number of missed peaks is relatively meager. The
first step in post-processing is to reject extra peaks. The
second step is to try to recover the missed peaks. In prac-
tice, it was noticed that detecting missed peaks is much
more difficult than rejecting extra peaks. This means that
the performance of a classifier that has a low number of
missed peaks can be improved significantly. The final part
of post-processing is to determine if detected peaks are S1
peaks or S2 peaks. All of the post-processing steps are
performed to one PCG recording at a time.
• Rejecting extra peaks: The set of rules to reject and
merge extra peaks in [2] was used as a guideline:
1) Calculate the intervals between adjacent peaks. At this
point, we ignore the peak labels S1 and S2 and just ob-
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serve if a peak is detected or not. Then a low-level limit is
calculated, defined in Eq. (3).

Low-level limit = µ− c1 · σ (3)

Where µ and σ are the mean and the standard deviation
of the calculated intervals. The constant c1 is obtained in
grid search. All the peaks with an interval shorter than the
low-level limit are taken to further inspections and the peak
with lower amplitude is rejected.
2) Merge peaks by finding a local maximum. This is per-
formed by inspecting every detected peak and finding the
greatest amplitude within the interval of 55 ms.
3) Find two S1 or S2 peaks in consecutive frames and re-
move the one with lower amplitude.
4) Calculate the average amplitude of S1 and S2 peaks. Set
a Threshold and reject all the peaks below the correspond-
ing threshold.
• Recovering missed peaks: Recovering the missed
peaks is the opposite operation of rejecting extra peaks.
First, the intervals of the peaks are calculated again. At
this point, the most of the extra peaks are already rejected
so we can focus on intervals between two peaks with the
same label (S1-S1 or S2-S2). This time a high-level limit
is calculated, defined in Eq. (4).

High-level limit = Q3− c2 · IQR (4)

Where Q3 is the boundary of upper 75th percentile and
IQR is the difference between the 75th and 25th percentiles
of the intervals. Again, the constant c2 is obtained in grid
search. If the interval between two peaks is longer than the
high-level limit, we can assume that there is a missed peak
between the two detected peaks.
• Determine peak labels by intervals between peaks:
The last step of post-processing is to determine the labels
of the detected peaks. In this case, we are trying to find
three consecutive peaks labeled the same (S1-S1-S1 or S2-
S2-S2) and determine the labels correctly by using the fact
that the distance S2-S1 is greater than the distance S1-S2.

3. Discussion and Results

3.1. Classification Performance Evaluation

F1-scores were used to evaluate the performance of seg-
mentation. The evaluation method is obtained from Phys-
ionet/Computing in Cardiology Challenge 2017 [9].

Different frame lengths were tested and the results are
presented in Table 2.

The classifier performance was evaluated with the leave-
one-out cross-validation method.The post-processing meth-
ods were applied to each classified recording individually.
The post-processing efficiently reduces the number of de-

tected extra peaks. Figure 1 illustrates the effects of post-
processing to a single PCG recording.

Table 2. F-scores for different frame lengths before and
after post-processing.

PP FL No. F1(O) F1(S1) F1(S2) F1

- 250 2200 0.8859 0.7850 0.7428 0.8046
x 250 2200 0.9769 0.9340 0.8924 0.9345
- 300 2160 0.8786 0.8122 0.7644 0.8184
x 300 2160 0.9663 0.9289 0.8790 0.9248
- 350 2082 0.8758 0.8219 0.7704 0.8227
x 350 2082 0.9455 0.9032 0.8322 0.8936

PP = post-processing, FL = frame length, No. = number of signals

Figure 1. Detected peaks before and after post-processing.

The classified frames are presented in Table 3, where
numbers in the confusion matrix denote to the number of
frames predicted that belongs in certain reference class. In
terms of detecting S1 or S2 peaks, the proposed method
has achieved Se = 94.23% and Sp = 98.16%.

Table 3. The classification results before and after post-
processing.

Predicted Classification
Before post-processing After post-processing
Other S1 S2 Other S1 S2

Other 209458 23025 24455 252215 1603 3120
Reference S1 1749 59033 2312 1784 58451 2859

Classification S2 4703 5258 53024 5406 2010 55569

The system performance was also evaluated with PAS-
CAL dataset B [13]. The dataset consists of 90 normal
PCG recordings. The sampling frequency of PASCAL
dataset B is 4 000 Hz so the frame length used here is 500
samples. The confusion matrix obtained over the PASCAL
dataset B is presented in Table 4. In this dataset, the pro-
posed method achieved Se = 0.9642 and Sp = 0.9812.
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Table 4. Peak detection on PASCAL dataset.

Predicted
Classification

S1 or S2 Other
Reference S1 or S2 1266 38

Classification Other 47 1988

3.2. Comparative Results

The current state-of-the-art method is Logistic Regres-
sion HSMM-based method [8]. In their paper they present
F-scores: F1(S1) = 0.9695±0.0090, F1(S2) = 0.9429±
0.0108 and F1 = 0.9563 ± 0.0085. This method was
tested with a dataset that consists of 2.83 hours of PCG
recordings. In the Table 5 is a summary of relevant meth-
ods previously tested. The table presents the dataset sizes
and numerical results [8].

Table 5. Summary of different methods.

Auth. Dataset description Metrics and results
[2] 37 recordings (515 cycles) from children with 93.0% Acc

murmurs (14 being pathological)
[3] 77 (1165 cycles) recordings from children with 94.6% Acc

both pathological and physiological murmurs
[4] Nine recordings (less than 5 s). 55% Cycles: 99.0% Acc

pathological
[5] 9426.8 s of recordings, normal (22.2%) and S1: 98.53% Acc

various pathologies S2: 98.31% Acc
Cycles: 97.37% Acc

[6] 80 patients, 8 pathological. Recordings of 20 s S1: 94.6% Se, 97.7% P+

from four auscultation sites (10045 S1, 9818 S2 S2: 95.2% Se, 96.1% P+

sounds)
[7] 113 recordings of 8 s, 8% with coronary artery 98.8% Se, 98.6% P+

disease
[8] 112 patients, 10 172s of recordings. 95.34 ± 0.88% Se

95.92 ± 0.83% P+

92.52 ± 1.33% Acc
Acc denotes accuracy, Se sensitivity, Sp specificity and P+ positive predictivity

4. Conclusions

This study proposes a solution for cardiac cycle segmen-
tation of PCG recordings. It extracts a rich set of features
that are used for the segmentation of each cardiac cycle
in a PCG recording by localizing the peaks, S1 and S2.
In the proposed approach a systematic post-processing is
performed in order to reduce the classification noise in the
predicted labels. According to the comparative evaluations
performed over the other state-of-the-art methods, the pro-
posed approach achieves competitive results using a sim-
ple and compact classifier (F1(S1) = 0.9340, F1(S2) =
0.8924, F1 = 0.9345, Se = 94.23%, Sp = 98.16%). The
system was evaluated with one of the largest datasets pub-
licly available (PhysioNet/CinC Challenge 2016 dataset).
This demonstrates the potential of this method and the re-
sults could be improved in the future with more sophisti-
cated feature selection and classification methods.
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