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Abstract 

A reliable automatic categorization of respiratory 

effort is paramount for sleep-disordered breathing 

characterization from polysomnography. A respiratory 

effort related arousal (RERA) is a subtle breathing 

obstruction associated with an arousal. For identification 

of RERAs we focused on: chest and abdomen EMGs, 

airflow, and EEG; monitoring changes in ECG and 

SaO2. The quality of signals was assessed to overcome 

sensor associated problems and sporadic individual 

signal losses. We evaluated an ensemble learning and a 

deep learning approach using the engineered feature set 

trained on the 994 available records. The initial ensemble 

model was officially scored achieving a 0.081 area under 

the precision-recall curve (AUPRC) on a test set, whereas 

for the recurrent neural network model the average 

AUPRC was 0.295, obtained using 10-fold cross-

validation. 

 

 

1. Introduction 

Sleep-related breathing disorders (SBD) are 

increasingly common in general population [1]. The gas 

exchange can be disturbed totally (apnea) or partially 

(hypopnea), resulting in oxygen desaturation, 

hypercapnia, and fragmentation of sleep. Consequently, 

impairments associated with SBD vary from 

cardiovascular, cognitive to metabolic [1,2]. The 

increased inspiratory effort in obstructive SBD usually 

terminates with an arousal from sleep during which 

breathing is restored [3]. Even much subtler airway 

obstructions, associated with increased respiratory effort, 

without notable reduction in airflow can lead to an 

arousal, and thus excessive daytime sleepiness [3]. These 

events, named respiratory-effort related arousals (RERAs) 

are predominant in the upper airway resistance syndrome 

(UARS) [4].  

In diagnosing SBD, measuring of a respiratory effort is 

done using different monitoring techniques. Oesophageal 

manometry is being considered the gold standard for this 

purpose. Being invasive and not routinely used, 

oesophageal manometry is often replaced with non-

invasive techniques such as: alternation of a nasal cannula 

flow curve, continuous positive airway pressure, pulse 

transit time, and a sum from respiratory inductance 

plethysmography (RIP) [3,4]. As diagnosis of SBD is 

routinely done using overnight polysomnography, the 

sleep technicians use multitude of recorded signals to 

detect RERAs, simultaneously observing the airflow 

curve, electroencephalogram and RIP [2]. 

In this paper we investigated the possibility of an 

automatic detection of RERAs, using polysomnographic 

recordings of 994 subjects, provided as a training data set 

for Physionet/CinC Challenge 2018 [5]. Physiological 

variability, subtle airflow changes, and recording artefacts 

significantly hamper the reliable detection. Relying on 

electroencephalogram (EEG) based arousal detection, 

oxygen saturation (SaO2), RR interval monitoring, 

thoraco-abdominal electromyography (EMG), and airflow 

features, we applied two classification schemes: an 

ensemble learning approach based on logistic regression 

classifiers and neural network consisting of two fully 

connected layers and a bidirectional long short-term 

memory (LSTM) layer. 

 

2. Challenge database 

The Physionet/CinC Challenge 2018 training set 

consists of polysomnographic recording sets of 994 

subjects, adding up to the overall 135GB of data. Each 

polysomnographic recording set contains 13 signals: 6 

EEG channels, electrooculography (EOG), chin, thoracic 

(CHEST) and abdominal (ABD) EMG, airflow, 

electrocardiology (ECG), and oxygen saturation SaO2 

data. All signals are digitized at 200Hz, except for SaO2 

which is resampled to this frequency. The data is 

annotated in a manner that it classifies arousals as either: 

spontaneous arousals (total of 70 arousals), respiratory 

effort related arousals (43822), bruxisms (30), 

hypoventilations (4), hypopneas (56936), apneas (central 

- 22763, obstructive - 32547 and mixed - 2641), snores 

(28), periodic leg movements (36), Cheyne-Stokes 

breathing (3) or partial airway obstructions (11). The 

target arousals exclude apnea and hypopnea arousals, as 
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much more studied and more prominent, concentrating on 

the rest of the arousal causes. Additional annotations for 

different sleeping stages are as well provided. 

The test dataset consists of the same type of 

polysomnographic recordings from another 989 subjects. 

 

3. Methods 

3.1. Preprocessing 

The numerous recording artefacts, sporadic loss of 

signal, and specific sensor induced noise hampered the 

reliable feature extraction. To overcome these issues, a 

preprocessing procedure was applied. 

An illustrative example is given in Fig. 1 presenting 

the sharp changes in amplitude range of an airflow signal. 

To overcome these issues, energy normalization on 1-

minute long window was applied. Besides, all 

polysomnographic signals (SaO2 is the only exception) 

were normalized with their median and inter quartile 

range to obtain similar amplitude ranges. 

Mains hum was detected in respiratory airflow, ECG, 

and EMG (abdomen, chest) and thus low pass filtering 

was applied. Depending on the frequency range of 

interest, different low-pass FIR filters were applied, as 

summarized in Table 1.  

It should be noted that EMG signals from the chin 

movement and the EOG signals were omitted from the 

algorithm pipeline. 

 

3.2. Feature extraction 

To detect RERA events, the features were extracted 

every 5s, but the duration of the analysis window 

depended on the signal type and varied in the range of 10-

60s. All of the features used in this study are listed in 

Table 2. 
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Figure 1. Example of the resulting preprocessing step on 

an airflow signal 

Table 1: Parameters of noise removal FIR filters 

 

Signal 

type 

Passband  

freq.[Hz] 

Stopband 

freq.[Hz] 

Window 

function 

Airflow 2 10 Blackman 

ECG 30 50 Blackman 

EMG  20 30 Blackman 

 

For airflow signals the features were extracted from 

10s windows, reflecting the smaller amplitude range of 

the airflow signal in the target arousals compared to non-

arousal segments. The abdomen and chest signals were 

observed for the changes in amplitude and envelope [6] 

within a 30s window centered around the current 10s 

segment. EEG signals were analysed both at 60s and 10s 

frames, resulting in two sets of features. The 60s frames 

served for wakefulness detection based on wavelet 

features [7] extracted from a single O1-M2 channel. In 

10s EEG windows we focused on a narrow alpha band [5-

12Hz], proposed in [8], and used only F3-M2, C3-M2 and 

O1-M2 (as the same features from the other EEG 

channels were highly correlated). SaO2 features were 

extracted from both 10s and 60s window intervals to 

monitor the changes in the SaO2 signal usually visible 

10-30s after a RERA occurs. RR series were extracted 

from whole ECG signals using two QRS detection 

algorithms [9-11] and their agreement served for 

additional quality control [12]. In the feature extraction 

step 30s windows were used to characterize heart rate 

variability using the recommended time and frequency 

domain descriptors [13]. 

A subset of features for some channels was 

accompanied with an additional feature reflecting feature 

set veracity, i.e. informing on the eventual signal loss. 

These features were added only in the official phase, to 

overcome the problem of invalid segments in a sequential 

model. These features are marked with * in Table 2. 

The whole feature set, with the exception of the 

supplementary features, was normalized using standard z 

score normalization, and were randomly arranged for a 

10-fold cross-validation input taking care that each 

patient’s recording is either in training or test set. 

 

3.3. Classification 

Two different approaches were tested for the task of 

classifying the RERA arousals from the non-target 

arousals and normal sleep sequences.  

For the unofficial competition phase, we have 

employed an ensemble approach (Fig. 2a). The 

classification ensemble comprised of one classifier per 

training subject, each built up from five logistic 

regression classifiers, each using distinct feature subsets. 

Each test subject was then classified according to these 

equally weighted models, and a voting mechanic 
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Table 2. Feature list. Features written in italic are features additionally added for the official phase. An asterisk (*) 

indicates features with the supplementary feature measuring validity 

 

Category Feature 

AIR average energy 

AIR position of the most prominent 

nonnegative side peak in correlation 

(MPSP)* 

AIR ratio of MPSP and energy* 

AIR number of nonnegative side peaks in 

correlation (NSP)* 

AIR average NSP distance* 

AIR standard deviation of NSP distances* 

AIR average NSP value* 

AIR NPS standard deviation* 

AIR 90th percentile 

ABD,CHEST maximum 

ABD,CHEST minimum 

ABD,CHEST standard deviation 

ABD,CHEST average peak distances* 

ABD,CHEST standard deviation of peak distances* 

ABD,CHEST average peak value* 

ABD,CHEST standard deviation of peak values* 

ABD,CHEST average peak-to-valley measurement* 

ABD,CHEST standard deviation of peak-to-valley 

measurements* 

ABD,CHEST 90th percentile 

ABD,CHEST average phase offset* 

ABD,CHEST standard deviation of the phase offsets* 

ABD,CHEST the respiratory disturbance variable 

ABD,CHEST the respiratory disturbance variable from 

the joined signals 

EEG O1-M2 average 

EEG O1-M2 kurtosis 

EEG O1-M2 coefficients from the wavelet 

decomposition 

EEG F3-M2, C3-M2, O1-M2 average power 

EEG F3-M2, C3-M2, O1-M2 standard 

deviation of the power 

EEG F3-M2, C3-M2, O1-M2 average power 

of the 5-12Hz band 

Category Feature 

EEG F3-M2, C3-M2, O1-M2 power ratio of 

the 5-12Hz band and the full band 

SaO2 minimum value from 10s interval 

SaO2 average value from 10s interval 

SaO2 standard deviation from 10s interval 

SaO2 zero cross rate from the 10s interval 

SaO2 average absolute difference of 5 

segments comprised of 12s intervals in a 

60s region 

SaO2 difference in value of the central 12s 

segment from the following segment 

SaO2 difference in value of the central 12s 

segment from the previous segment 

ECG maximum 

ECG minimum 

ECG interquartile range 

ECG standard deviation 

ECG median absolute deviation 

ECG maximum result likeness from the 2 QRS 

detectors 

ECG average RR distance in the central 10s 

window* 

ECG standard deviation of the RR distances in 

the central 10s window* 

ECG root mean squared value of the 

approximate derivative of the RR 

distances in the central 10s window* 

ECG standard deviation of the approximate 

derivative of the RR distances* 

ECG 3 variants of pNN50* 

ECG minor and major axes of the Poincaré 

plot obtained from the 30s interval* 

ECG power percentage of band up to 0.04Hz* 

ECG power percentage of band in range 0.04-

0.15Hz* 

ECG power percentage of band in range 0.15-

0.5Hz 

 

determined the overall probability that an input sample is 

deemed as a target arousal. 

During the official phase we employed a single 

classifier model based on the currently most effective 

sequence model - bidirectional LSTM [14] whose 

architecture is shown in Fig. 2 b). The input is a 

concatenation of features in the currently observed frame 

and its predecessor and successor. The goal of the layers 

between the input and LSTM layer was feature selection. 

Dropout layers with a factor of 0.4 were applied to 

reduce overfitting. To accelerate training procedure after 

each layer minibatch normalization is applied. Output has  

2 values, in order to accommodate the network structure 

to the implemented cross entropy loss function in the  

 

Microsoft Cognitive Toolkit (CNTK) [15]. The training 

was done for 21 epochs. Additional network architectures 

were explored, in the terms of number of hidden layers, 

number of cells within a layer and different activation 

functions, but did not yield better results for our case of 

inputs. 

 

4. Results and discussion 

The evaluation of the constructed models is performed 

by calculating the area under the precision-recall curve 

(AUPRC) comparing the target arousals and normal sleep 

sequences with the true labels. The ensemble model from 
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the unofficial phase scored modestly with an AUPRC of 

0.081 on the test set, and a similar cross-validation 

AUPRC estimate of 0.105. This result indicated that due 

to high inter-subject variability a linear model is not able 

to distinguish the target arousal, and applied general 

voting mechanism is not adequate. The neural network 

model was not evaluated on the test set, yet the cross-

validation AUPRC estimate of 0.295 was a considerable 

improvement. The neural network model performed 

better as the introduced non-linearities managed to detect 

the target arousals. 

 
Figure 2. The proposed models for the a) unofficial and b) 

official phase 

 

5. Conclusion 

The goal of the 2018 Physionet challenge was to 

determine target arousal areas during sleep. In this paper 

we explored two approaches, both of which used tailored 

preprocessing and feature extraction. The classifier 

models were an ensemble based linear model with voting 

for decisions, and a neural network model. The final score 

for the initial model was 0.081 and our estimate for the 

second model was 0.295. Additional improvements could 

be made by including the omitted signals of the chin area 

and eye movement as well as training the network to find 

the optimal features. 
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