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Abstract

A high dimensional tracking system based on the
FithzHugh-Nagumo (FH-N) equations emulating the bio-
logical excitation and propagation dynamics of the action
potential across cardiac cells is proposed. The modified
FH-N model tracks the electric cardiac wavefronts on a
tissue, emulating an approximated atrial fibrillation sce-
nario. Bayesian tracking is achieved with two particle fil-
ter (PF) schemes: a sequential Auxiliary PF (APF) and
a parallelized method, Independent APF (IAPF). The nu-
merical results of the two examples, involving both estima-
tion errors and running times, provide numerical evidence
that support the theoretical findings.

1. Introduction

Atrial fibrillation (AF) is the most common heart rhythm
disorder (cardiac arrhythmia), causing substantial morbid-
ity and mortality [1]. However, the precise mechanisms
sustaining AF are still not well understood, partly due to
difficulties in reliably mapping electrical activity during
the spatio-temporal variations of AF in patients.

The lack of information about the initiation and mainte-
nance of AF has risen the attention of the scientific com-
munity, with many theories and assumptions over the past
years [2], [3]. However little knowledge about AF is still
available if we compare it to other common arrhythmias.

We aim to develop mathematical models to unveil the la-
tent behavior of AF, causes of initiation, macroreentry an-
choring mechanisms and possible termination procedures.
Bearing in mind these considerations, the chaotic electri-
cal wave propagation in both atria when AF is present
makes the developing of complex systems necessary. A
particle filter based tracking model with adaptation to ex-
ternal stimuli introducing several unexpected foci is pro-
posed. With the purpose of accomplishing this task a 2-
dimensional dynamical complex model consisting of a net-
work of modified stochastic FitzHugh-Nagumo (FH-N) os-
cillators is studied.
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2. Bayesian Tracking

2.1. State Space Model

We selected the FH-N equations by their resemblance to
the physiological action potential shape of cardiac cells.
We modeled a rectangular grid of J x J nodes, where
each node describes a subsystem following the discretized
classical FH-N differential equations using Euler’s method
with an integration time step 7y

Uijit =Uji—1+Tg <‘Ifi,,j,t +m; ;i Fy + p3(Uije—1)

1
—Vijt—1+ D Z Ul,r,t—l) +o” TyBi e, (1)
(l,r)EN ;

Vijit =Viji—1+Ta(BoUi -1+ B1Viji—1+ B2), (2)

where the continuous-time stochastic process U; j; usu-
ally represents an action potential in biological models,
and V; ; ; is the so-called recovery process, that evolves ac-
cording to the differential equation. To enable ectopic foci
tracking, we included a stochastic (additive noise) term o2,
a random stimulus ¥, ;;, and a coupling term that de-
termines the interaction with the neighbor nodes D. A
detailed explanation of the rest of the parameters can be
found in [4].

We are interested in studying dynamical patterns in the
system modeled by the network of Eqs.(1)-(2) caused by
the sequence of random stimuli ¥y = {¥;;, : 1 <
i < 4,1 <j < Jh>o. If asufficiently strong stimu-
lus is applied to the network in a region that had been re-
cently excited, the propagation of this stimulus can lead to
a re-entrant wavefront that can prevail over the excitations
caused by the forcing signal F'(s).

We propose the following model for the sequence ¥,.
For each ¢t > 1 and a pair of given thresholds u_ < u™,
we identify the stimulation region

Gt = {(17]) € {17 "'a‘]}z U< Ur,k,t—l < U+
for some (r, k) € {(i,j)} UN;;}, (3
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Figure 1. A: Wavefront propagating within a 32x32 grid, high voltage values displayed in hotter colors. The stimulus is
applied in frame 1, and it propagates through the tissue. Random stimuli behind the main wave appear in frames 7-9 and
13. The focal point at frame 9 initiates another wavefront disorganizing the periodic beating scenario. B: Tracking of the
TAPF (M = 10, N = 5000) for the same simulation. The IAPF detects and tracks the initial stimulus, and it discovers the
random stimuli, providing a fine estimation of the evolution of the complex dynamical system.

i.e., &; consists of the nodes (i,7) such that the state
of the node at time ¢t — 1 lies between the thresholds,
Uijt—1 € (u_,u™), or the state of some neighbor at
time ¢t — 1, (r,k) € N, lies between the thresholds,
Urkt—1 € (u—,u™). At each time step, a new stimulus
is applied to a group of neighbor nodes in the region &,
with (a small) probability e > 0. To be specific, let

Bf ~ Bernoulli(e), t=1,2,.., %)
be a sequence of i.i.d. Bernoulli random variables with
0 < € < 1 then, for each (i, j) € {1,..., J}2, and let

(i3, 77) ~ Uniform(&;) 5)

be a single pair of indices drawn from the uniform distri-
bution with support on the stimulus region G;. Then, we
can generate a random indicator Q5 ; ; of the form

Q. = 0, lf(ia]) ¢ {(ﬁa];)}u-/\/z,*df (6)
bt Bf if (4,5) € {(irx, 57)} UNG j;

which selects a set of neighboring nodes where a new stim-

ulus is to be applied at time ¢. Then, the sequence of stim-

uli in the (i, j) node can be written as

Lo—1
V5,5, = F'max {1’ > Qim_l} ; @)
=0

where F is the amplitude of each single stimulus, which is
sustained during ¢, consecutive discrete-time steps.

2.2.  Particle Filter

Concerning the non-linearity of the system equations,
the implementation of particle filters [5] based on se-
quential Monte Carlo (SMC) methodology for estimat-
ing the continuously changing propagation wave scenario
is adopted. PF algorithms are used as tools for estimat-
ing time-varying states of a dynamic system that cannot
be observed directly, but through some related measure-
ments. By using a probability mass function (pmf) with
random support the approximation of the a posteriori prob-
ability distribution of the state given the observations is
achieved. This pmf consists of a set of state-space samples
and weights pairs, which can intuitively be understood as
posterior probabilities.

The unobserved dynamic state is composed of the nodes
action potential U, recovery variable V, the candidate stim-
ulus region G and the observations, which are the noisy
measurements of the observation nodes. A typical particle
filter includes three steps that are repeated sequentially:

« Monte Carlo sampling in the space of the state variables,
« computation of weights for the generated samples and,
« resampling according to the weights.

We implemented two algorithms, the Auxiliary Particle
Filtering (APF) and the Independent APF (IAPF), using
a pool of multi-core CPUs for the implementation of the
parallel filters. The details for the algorithms are described
in [6]. To characterize the tracking states, let us denote

_ 244
Xijt = (Uijt: Vijt Qijt—to+1:6) € RZT and

9 2
Xt = (Xl,l,t> A 7X1’J’t7 e ,XJ)JJ) (S R( +lo)J .
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The (2 + £y)J?-dimensional sequence {X;};>0 is a
Markov process in discrete time. We do not attempt to
write down the associated Markov kernel explicitly, yet it
is straightforward to generate a sample X; conditional on
Xi—1 = x4—1 using Eqgs. (1)—(7), over the set of indices
{(4,7): 1 <i< J1<5< J}

To complete the state-space model description, we as-
sume the ability to observe the signal (voltage) variables,
U ;.+, in a subset of the nodes of the grid. To be specific,
at time ¢ we collect the measurements

Yijie=Uiji+3Bij (i,7) €Sy, (®
where S, C {1,...,J} x {1,..., J} is the set of observed
nodes, {B; ;. : (i,j) € S,} is a set of i.i.d. standard
Gaussian random variables (centered and with unit vari-
ance) and &2 is a known scale parameter. The full obser-
vation at time ¢ is denoted

Y = {Yi i (i,5) €S,} € RISu

The likelihood function is Gaussian, namely

P(ye|ae) o exp —% Y Wige —uige)®
(4,5)ESy
Equations (3)-(7), (1), (2) and (8) describe a Markov
state—space model in discrete time, with conditionally in-
dependent observations. We aim at tracking the sequence
of probability measures

P(Xt S A|Yl:t = yl:t) - / p($t|y1:t)d$tat = 1727 "'aTa
A

where A € B(X) and y1.7 is a given sequence of observa-
tions.

Figure 2. Observation nodes (green) within the 32 x 32
grid of stochastic FH-N systems with random stimuli. All
nodes follow the dynamics in Egs. (1)—(7).

2.3. Simulation setup

We ran simulations for a network of 1,024 (J = 32)
modified stochastic FH-N nodes, interconnected in a reg-
ular square grid. We considered as neighbors those nodes

contained in a 3 x 3 area. The time discretization period
was T; = 5 x 103 continuous-time units and the cou-
pling constant, that sets the “strength” of the links between
neighbors, was % =4.5x 1073,

The dynamics of the FH-N system is highly dependent
on the choice of the polynomial p3(u) in Eq. (1), which
for this set of simulations is selected as

o AR )

and the forcing signal F'(s), which hereafter consists of a
periodic sequence of pulses of the form
F(s) = Z N(s — kSh),
k=0
where M(s) is the square waveform

s -{ §

and the period of F'(s) is Sm = 20 time units and the am-
plitude of the pulses is F' = 200. The discrete-time forcing
signal was F; = F(s = tT}).

To construct the stimulus region &; given by Eq. (3) we
use the thresholds

u_=-1.8 and ut =-1.6,

it0 <s < .Sh

otherwise ’

which correspond to the back tail of a wave propagating
over the network. The parameter of the Bernoulli distribu-
tionin (4)is € = 103, the amplitude of the stimulus in (7)
is F' = 200 and it is sustained form ¢y = 25 discrete time
steps. The variance of the noise term in Eq. (1) is 02 = %
and the specification of the dynamics is complete with the
parameters (3o, 51, 32) = (2.1,—0.6,0.6) in Eq. (2).
Since the foci can appear at any space location, some
nodes evenly spread over the network grid are used as ob-
servations, allowing the model to sense any anomalous
perturbation in their neighboring area and propagate the
updated information to all the surrounding nodes. The ob-
servations are collected at a grid of 5 x 5 equally-spaced
zones, each zone consisting of four nodes forming a 2 x 2
square, as shown in Figure 2. Therefore, we collect obser-
vations from 5 X 5 x 2 x 2 = 100 nodes out of 1, 024 in the
network. For each observed node, say in the position (r, ),
we obtain the measurement specified by Eq. (8), where the
1

noise variance is 62 = 3.

3. Numerical results

The empirical MSE averaged over 20 independent sim-
ulation runs ! is displayed in Figure 3A, which is obtained

LAll simulations were carried out using a multicore Intel(R) Xeon(R)
CPU E5-2680 v2 @ 2.80GHz under Matlab 32 bits R2012b version with
the Parallel Computing Toolbox enabled. 20 different ground truths were
calculated and stored so the comparisons between algorithms were fair.
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Figure 3. Average tracking results over 20 independent simulation runs, and N = {100, 500, 1000, 2000, 5000} particles.

A: Empirical MSE versus number of particles. B: Variance of the empirical MSE versus the number of particles.
C: Empirical MSE versus running time. D: Variance of the empirical MSE versus running time.

by making use of the parallel implementation when the
number of particles per filter ranges from from N = 100
to N = 5000 and the number of filters is fixed to M = 10.
Then, the total number of particles K = M N associated
to the centralized APF ranges from K = 10 x 100 to
K = 10 x 5000, is also shown for comparison. The IAPF
achieves worse performance for fewer particles per filter
N, around N = 100, while for modest values N > 2000)
it nearly matches the MSE of the centralized BF. The em-
pirical variance of the MSE for the same set of 20 simula-
tion trials is displayed in Figure 3B. The results show, that
the proposed independent bootstrap filter falls short of the
APF as N becomes larger following the same tendency.

Lastly, the running time against the MSE values is ex-
amined. Fixing the number of filters to M = 10, for each
value of particles per filter N = 100, 500, 1000, 2000 and
5000, 20 different independent simulations of the FH-N
2D grid have been run calculating their empirical MSE and
the average running time for the parallel IAPF for each
combination of M and N. Subsequently, the APF was run
with K = M N particles, hence for K = 1 x 103,5 x
103,10 x 102,20 x 103 and 50 x 103.

Empirical MSE results versus the running time for the
two methods are displayed in Figure 3C-D. We define one
algorithm as more efficient than the other when it is able
to achieve lower MSE in the same amount of time. Then,
taking a look at Figure 3C, we can easily observe that the
ensemble of M = 10 IAPF with NV = 5000 particles per
filter achieves an empirical MSE of ~ 0.18 with a running
time of =~ 12.56 seconds, while the centralized APF attains
the same performance with K = 10 x 2000 particles and
a running time of ~ 28.67 seconds. Therefore same MSE
but greatly reduced running time for tracking the system.

4. Conclusions and Future Lines

We were able to track random ectopic activity in an in-
terconnected network resembling atrial tissue. We used
Bayesian filtering algorithms and took advantage of new

parallelized methods for speeding up computation times.
Future work will involve the implementation of realistic
action potential models, and employing real electrograms
from multi-electrode catheters to perform tracking of elec-
trical activity.
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