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Abstract

We hypothesize that increase with age of short-term
measures of heart rhythm [a way in which accelerations
and decelerations appear], especially dynamical pattern
indices [Transition Rates (St) or self-Transfer Entropy
(sTE)], provide indicates for unhealthy autonomic activ-
ity or cardiac tissue remodeling in elderly people. Hence
they can help in early recognition of arrhythmogenesis
processes.

Based on properties of heart rhythm of 190 healthy per-
sons, grouped into their age decade, we have found that
both St and sTE are efficient separators for discerning
elderly people with erratic rhythm. The values in mini-
mum in St = 2.4 and minimum in sTE = 0.27, obtained
by square function approximation, have been used to di-
vide subjects of 70s and 80s into two groups. For all en-
tropic measures these groups are different (p < 0.001, in
t-test or Man-Whitney in case normality test failed). The
fragmentation metrics [based on statistics of signs of heart
rate changes] PPP and PAS also distingushed these groups
though at greater p- value, and PSS yielded that the groups
are identical. The minima of these function did not give
satisfactory division of elderly into groups.

Concluding, frequent changes in heart rate acceleration
sign and size are the best signature for anomalous levels
of short-term heart rate variability in elderly people.

1. Introduction

The healthy human heart remains under the permanent
influence of both branches of the autonomic neural sys-
tem (ANS): the parasympathetic (considered to slow down
heart rate) and the sympathetic (considered to speed up
heart rate). Many measures estimating heart rate variabil-
ity (HRV) have been proposed in order to quantify the reg-
ulatory function of the ANS, see [1-3]. Intensive healthy
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population studies have found a correlation between an in-
crease in age and a decrease in many HRV indices, includ-
ing indices such as RMSDD, pNN50 and HF, which are
known to describe the short-term HRV (ST-HRV) [4-10].
Therefore, higher values of HRV have been attributed to
better organization of feedback reflexes driving the organ-
ism’s response to actual body needs. However, there are
observations suggesting that abnormal levels of short-term
HRYV indices should be related to erratic rhythms, i.e.,
rhythms resulting from remodeling of the cardiac tissue
due to disease or aging [10-13].

In the following, we hypothesize that increase of short-
term measures of dynamical patterns in elderly provides
indicates of unhealthy autonomic activity, or possible er-
ratic thythm resulting from degradation of cardiac tissue,
or both. Such erratic thythms might be the first stage of
silently developing arrhythmogenesis.

The term “dynamical landscape of heart rhythm” was
proposed in [14] to collect HRV indices focused on quan-
tifying differences in the subsequent heart periods: decel-
erations and accelerations, the so-called RR-increments.
Standard ST-HRV indices: RMSDD, pNN50 and HF are
also considered to belong to the set of the dynamical land-
scape measures.

Erratic rhythms are episodic and often develop when the
heart slows down, as it naturally happens during the noc-
turnal rest. Therefore long series of nocturnal recordings
are investigated by us.

2. Methods

Twenty-four hour ECG Holter signals were recorded
from 190 healthy participants. All of them gave the writ-
ten permission of informed consent which received ap-
proval by the Ethic Committee of Medical University of
Gdansk. The participants were grouped according to their
age decade: 20’s (35 subjects: 18 women), 30°s (23sub-
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jects: 11 women), 40’s (33 subjects: 13 women), 50’s (31
subjects: 13 women), 60’s (27 subjects: 12 women), 70’s
(22 subjects: 10 women), 80’s (18 subjects: 11 women).

The signals were analyzed on a Del Mar Reynolds sys-
tem. The sampling rate of ECG was 128 Hz which ensured
8 ms accuracy for time identification of R-peaks in QRS-
complexes. Quality of ECG recordings and accuracy of
R-peak detection were verified by visual inspection by ex-
perienced cardiologists. All normal beats were carefully
annotated, so that only sinus rhythms were considered.

The period of nocturnal rest was assigned individually,
in each recording separately, according to the appearance
of consecutive hours with the low rate. The non-normal
beats were edited (replaced by the median of the last 7
normal beats). For each person 20000 subsequent normal-
to-normal RR-intervals were extracted.

We used metrics which are based on probability that par-
ticular RR-increments

SRR(i) = RR(i) — RR(i — 1) fori =1,2,...,N

occur in a signal. Subsequently, probability for two-event
patterns (0RR(i),0RR(i + 1)) and three-event patterns
(0RR(i),0RR(i + 1),0 RR(i + 2)) is also estimated.

For detail description of indices used we refer to [14].
Here we only provide their brief description to introduce
the notation:

-Are{Amin---,0,...,Apast is any RR-increment ;
- p() denotes probability of events enclosed in brackets ();
—ShEnl =—3 ", p(Ar)Inp(Aj) ;

— ShEn2 = =%, ;p(Ar,Ay)Inp(A;,Ay) for a pair
(A7, Ay) of consecutive in time events;

— ShEn3 = — ZI,J,KP(AD AJ, AK) 1np(AI, AJ7 AK)
for a triple (A, A s, Ak) of consecutive in time events;

— St =ShEn2 - ShEnl;

—SsTE = (ShEn2 - ShEnl) - (ShEn3 - ShEn2) ;

—a: any acceleration: Ay < 0;

—d: any deceleration: Ay > 0;

-PIP =" _.p(ad) + 3 ,,p(da) : probability of abrupt
changes in the sign of two subsequent RR-increments
-PSS=1-1[>",..placa)+ >, p(ddd)] : complement
to the probability of short monotonic accelerations or de-
celerations;

-PAS=}" _,.plada) + 3" ,.,(dad) : probability of al-
ternative three-event patterns.

As the qualification whether  RR(i) # 0, hence if SRR (%)
is an acceleration or deceleration, depends on signal reso-
lution, we performed estimates for the resolution of a sig-
nal, i.e., with 8 ms and with doubled resolution of 16 ms.

Changes in a short-term index are often described as be-
ing of letter J shape. Therefore, we used a square function
approximation to find the index dependence on age decade.
The nonlinear regression provided us with values which
then allowed us to discern elderly people not affected by

erratic rthythms (called OK group) and people with erratic
rhythms (called NOK group). For these groups we present
the mean of the tensor of self-transfer entropy, for details
see [15], estimated as follows

TsTE(Ay,Ak) = p(Ax)Inp(Ak)
72p(AJaAK) lnp(AJ7AK) (1)

+> p(Ar, Ay, Ag)Inp(Ar, Aj, Ak)
Ar

All statistical tests and approximations have been per-
formed with SigmaPlot13 software.

3. Results

The square function approximations were estimated for
all the quantities listed above. However, only for S
and sTE these findings obtained the statistical significance.
Namely the coefficient of determination how well the re-
gression model describes the data was B2 > 0.3. Sim-
ilarly high though lower R? values were obtained for
ShEn1,ShEn2, and ShEn3. For PIP, PSS, and PAS R? ~
0.12.

ST X ST

regression (R2=0.31)
95% confidence

4.0 X

index value

age decade

sTE X sTE
regression (R2=0.31)
95% confidence

index value

age decade

Figure 1. Results of St and sTE for all signals grouped in
age decades are presented together with the square func-
tion regression. The minimal values in these approxima-
tions, namely 2.40 for St at 70’s (the upper) panel and
0.27 for sTE at 60’s (the bottom panel) serve further as the
group delimiters.

Fig. 1 presents the method in which the separators for
the groups of elderly people OK and NOK were defined.

Page 2



Table 1. Central values (mean or median) and dispersion
(SEM or first and third quartiles) in groups OK and NOK
for dynamical landscape indices considered by us.

Index group mean or +SEM or OK vs NOK

name name  median [,]quartiles p-value

Shannon entropy based measures:

St OK 2.10 + 0.05 < 0.001
NOK 2.84 + 0.08

sTE OK 0.13 [0.13, 0.15] < 0.001
NOK 0.46 [0.40, 0.79]

ShEn3 OK 6.3 +0.14 < 0.001
NOK 8.2 +0.17

ShEn2 OK 4.3 +0.10 < 0.001
NOK 6.0 +0.18

ShEnl OK 2.25 [2.1,2.3] < 0.001
NOK 3.0 [2.8,3.3]

fragmentation indices:

PIP OK 0.39 +0.012 < 0.001
NOK 0.50 +0.017

PAS OK 0.177 +0.013 0.012
NOK 0.250 +0.019

PSS OK 0.928 [0.904, 0.951] NS
NOK 0.933 [0.908, 0.960]

p(ad) OK 0.196 + 0.007 < 0.001
NOK 0.251 + 0.009

p(da) OK 0.192 + 0.006 < 0.001
NOK 0.251 + 0.008

p(aa) OK 0.122 =+ 0.007 0.005
NOK 0.159 + 0.009

p(dd) OK 0.118 + 0.008 NS
NOK 0.134 + 0.009

p(aaa) OK 0.038 [0.022, 0.046] NS
NOK 0.037 [0.020, 0.054]

p(ddd) OK 0.036 + 0.004 NS
NOK 0.030 + 0.005

p(ada) OK 0.091 + 0.007 0.020
NOK 0.131 +0.012

p(dad) OK 0.087 =+ 0.007 0.016
NOK 0.119 + 0.009

standard STV indices:

RMSSD OK 20.6 [17.2,24.3] < 0.001
NOK 43.6 [37.4,70.8]

pNNS50 OK 1.21 [0.67,2.1] < 0.001
NOK 18.0 [11.4,28.4]

HF OK 96.6 [67.3, 131.4] < 0.001
NOK 462.6 [318, 1113]

Other HRV indices:

mean(RR) OK 870 + 14 0.002
NOK 976 +23

SDNN OK 67.2 [58.7, 80.5] NS
NOK 78.8 [66.8, 112.3]

o TSTE for OK (in percent) o TSTE for OK (in percent, log-scale)

Figure 3. The mean tensor of self-transfer entropy (TsTE)
for the considered groups OK and NOK. The left column
is to show the main part of the tensors, the right columns
shows rare events thanks to log-scale.

Then in Fig. 2 we show how these two separators, 2.40 for
St and 0.27 for sTE, are related with each other for a given
person. Consequently, the group OK consists of rhythms
for which both indices are smaller than the minima (20 sig-
nals), and the group NOK contains signals for which both
indices are greater than the minima (16 signals). The re-
maining four signals form a group of unclassified signals.
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Figure 2. The group membership for signals of people
in the age of 70’s and 80’s. By arrows four signals of the
group unclassified are marked.

Then, in Table 1 the description of values for short-term
HRYV indices obtained for these groups is given. Together
the result of the statistical test for difference between the
groups OK and NOK is shown. It is noticeable that statisti-
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cal significance (p < 0.02) was attributed to the difference
between unclassified signals and NOK for entropies ShEn2
and ShEn3 and for S7.

The analogical estimates were performed for a signal
resolution of 16 ms. All the results obtained, though quan-
titatively different, were qualitatively in agreement with
the results obtained for resolution of 8ms.

Finally, in Fig. 3 we show the mean tensors of self-
transfer entropy, see Eq. (1), calculated from tensors ob-
tained for signals classified as OK and NOK. Notice
that the contour plots are displayed in different ranges of
(A, Ak) events. Each group results are presented twice:
by values scaled linearly to concentrate on properties of
core dynamics, and by logarithms of values to see the
whole variety of events.

4. Discussion and summary

Frequent changes in heart rate increments sign and size
have proven to be the best signature for anomalous levels
of ST-HRYV in elderly people. The best discerning ability
have been obtained for transition rates and self-transfer en-
tropy. Perhaps it is because both measures are built on the
concept of Shannon entropy. Shannon entropy quantifies
the signal values following the logarithm of signal prob-
ability distribution function. So the entropy extracts and
collects information across the scales in which the phe-
nomenon operates. This way it enhances diversity in the
probability distribution function. Fragmentation indices
directly summarize probabilities of specially grouped dy-
namical patterns. The entropy based measures, while cu-
mulating probabilities of events, scale them what provides
evaluation both strength of given patterns and the pattern
diversity.
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