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Abstract 

Quality of chest compressions (CCs) is key for patient’s 
survival to cardiac arrest. Incorporating real-time 
feedback on CC rate in automated external defibrillators 
(AEDs) could enhance CC quality. The aim of the study 
was to design a method for detecting CC pauses and 
computing CC rate using the transthoracic impedance (TI) 
signal acquired from the AED defibrillation pads.  

We collected 35 AED recordings from a database 
property of Emergentziak-Osakidetza (Basque Country, 
Spain). Using the ECG and TI signals, a CC pause was 
annotated when CCs were interrupted for more than 3 s. 
The algorithm estimates the CC rate from the 
autocorrelation of 2-s consecutive TI intervals.  

The algorithm reported a sensitivity (Se) and a positive 
predictive value (PPV) in the detection of CC pauses of 
97.64%/92.48%. Reliable CC rates were obtained with a 
Se/PPV of 99.03%/98.61%. Unreliable CC rates were 
reported only in 0.9% of the cases.  

A method based on the autocorrelation of the TI signal 
allows reliable detection of CC pauses and estimation of 
CC rates, enhancing current AED functionality. 

 
 

1. Introduction 

Early high-quality cardiopulmonary resuscitation 
(CPR) and early access to defibrillation are key to 
maximize survival from out-of-hospital cardiac arrest [1]. 
CPR consists on delivering chest compressions (CCs) and 
ventilations to the patient in order to generate a minimal 
but critical amount of blood flood to the vital organs. 
Defibrillation is the application of an electric current 
through the heart to disrupt its disorganized electrical 
activity in order to restore a perfusing rhythm. 

In the last decades, public access defibrillation 
programs have been deployed to make automated external 
defibrillators (AEDs) available to lay people [2]. AEDs are 
portable and simple to operate devices that analyze the 

victim’s electrocardiogram (ECG) to determine whether a 
shockable rhythm is present. AEDs can also reliably guide 
the resuscitation sequence through voice and/or visual 
prompts. 

However, high-quality CPR is difficult to achieve in the 
resuscitation field even by well-trained rescuers [3]. 
Current resuscitation guidelines indicate that CCs must be 
delivered to the patient with minimal pauses (also named 
hands-off intervals), at a rate of 100-120 compressions per 
minute, and with a depth of 50-60 mm [1]. Adherence to 
these goals is difficult; hands-off intervals are very 
frequent and there is a tendency to provide too fast chest 
compressions, diminishing depth accordingly [3, 4]. 

Besides the ECG, most AEDs record the transthoracic 
impedance (TI) signal through the defibrillation pads. 
Chest compression activity can be observed in the TI 
signal, since CCs cause fluctuations around the patient’s 
baseline impedance with an amplitude about one ohm [5]. 
The aim of the study was to design a method for detecting 
CC pauses and computing CC rate using the TI signal 
acquired from the AED defibrillation pads. 

 
2. Materials and methods 

2.1. Database description 

We selected thirty-five (35) AED recordings (one per 
patient) from out-of-hospital cardiac arrest events with 
more than 1000 CCs applied to each patient. Recordings 
were collected between 2013 and 2014 by the basic life 
support (BLS) of Emergentziak-Osakidetza, the 
emergency medical services system of the Basque Country 
(Spain). Data were provided anonymous. 

Recordings were acquired with LIFEPAK1000 AEDs 
(Physio-Control, USA). ECG and TI signals were acquired 
with sampling frequencies of 125 Hz and 60 Hz, 
respectively. The raw ECG was band-pass filtered to 
suppress direct current and high frequency noise prior to 
its storage in the defibrillator's memory. Similarly, the raw 
TI signal was high-pass filtered to suppress patient's 
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baseline impedance. Concurrent ECG and TI waveforms 
of each recording were resampled to 250 Hz and exported 
to Matlab (Mathworks, USA) format. 

 
2.2. Data annotation 

When providing CPR, the BLS applied 2 min series of 
compressions following the 30:2 pattern, that is, 
alternating 30 CCs followed by a pause for delivering 2 
ventilations [1]. After every 2 min, the AED prompts the 
user to interrupt CCs for rhythm analysis. With this 
sequence in mind, we reviewed the ECG and the TI signals 
of each recording, and manually annotated a pause if CCs 
were interrupted for more than 3 s. 

Figure 1 shows a 1 min interval of an AED recording. 
The ECG depicted at the top indicates that the patient 
presents ventricular fibrillation (a shockable rhythm). The 
TI signal depicted below shows fast oscillations of 
amplitudes in the range 0.5 to 1 ohm. Those fluctuations 
disappear when CCs are discontinued, so CC pauses can 
be easily distinguished in the TI signal.  

 

 
Figure 1. Example of the two signals, ECG (top) and TI, 
acquired by most AEDs. The patient presents a shockable 
rhythm, and the TI signal allows the identification of the 
CPR sequence, consisting of series of 30 compressions 
with pauses for ventilation in between. 

 
2.3. Description of the method 

The algorithm processes the TI signal through 
consecutive non-overlapped 2 s analysis windows. The 
algorithm computes a biased estimate of the 
autocorrelation of each analysis window, and analyzes the 
lag range from 0 to 0.8 s. The method locates a peak in the 
autocorrelation signal between 0.25 s and 0.8 s, of 
amplitude higher than a defined threshold. The interval of 
interest in the autocorrelation implies that the algorithm 
was designed to detect CC rates in the range between 75 
compressions per minute (cpm) and 240 cpm, according to 

the expression: 
 

𝑓𝑓𝑐𝑐𝑐𝑐  (cpm) = 60 � s
min

� ∙
1

𝑇𝑇(s) 

 
If there is no peak satisfying the amplitude condition in 

the established range, the value of CC rate assigned for the 
analysis window is 𝑓𝑓𝑐𝑐𝑐𝑐 = 0, and the interval is determined 
as “interval with no CCs”. Otherwise, a non-zero 𝑓𝑓𝑐𝑐𝑐𝑐 value 
corresponded to the “interval with CCs”, i.e. it is not a CC 
pause. 

 
 

 
Figure 2. Example of the algorithm’s operation in the 
presence of CCs. For each 2 s analysis window, the 
computed CC rate is depicted (top). For the analysis 
window corresponding to the 6-8 s interval, the TI 
autocorrelation (bottom) shows the detected peak which 
corresponds to a CC rate of 167 cpm. 

 
 

 
Figure 3. Detection of a CC pause. For the analysis window 
corresponding to the 10-12 s interval, no significant peak 
was detected in the TI autocorrelation, so the algorithm 
accurately reported 𝑓𝑓𝑐𝑐𝑐𝑐 = 0. 
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2.4. Performance evaluation 

Recordings were split into a training (10 recordings) and 
a test set. First, the method was evaluated in terms of its 
ability to detect CC pauses, defined as intervals longer than 
3 s in the absence of CCs. For that aim, sensitivity (Se) and 
positive predictive value (PPV) were selected as figures of 
merit. Se was defined as the percentage of annotated 
pauses detected by the algorithm; PPV was defined as the 
percentage of detected pauses that corresponded to a true 
pause. 

Second, the method was evaluated in terms of its ability 
to reliably estimate CC rate. In the available data, there was 
no gold standard for validating the CC rate values reported 
by the algorithm. That limitation impeded the computation 
of the error in the measurement of CC rates. Alternatively, 
we used Se and PPV as figures of merit to evaluate the 
correctness in the estimation of CC rate for each analysis 
window. Thus, Se indicated the percentage of annotated 
CCs intervals for which a non-zero CC rate was reported, 
and PPV the percentage of reported non-zero CC rate 
values truly corresponding to compression intervals.  

In addition, we manually reviewed all computed CC rate 
values in the compression series for the test set, and 
unreliable values far from the visually measured CC rates 
were annotated.  

 
3. Results 

A total of 1611 CC pauses were annotated in the test set, 
with a median (IQR) of 63 (45-81) CC pauses per episode. 
With the test set, the method reported a Se/PPV in the 
detection of CC pauses of 97.64%/92.48%. The 
computation of CC rates was achieved with a Se/PPV of 
99.03%/98.61%. Unreliable CC rates were reported only 
in 0.9% of the cases, and were typically associated with an 
underestimation of the CC rate, usually corresponding to 
half of the observed rate.  

The following figures present some examples of interest 
that illustrate the algorithm’s performance. Generally, the 
algorithm performed very well but sometimes it did not 
work as expected. Figure 4 shows an example of an 
annotated CC pause that was not detected. In that case, 
small fluctuations can be observed in the TI signal, and the 
algorithm reported a non-zero 𝑓𝑓𝑐𝑐𝑐𝑐 value.  

Figure 5 shows an example of a single 𝑓𝑓𝑐𝑐𝑐𝑐 = 0 reported 
by the algorithm in a series of CCs (analysis window 
corresponding to the interval 938⎻940 s). Nevertheless, the 
algorithm correctly detects the presence of CCs in the 
previous and following 2-s windows of the compression 
series. 

 
 
 

 

 
Figure 4. Example of a non-detected pause: 𝑓𝑓𝑐𝑐𝑐𝑐 ≠ 0 in two 
consecutive analysis windows of an interval annotated as a 
pause (532-536 s).  
 

 
Figure 5. The algorithm reports a single 𝑓𝑓𝑐𝑐𝑐𝑐 = 0 in a series 
of CCs (938-940s).  
 
 

Finally, Figure 6 shows an example of the 
underestimation of the CC rate. In that particular case, the 
failure occurred in a 2 s interval almost at the end of the 
compression series, and a reliable CC rate was reported in 
the following window.  
 

 
Figure 6. Example of an unreliable CC rate value (1060-
1062 s). CC rate is underestimated (approximately half the 
real value is reported).  
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4. Discussion 

Most current AEDs do not incorporate real-time help on 
the quality of CPR. Enhancing AEDs to guide rescuers 
during chest compressions would be a significant step 
forward to achieve high-quality CPR by the BLS, 
including lay people as first responders.  

Hands-off intervals are frequent during out-of-hospital 
CPR. Interruptions in chest compressions compromise 
blood flow to the heart and brain and decrease 
defibrillation success, and, consequently, survival. Our 
method reliably detects pauses in CCs. The automated 
detection of such pauses could be relevant for two main 
reasons. First, in the field of CPR quality, it would enable 
AEDs to provide feedback to the rescuer when too long 
interruptions in CCs are detected. Second, it would allow 
detecting intervals in which the ECG is not affected by the 
artifact induced by CCs (e.g. pauses for ventilation or 
rescuer switch). In those intervals, AEDs could reliably 
assess the ECG rhythm, without requiring an additional 
interruption of compressions for rhythm assessment. 

The algorithm showed a good performance in the 
estimation of CC rate. Feedback on CC rate would help 
rescuers to adhere to the 100-120 cpm range currently 
recommended. In addition, AED storage of continuous CC 
rate would be very useful for episode debriefing. However, 
we need to test the algorithm with data incorporating a 
reference signal (e.g. the compression depth signal 
obtained from a CPR feedback device) to be used as gold 
standard for assessing the accuracy of the method in the 
computation of CC rate.  

Finally, the algorithm could be implemented in current 
AEDs with minimal software modifications, without 
requiring additional devices.  

 
5. Conclusions 

High-quality CPR is key in the effective treatment of 
out-of-hospital cardiac arrest. Most current AEDs cannot 
guide rescuers to provide chest compressions in adherence 
to recommendations.  

A method based on the autocorrelation of the TI signal, 
currently acquired through defibrillation pads, could allow

the reliable detection of compression pauses and 
estimation of compression rates, thus enhancing AED 
functionality. 
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