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Abstract

Our pipeline consists of a hand-crafted preprocessor
and a neural network classifier. We applied transforma-
tions on the physiologic signals to gain features in both
time- and frequency domains. The proposed algorithm was
trained on 994 annotated records of polysomnographic
signals. Most of the features were generated from the EEG
signal such as power spectral density, and entropy. We
extracted features from the EOG, EMG, airflow, and ECG
signals too. All the features were normalized.

These 68 features were resampled in 21 non-continuous
moments around the current timestamp, and fed into a 3-
layer neural network in order to assign a probability of
arousal at each second. Arousal samples were enriched
during training to battle data imbalance. Additional
(auxiliary) losses can guide the network to learn high-level
concepts, even though they will not be evaluated. We used
sleep stages as additional training targets, which were
easier to learn than arousals despite being multi-class.
This approach slightly increased arousal AUPRC.

Our submitted results for the entire test set were
evaluated: AUPRC=0.42.

Our 10-fold cross validation results for the AUPRC
are the following: [0.47110, 0.41672, 0.44305, 0.42842,
0.44644, 0.47969, 0.45082, 0.49320, 0.45913, 0.41278]
averaging 0.450.

1. Introduction

As a contribution to the Physionet/Computing in Cardi-
ology Challenge 2018 [1] this paper focuses on the design
and implementation of an algorithm which is capable of
detecting sleep arousals from polysomnographic signals.

We chose to solve the task with a neural network which
can classify each time-point in the input data as either
an arousal or a non-arousal region. Instead of feeding
the raw 200 Hz polysomnographic data directly to the
network our pipeline first preprocesses these signals using
domain knowledge henceforth referred to as features.
Since the length of the annotated arousal regions are in the
magnitude of seconds we chose a resolution of 1 Hz for
these intermediate features. We used supervised learning
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on these feature signals to train a relatively small neural
network.

2. Feature extraction

The EEG (electroencephalogram) signals were first
analysed in the frequency domain since each sleep stage
is characterized by a specific frequency band [2]. Five
features were extracted from each EEG channel in the
traditional frequency bands [2] with the help of the Welch
method [3] in 9 second length windows. Initially we used
3 second length windows but the results showed that the
classifier is more stable with a longer window selection.

Approximate Entropy (ApEn) was applied to the EEG
signals based on the work in [4] with the suggested
parameters. It was developed as a measure of system
complexity [5]. A high value of ApEn indicates random
and unpredictable variation, whereas a low value of ApEn
indicates regularity and predictability in a time series [5].

We used the SaO2 level mostly untouched: we rescaled
it between 60% and 100% in order to ensure that it reflects
to the physiologically relevant range.

We extracted several features from the EOG (elec-
trooculogram) signal based on the results in [6]. In this
publication time- and frequency domain features were
applied to the 5 second length windows of the digitized
EOG data. Their goal was to detect REM sleep stage with
appropriately designed features fed to a neural network. In
order to obtain higher classification accuracy they applied
Sequential Backward Selection on the features. Based on
their results we chose six features, namely the form factor,
standard deviation, skewness, kurtosis, and the relative
energies in two regions: 0 Hz — 2 Hz and 2 Hz — 4 Hz.
These statistics were also applied to the abdomen and chin
EMG (electromyogram) signals.

The respiratory signal gives valuable information to
arousal detection. In [7] an envelope related signal was
evaluated: the Respiratory Disturbance Variable (RDV).
As suggested, we processed the previously band-pass
filtered signals applying 30 second length windows in
10 second steps. The envelope was obtained by Hilbert
Transform. The RDV of the given window was calculated
as the ratio of the standard deviation and the mean of the
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Figure 1. Network architecture.

envelope with the application of a correction factor [7].

We applied Homomorphic Envelope as in [8] for some
of the signals such as the EEG channels, abdomen and chin
EMGs.

The ECG (electrocardiogram) signal was transformed
into a heart rate feature following the basic principles
in [9]. The QRS peak detector was modified to filter
peak candidates even further by removing peaks whose
amplitude did not reach a ratio of a max-pooled value.
(A max-pool window of 5 seconds, and a ratio of 0.4 was
used).

2.1. Time-slot extraction

Instead of taking continuous chunks of the features,
and feeding it to the network, a time-slot extraction is
performed first. This was driven by the intuition that we
needed a large receptive field. We also wanted to keep
the computational and memory costs low, so we avoided
dilated convolutions. For this purpose we resampled our
1 Hz feature signals around the examined timestamp in 21
time-slots and continuously concatenated the samples. The
sampling is denser at the center and gets gradually sparser
at the edges. The whole range of the time-slots provides
input from a 2-minute window of the features.

3. Neural network training

3.1. Network structure

The neural network depicted in Figure 1. takes a21 x 68
x 1 (HWC) sized tensor as input, consisting of the timeslot
extracted features where H = number of time-slots = 21
and W = number of features = 68. Then a 2D convolution
is run with a kernel size of 21 x 1, a filter size of 32, and
stride of 21 x 1, resulting in a 1 x 68 x 32 shaped tensor.
This tensor is further processed by a fully connected layer
with 128 outputs, and finally another fully connected layer
with 7 outputs. These 7 outputs make up 2 logits of arousal
classification, and 5 logits of sleep stage classification.

We used cross-entropy loss on the classification outputs
(one for arousals, and another for the sleep stages), and
weighted the losses to balance between the arousal and

sleep stage error.

3.2. Auxiliary loss

Unlike some other machine learning methods, neural
networks are flexible enough to be able to learn multiple
tasks on the same input data at the same time. A major part
of the network is shared, only the last layers are separated
into independent heads trained with separate objectives. A
detailed introduction can be found in [10].

In case one needs to predict multiple targets (like age
and sex of a person), and both outputs are necessary,
this method is called multi task learning. One can save
resources by uniting the two classifiers.

However, if we actually care about only one class
of the results (only the sex), but we have additional
information which is not provided as an input to the
network (age), we may also require the model to output
this information, as we actually provide further guidance
through the additional loss to the learner (auxiliary loss).
Although we will not use this output at inference time, the
richer training signal can help build a better representation,
and therefore also improve accuracy on the main task.

As the annotations contained sleep-stages, we used this
classification as an auxiliary loss. Using it as the network
input was not an option, as sleep-stages were not given to
the test set.

3.3. Data filtering, data imbalance

The extracted 1 Hz features were slightly preprocessed
before being used as training data.

All features were normalized with their mean absolute
value to balance patient-differences. We wanted to detect
changes during a patient’s sleep, and ignore differences
between patients. The resulting data was clipped to [-100,
100] to cut outliers which could damage the weights of the
neural network. Both normalizing and clipping resulted in
better accuracy.

Moments with invalid arousal annotations were skipped,
as no evaluation could be made with those. However,
moments with invalid sleep stage-annotation were kept.
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The data naturally contained many more samples with-
out arousal than with it, which needs to be handled to avoid
losing precision. We implemented a data selector, which
ensured that at least 25% of the data fed to the network
is arousal data, by dropping non-arousal moments when
constructing batches.

4. Discussion
4.1. Batch size

Table 1. Batch size effect on AUPRC result.

Batch size 4 10 20 40
AUPRC 0.42549 | 0.44509 | 0.45586 | 0.45969

These tests were run for 50k training iterations, mea-
sured on a fixed set of training sequences (validation set)
previously unseen by the network. As seen by the table, a
batch size of 40 yielded the best results. It is possible that
larger batch sizes may provide even further performance
benefits, but they are much slower to train, so we kept our
batch size at 20 to keep training times reasonable.

4.2.  Auxiliary loss weight

Experiments were made to find the best weight of the
auxiliary loss. The results are noisy on shorter trainings,
but we can conclude that AUPRC deteriorates above 0.5
weight, but may be helpful below (Figure 2.).
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Figure 2. The Effect of the Weight of the Auxiliary Loss.

Additionally, an experiment was made to drop the
auxiliary loss during the last 10% of training, when
inner representation is constructed, but final weights could
support the major target. We measured worse prediction
accuracy; therefore, this idea was not used.

4.3. Representation within the neural net-
work

Visualizing weights of the neural network in Figure 3.
reveals the learned filters. Each column shows weights of
a time-slice, while each row is a separate filter. We can find

filters which are sensitive to decreasing values in time (first
2 rows). Other mark moments where past and future have
higher values and we are at local minimum (8th), one sees
a (low) peak in the close future (9th) or simply calculates
the average (=sensitive to data with low variance) (18th).
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Figure 3. Input filter representation.

This diversity shows rich building blocks for higher
layers. Using a higher number of filters did not help
training. Higher level weights are not shown as in a fully-
connected network they are not easy to interpret.

4.4. Dropout

We have experimented with dropout but found that it did
not increase performance. Perhaps when training for more
iterations or with a different architecture results would be
different.

4.5. Postprocess

Several methods were tried which modified the output
arousal probabilities, mostly building on the observation
that arousals are annotated in 10 — 30 seconds long blocks.
While it seems logical that a lot of arousal-classified
samples (in our case the unit was 1 second) reinforce the
adjacent lower probability moments, these experiments did
not give reliably better results; therefore, they were not
used in the final version.
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5. Conclusion

We have presented an arousal detector algorithm for
polysomnographic data with relatively low resource needs.
As the first step, we generate hand-crafted intermediate
features using background knowledge. Using this trans-
formed data, a neural network classifies arousal / non-
arousal moments.

The evaluation allowed us to classify the data offline
— that is after the recording has finished —, however the
classifier could easily be modified to work near real-time
if a use-case requires it: only the normalization and time-
slots would need slight modifications.

References

[1] Ghassemi MM, Moody BE, wei H Lehman L, Song C, Li
Q, Sun H, Mark RG, Westover MB, Clifford GD. You
Snooze, You Win: the PhysioNet/Computing in Cardiology
Challenge 2018. Computing in Cardiology 2018;45:pp 1-4.
Maastricht, Netherlands.

[2] Zoubek L, Charbonnier S, Lesecq S, Buguet A, Chapotot F.
Feature selection for sleep/wake stages classification using
data driven methods. Biomedical Signal Processing and
Control 2007;2(3):171-179.

[3] Welch P. The use of fast fourier transform for the estimation
of power spectra: A method based on time averaging over
short, modified periodograms. IEEE Transactions on Audio

(4]

(5]

(6]

(7]

(8]

(9]

(10]

and Electroacoustics June 1967;15(2):70-73. ISSN 0018-
9278.

Burioka N, Miyata M, Cornélissen G, Halberg F, Takeshima
T, Kaplan DT, Suyama H, Endo M, Maegaki Y, Nomura
T, Tomita Y, Nakashima K, Shimizu E. Approximate
entropy in the electroencephalogram during wake and sleep.
Clinical EEG and Neuroscience 2005;36(1):21-24.

Pincus SM. Approximate entropy as a measure of system
complexity. Proceedings of the National Academy of
Sciences 1991;88(6):2297-2301. ISSN 0027-8424.
Coskun A, Ozsen S, Yucelbas S, Yucelbas C, Tezel G,
Kuccukturk S, Yosunkaya S. Detection of rem in sleep eog
signals. Indian Journal of Science and Technology 2016;
9(25). ISSN 0974 -5645.

A Diaz J, Arancibia J, Bassi A, Vivaldi E. Envelope
analysis of the airflow signal to improve polysomnographic
assessment of sleep disordered breathing. Sleep 01 2014;
37:199-208.

Springer DB, Tarassenko L, Clifford GD.  Logistic
regression-hsmm-based heart sound segmentation. IEEE
Transactions on Biomedical Engineering April 2016;
63(4):822-832. ISSN 0018-9294.

Hamilton P. Open source ecg analysis. In Computers in
Cardiology, 2002. IEEE, 2002; 101-104.

Ruder S. An overview of multi-task learning in deep neural
networks. CoRR 2017;abs/1706.05098.

Address for correspondence:

gorogm @ gmail.com

Page 4



