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Abstract

A great deal of algorithms currently available to
assess the quality of photoplethysmogram (PPG) signals
is based on the similarity between pulses to derive signal
quality indices. This approach has limitations when
pulse morphology become variable due to the presence
of some arrhythmia as in the case of atrial fibrillation
(AFib). AFib is a heart arrhythmia characterized in
the electrocardiogram mainly by an irregular irregularity.
This arrhythmicity is reflected on PPG pulses by the
presence of non-uniform pulses and poses challenges in
the evaluation of the signal quality. In this work, we
first test the performance of few algorithms from the
body of methods reported in literature using a dataset of
PPG records with AFib, and demonstrate their limitation.
Second, we present a novel SVM-based classifier for
PPG quality assessment in 30s-long segments of PPG
records extracted from pulse oximetry data of 13 stroke
patients admitted to the UCSF medical center neuro
ICU. 40 time-domain, frequency domain and non-linear
features were extracted from all segments. Using an
independent test set, the classifier reached a 0.94 accuracy,
0.95 sensitivity and 0.91 specificity. These results
demonstrate the robustness of the proposed method in
properly evaluating PPG signal quality in the presence of
atrial fibrillation.

1. Introduction

Atrial fibrillation (AFib) is the most common type of
arrhythmia with an approximate prevalence 3% in adults
older than 20 years [1]. AFib has a prevalence of 30 %
in stroke patients, and additionally, is associated with a
poorer neurological outcome than stroke patients without
AFib [2]. AFib can occur occasionally and with short

duration, a long-term ECG monitoring has been used for
the diagnosis. The typical pattern of AFib in ECG is
defined by irregular RR intervals; no discernible P waves;
and at least 30 s of episode duration [1]. New tools that
allow monitoring of heart activity in stroke patients will
be important for risk stratification and has the potential
to prevent stroke [3]. A great amount of effort had
been made to develop wearable and mobile solutions for
AFib detection [3]. Photoplethysmagraphy (PPG) signal
is measured non-invasively in the peripheral areas of the
body (as fingers or wrist) and can be incorporated into a
wearable device. However, it is not a trivial task to acquire
interference-free and clean PPG signals in real-world
applications. The integrity of the signal is crucial for
the pathological abnormalities identification and avoiding
false alarms. The definition of good PPG quality is not
straightforward since several factors need to be taken into
considerations. As a continuous physiological signal,
certain signal characteristics are expected to be stable over
time. Accelerometry was introduced in some devices
in order to identify periods with motion effect in the
PPG [4], [5]. Also, the simultaneous electrocardiogram
(ECG) signal synchronized with the PPG was used to
identify the physiological beats from the contaminated
PPG [6]. Taking account of these main aspects, the quality
assessment of PPG should be based on: similarity between
adjacent pulses [7]; absence of artifacts [6], [7]; clearly
distinguishable the peaks in the morphology and presence
of dicrotic notch [8]; absence of baseline fluctuations [7];
high signal-to-noise ratio; time aligned with ECG [6]; no
correlation with accelerometer signal [9].

Several studies have been dedicated to develop
algorithms that allow the detection of good and poor
signals for the PPG signals. S. Asgari et al. developed
a signal quality index (SQI) and used a 1336 ten-sec
segments (18 472 beats) obtaining a true positive rate of
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99.06% and false positive rate of 7.69% [10]; A. Sukor
et al. developed other SQI that showed an accuracy
of 83 ± 11% using 104 60-sec PPG segments [6]; G.
Clifford et al. obtained 95.2% accuracy with a new SQI
algorithm [11]; W. Karlen et al. created an SQI that
presented a sensitivity of 96.21% [7]; C. Orphanidou et
al. developed a SQI that achieved the sensitivity of 91%
and 95% of specificity [12]; C. Liu et al. presented an SQI
with 90.79 % accuracy [13] and recently G. Papini et al.
presented a different solution with a sensitivity higher than
90% [14]. Current signal quality assessment approaches
compare the similarity between consecutive beats or
using static evaluator algorithm that relies on thresholds
derived from ’common-sense’ physiology. They showed
good performances in normal subjects but not in patients
with AFib. The irregular irregularity of the rhythm in
cardiac activity that characterizes the atrial fibrillation also
produces differences between pulses that increases the
difficulty to evaluate the quality of the signal (Figure 1),
and can have impact in the performance of theses previous
algorithms. In this work, we tested the previous SQI
in order to assess the performance with AFib cases, and
developed a novel method to overcome the limitations
of the existing approaches. The solution proposed is
based on two-class SVM approach classification using
multi-domain features extracted from short duration PPG
segments.

Figure 1. PPG and ECG signals for an AFib case.

2. Methods

2.1. Study Design

Inpatients with radiologically confirmed acute ischaemic
stroke were recruited from intensive care unit (ICU) of
UCSF medical center. Subjects provided written informed
consent to protocols approved by the Institutional Review
Board. Patients with acute ischaemic stroke, age
higher than 18 years, and speaking English language
were included. Patients with significant problems with
attention, alertness, or cognitive function and inability to
communicate were excluded from this study.

2.2. Data Collection

13 stroke patients participated in this study (age 19
to 91; median = 73.5), 6 patients with history of Afib.
The ECG and PPG signals were acquired in continuous
recordings using BedMasterEx (Excel Medical Inc, USA).
Between 3h and 22h of recordings (median = 10.5h)
were extracted at 240Hz sampling rate and were stored
for offline analysis using MatlabTM tools (Mathworks
Inc, USA). The signals were segmented into 30-sec strips
(according to AFib guidelines [2]) without overlapping.

2.3. Annotation Process

In order to create a gold standard of signal quality
assessment, four independent operators annotated the
signals (8037 PPG recordings, 30-sec each) based on two
classes: ”Good” or ”Bad”. The classification as a good
signal for a 30-sec segment of PPG should be based
on three heuristic rules: the signal reflect the response
of blood volume to the underneath pathophysiological
characteristics of the cardiovascular system, irrespective
of the particular shape of the pulse; artifacts-free; time
aligned with ECG showing a correspondence for heart
rate changes. The definition used in this work was
very restrictive: all beats must be good quality for the
30-sec segment to be classified as good quality. In total,
we analyze 8037 30-sec annotated segments. Cohen’s
kappa was determined in order to assess the inter-rater
variability of the four annotators, using a small subset of
100 samples annotated by all operators. The other samples
were annotated without having overlapped entries between
annotators.

2.4. Machine Learning Approach

Features Extraction

The signals were parametrized by 40 features in
the following subsets. Time-domain statistics: mean;
median; standard deviation; variance; interquartile range;
range; skewness; kurtosis; root mean square and
entropy. Frequency domain statistics: first- to fourth-order
moments in the frequency domain; median frequency;
spectral entropy; total spectral power and peak amplitude
in frequency band. Non-linear features, derived by the
Poincare plot were used: SD1, standard deviation of the
short-term beat to beat interval variability; the major axis
SD2, the standard deviation of the long-term beat to beat
interval variability and the SD1/SD2 ratio. Beat to beat
analysis, were used four templates based on Gaussian
waves to test the cross-correlation with each beat from the
30-sec segment, we determine the mean of the maxima
list of cross-correlation results; standard deviation and
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range. Difference between beat to beat also were used,
determined by the interquartile range for the differences
of time domain statistics applied to each beat: mean;
median; standard deviation; variance; interquartile range;
range; skewness; kurtosis; root mean square and entropy.
In beat to beat analysis, the mean of area under curve
was determined; and the minimum period of a beat in
the segment was used and maximum. The number of
saturations in the segment (top and bottom of the signal)
were also used as a feature. Due to the big difference
in characteristics (amplitude and variation) of the feature
components a normalization procedure was performed.

Two-class SVM Classifier

SVM classifier has been widely used in several
biomedical problems, and is able to cope with aspects
such as non-linearity and/or high-dimensionality of the
physiological data [15], [16]. SVM classifier can
distinguish two classes by finding a separating hyperplane
with the maximal margin between two classes. The kernel
function maps training data into a higher dimensional
space. In this work, two different kernel functions
were compared: linear and gaussian. In order to avoid
overfitting and to test each model in a prospective setting,
approximately 25% (15 to 35%) of the data samples was
chosen as test set, which was never involved in the training
phase. The remaining 75% (65 to 85%) of the data was
used for learning the best model and determining the best
parameters through 10-fold cross-validation, after being
normalized in order to avoid within-subject differences in
amplitude and variation among features. Training samples
averaged values for each feature and corresponding
standard deviation values were stored in order to normalize
test feature sets, being therefore possible to map novel
values into the training model features space. Performance
analysis was conducted considering the accuracy (Ac),
sensitivity (Sen) and specificity (Spe).

3. Results and Discussion

Agreement between four operators showed a kappa
coefficient of 0.71 indicating substantial agreement.
Annotated data showed that ratio bad/good signal by
patients has a range between 0.02 (3 bad /137 good) to
16.7 (334/20), for the global dataset the ratio is 0.57 (2919
bad / 5118 good signals). Table 1 presents the results
for the algorithms based on previously SQI that were
tested with the annotated dataset. The performance of
these algorithms is inferior to the results obtained with
no AFib cases, as expected. Also, the algorithms were
adapted and some thresholds were not described by the
authors [6], in these cases the thresholds were empirically
defined in order to optimize the performance. Only

Table 1. Performance of the SQIs, based on previous
works, assessed with the current data.

SQI Ac Sen Spe
A. Sukor [6] 0.8387 0.9760 0.5982
W. Karlen [7] 0.8677 0.8966 0.8171
S. Asgari [10] 0.6863 0.9945 0.1459
G. Clifford [11] 0.7429 0.9959 0.2994
C. Orphanidou [12] 0.8329 0.8015 0.8880
C. Liu [13] 0.7971 0.8134 0.7684
G. Papini [14] 0.4397 0.1360 0.9723

three algorithms showed a balance performance between
sensitivity and specificity, [7], [12], [13]. The SQI used in
these algorithms are based on a beat to beat analysis, and in
the present work the objective is the segment classification,
for this reason the final classification is good if 95% of the
beats were considered of good quality.

For the SVM classifier the performance results obtained
for the models using different kernel functions are
presented in the table 2, and showed higher performances
for the classifier with the gaussian kernel.

4. Conclusions

Due to the prevalence of the AFib in the population,
it is important to develop novel solutions that can
properly assess the quality of the PPG signal when certain
arrhythmia are present as in the case of atrial fibrillation.
In this work, a new approach for robust PPG quality
assessment based on SVM classification was proposed.
While the classifier and features used in this work were
used in previous studies, the key to the success of our
approach is the adoption of a database that contains records
of PPG signals recorded under AFib conditions and
properly annotated. The distinction between waveforms
with normal sinus rhythm and atrial fibrillation in the
training of the classifier proved to improve the end
performance of PPG quality assessment.
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