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Abstract

Introduction: Personalized in silico models of cardiac
electrophysiology based on non-invasive recordings, such
as body surface potential maps, are considered of pivotal
importance in clinical modeling applications. Efficient,
automated workflows are desired to construct patient-
specific models for clinical use.
Objective: We aimed to develop an automated workflow
for the generation of a parameterizable cardiac EP model
capable of simulating body surface potential maps inde-
pendent of user interaction.
Methods: A cardiac bi-ventricular model with torso was
segmented and meshed from clinical MRI scans. Uni-
versal ventricular coordinates were computed for user-
independent definition of fibers, a fast conducting endocar-
dial layer, and earliest activation on the endocardium. The
extracellular epicardial potential distribution was simu-
lated and projected to the torso surface to acquire a body
surface potential map.
Results: Total model generation from segmentation re-
quired approximately 2 hours. Automatized simulation of a
single depolarization sequence required approximately 30
minutes using a forward element method implementation.
Discussion: The proposed workflow integrated recently-
developed technologies to generate a parameterizable car-
diac EP model within clinical time scales.

1. Introduction

Cardiac models of electrophysiology (EP) have been ex-
tensively used to better understand and characterize mech-
anisms of cardiac arrhythmic disorders. Due to advance-
ments allowing for the efficient generation of anatomi-
cally specific models from clinically-based imaging data,
as well as increased computational efficiency of cardiac
tissue simulations, cardiac EP models have also become
increasingly viable for clinical use in treatment planning
and diagnostics. Recent applications including ablation
guidance [1] and better clinical diagnostics measurements

[2].
Regardless, clinical integration is still limited by the per-

sonalization of such models for electrophysiological pa-
rameters based solely on non-invasive, commonplace clini-
cal data such as the 12 lead electrocardiogram (ECG). Such
personalization requires the development of efficient, auto-
mated workflows capable of generating cardiac models of
EP within clinical time scales. Furthermore, resultant be
models must compatible with machine learning, data as-
similation, and optimization frameworks for personaliza-
tion and therefore must be capable of user-independent pa-
rameterization.

To address this limitation, we aimed to generate an ef-
ficient, automatic workflow capable of generating adap-
tive cardiac EP models from clinical imaging data com-
patible with clinical time scales. In particular, an auto-
mated workflow was constructed to recover body surface
potential maps (BSPMs), and thus 12 lead ECGs, simu-
lated on an anatomically-specific bi-ventricular (BV) and
torso model segmented from clinical MRIs. Mapped depo-
larization sequences on the BV were simulated according
a confined electrophysiological parameter space required
for patient-specific personalization. The workflow aimed
to integrate various novel techniques for segmentation [3],
model generation [4,5], and simulation [6] to allow for in-
creased computational efficiency and automation.

2. Methods

The proposed workflow is shown in Figure 1.
A normal, healthy male patient underwent MR imag-

ing directly following the acquisition of a clinical 12 lead
ECG recorded using MRI-compatible electrodes. With
electrodes intact, a full torso MRI at 2.5 mm resolution
using T1 mapping was attained using four sequential ac-
quisitions each taken at the same stage in the respiratory
cycle. A higher-resolution (1.5 mm) iso-volumetric acqui-
sition cardiac MRI was simultaneously attained.

Using semi-automatic approaches in Seg3D [7], a gen-
eral torso and heart mask were segmented from the torso
MRI. A four chamber heart was segmented from the car-
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Figure 1: Workflow for semi-automatic generation of a
cardiac EP model capable of simulating 12 lead ECGs.

diac MRI using a trained neural network [3] with manual
post-correction. A conforming segmentation was gener-
ated by registering the 4CH into the torso using point set
registration with the heart mask within Seg3D and meshed
at 1 mm resolution using Tarantula. A BV was extracted
for further mesh processing and subsequent simulation us-
ing meshtool.

A universal coordinate system (UVC) [5] imple-
mented within the CARPentry Modeling Environment
(https://carpentry.medunigraz.at/carputils/index.html) was
constructed within the BV model allowing for navigation
of stimulus sites, definition of heterogeneities, establish-

ment of a rule-based-fiber architecture [4] assuming a rota-
tional variation of -60 to 60 degrees through the ventricular
free-wall. A fast-conducting endocardial layer substituted
an explicit model for the His-Purkinje system. CV in the
fast-conducting layer was assumed to be orthotropic with a
prescribed principal velocity, vps and constrained ratios of
2/3 and 1/3 along the sheet and normal directions, respec-
tively. Tissue conductivities were prescribed according to
physiological values defined in literature [8].

Activation of the BV was initiated by three stim-
ulus sites representing the septal xsf , anterior, xaf ,
and posterior, xpf , fascicles defined by UVC. For
each site, timings, t, and radii of direct activation,
r, were prescribed. The model could then parame-
terized with respect to input parameter vector q =
{xsf ,xaf ,xpf , tsf , taf , tpf , rsf , raf , rpf ,vps}.

A coupled reaction-Eikonal (R-E) model with diffusion
[6] was used to sequentially compute an activation se-
quence and electrical source distribution throughout the
BV model within CARP [9]. Briefly, the R-E model is
equivalent to a standard reaction-diffusion monodomain
model given as

βCm
∂Vm
∂t

= ∇ · σi∇{Vm}+ Ifoot(ta)− βIion (1)

Ifoot denotes an artificial current approximating an elec-
trotonic current driving the foot of an action potential and
triggered at activation times provided by the Eikonal equa-
tion [10]. A R-E model is advantageous due to the in-
dependency of computed source distributions upon spatial
resolution enabling the use of coarser discretized meshes
than normally feasible with plain reaction-diffusion mod-
els. The Eikonal equations were solved using an advanc-
ing wavefront approach [11]. Regional cellular dynam-
ics in each region were represented by the tenTusscher-
Noble-Noble-Panfilov model [12] with region-specific ad-
justments [6].

A forward finite element FEM formulation using
pseudo-bidomain implemented in CARP was used to com-
pute a BSPM from the simulated BV potentials. A ho-
mogenous torso was defined as the volume conductor. Po-
tentials at the recovered electrode positions correlating to
nodes on the torso mesh were used to reconstruct QRS
complexes of the clinical 12 lead ECG from the BSPM.
Automated alignment with the reference 12 lead ECG [2]
was performed and simulated leads were normalized to
maximal and minimal amplitude across all leads allowing
for quantitative comparison.

3. Results

Models constructed using the proposed workflow (Fig-
ure 1) are capable of automatically simulating QRS mor-
phology of 12 lead ECGs according to a prescribed pa-
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rameter vector, q, within clinical time scales without user
interaction. Timings for each component of the workflow
is described within Table 1.

Table 1: Average computational times on a CPU with
10 cores for methodological tasks implemented within the
workflow.

Method Time (min)
Conforming Mesh Generation 103.15

Mesh Processing for FEM 1.15
BV Model Architecture 17.28

Reaction-Eikonal Simulation on BV model 6.08
Foward Mapping using FEM 31.24

Basic QRS morphology in the synthetic 12 lead ECG, con-
structed from the BSPM, was attainable (Figure 2) for a
single set of parameters.

Figure 2: (A) BSPM map of the torso constructed using
FEM formulation. Reference electrode placements used
for 12 lead ECG reconstruction are shown. (B) Simulated
QRS morphology of the 12 lead ECG (red) compared to a
reference recording (black).

4. Discussion

The proposed workflow is a step toward further clini-
cal integration of cardiac models of EP as it allows for
generation of parametrizable and efficient models within
clinical time scales based on clinically-attained imaging
data. The resultant model was capable of automatically
generating BSPMs functionalized with respect to a con-
fined input parameter space q defining the stimulation and
conductive profiles of the model and are therefore capa-
ble of patient-specific parameterization. Investigation into
the influence of each parameter on QRS morphology, as
well as validation of the generated QRS morphology, is
currently underway. Patient-specific electrophysiological

parameters of the model, which provide an optimal match
between synthetic and reference ECG QRS morphology
for sinus rhythm, will be attained using an extensive pa-
rameter sweep of the input parameter vector q. It is pro-
posed that a latin-hyper cube will be used for parameter
sweep initialization and the loss metrics of L2 norm and
cross correlation for defining quantitative match between
simulated and reference 12 lead ECGs.

Various novel techniques for model generation and sim-
ulation have been utilized to construct a workflow within
the CARPentry Modeling Environment that is capable of
automatic generation of adaptive cardiac EP models within
clinical time scales (Table 1). The novel techniques in-
cluded a rule-based fiber architecture within the BV model
and R-E with psuedo-bidomain for increased simulation
speeds on coarser meshes. Additionally, automated navi-
gation of stimulus points and a fast-conducting layer, and
thus parameterizaiton of the model, was possible due to
UVC. To increase computational efficiency of the work-
flow, thus allowing for more simulations in a shorter time,
both a boundary element method formulation and coars-
ening of the torso mesh for finite element method (FEM)
are under consideration for the forward projection of car-
diac potentials. Furthermore, the role of conductive het-
erogeneity of the torso model will be explored through the
addition of lungs. The replacement of the fast-conducting
layer with a His-purkinje system using transfer mapping
with UVCs is also being investigated.
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