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Abstract 

This research reinvestigates the detection of atrial 
fibrillation (AF) from a recurrent neural network (RNN) 
viewpoint. In particular, a long short-term memory (LSTM) 
model of RNN is designed to exploit the high-order 
spectral and temporal features of the multi-lead 
electrocardiogram (ECG) signals of patients with AF. To 
verify the proposed method, the LSTM model is tested with 
ECG data available from the PhysioNet and some normal 
ECG data collected in our labs. The results show that not 
only the deviation of the so-called RR intervals of ECG 
signals but also its temporal variations are critical to AF 
detection. The accuracy of AF detection can reach up to 
98.3 %, with an LSTM model of using 30 hidden units. 
Considering more realistic applications, we further tested 
the model with subjects different from that of the training 
data. The accuracy is about 87% with high sensitivity. The 
experimental results show that the proposed model is able 
to effectively extract both the long-term and short-term 
characteristics of the spectral content of the AF ECG 
signals, making it a good candidate model for AF detection. 

 
1. Introduction 

With the growth of aging population, health care for the 
elderly has become an important welfare service. One of 
the threats to the elderly is heart disease, e.g. atrial 
fibrillation (AF), which may lead to stroke, heart failure, 
and blood clots. Studies show that the prevalence of AF is 
related to aging. For people over 60s, the prevalence of AF 
is 4 %, and it is 9 % for people over 80s [1]. It is estimated 
that over 2.3 million people suffer from AF in the U.S. 

In clinical practices, AF could be classified as sustained 
or paroxysmal. The sustained AF is easier to diagnose for 
its consistent electrocardiogram (ECG) characteristics.  
The paroxysmal AF, whose intermittent episodes could 
last from minutes to hours, is, however, much harder to 
diagnose without long-term ECG monitoring. Though 
more complete and accurate, the standard 12-lead ECG is 
impractical for long-term ECG monitoring. Alternatively, 
the Holter monitor or other ambulatory ECG devices are 

used to provide single or multiple leads of ECG recording 
for 24 to 48 hours. With this type of continuous ECG 
monitoring, the diagnosis of AF can be improved in some 
cases [2].  To facilitate real-time diagnosis of AF, various 
algorithms have also been proposed for AF detection based 
on expert knowledge, e.g. the absence of P wave, the 
variability of RR interval, or the cross-entropy of ECG 
signals. The sensitivity of such a knowledge-based 
detection approach can reach 96% [3-4]. 

On the other hand, the abundant ECG records collected 
from telecardiology services have paved the way for AF 
detection with the new technology of artificial intelligence 
(AI), of which deep learning, such as Convolutional Neural 
Networks (CNN) or LSTM [5], achieves great successes in 
learning the underlying features of big data. In view of the 
capability of deep learning in feature extraction, some 
apply it to replace the handcrafted features in AF detection 
[6-7], of which [6] develops a multi-scaled fusion of CNN 
(MS-CNN) that consists of 13 convolutional layers, 5 max-
pooling layers, and 3 fully connected layers. In contrast, [7] 
proposes a rhythm classification model with Convolutional 
RNN (CRNN), which consists of 24 convolutional layers, 
4 max-pooling layers, and one LSTM layer. The input of 
[7] is pre-processed and expressed as a spectrogram of the 
spectral features of ECG data. And the accuracies of [6] 
and [7] can attain 98.13% and 82.13%, respectively. 
 In contrast to existing AF detection methods that are 
primarily based on single-lead ECG measurements, we 
present herein an efficient LSTM model for AF detection 
with spectrograms of multi-lead ECG signals that can 
provide more comprehensive ECG information in different 
orientations of the heart. The accuracy of our proposed 
algorithm can achieve 98.3% with much lower complexity. 
Considering clinical practices, we further test the proposed 
model with a number of designed testing sets whose 
subjects are different from the training sets. The accuracy 
of such a separated testing is about 87%, which suggests 
that the proposed approach has the potential to applied for 
AF detection or screening in health care. 
 
2. Methods 

Computing in Cardiology 2018; Vol 45 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2018.266



2.1. Problem formulation 

The proposed method is aimed to classify the AF and 
the Normal Sinus Rhythm (NSR) ECG signals from the 
collected ECG recordings, which are defined as 𝑿 =

[𝒙(ଵ), 𝒙(ଶ), … , 𝒙(ே)] of 𝑁 ECG records. Each ECG record 
(𝒙()) is a K × L measurement vector, including L samples 
of 𝐾-lead ECG signals. And 𝒚() is the corresponding one-
hot encoding label, indicating the incidence of AF 
syndrome. The classification problem can be defined as :  

𝒛() = 𝐹൫𝒙(); 𝜽൯ 
where 𝐹(⋅) is the classification model and 𝜽 is the related 
parameters. The classification result 𝒛()  represents the 
probability of each class. The cost function is the cross 
entropy between 𝒛()  and 𝒚().  For N observation data in 
the training set 𝑿, the cost function is defined as:  

𝐸(𝑿) = −
ଵ

ே
∑ ൫𝒚()൯

்
ln൫𝒛()൯ே

ୀଵ   

 
2.2. Model Architecture 

The proposed RNN is based on a single layer LSTM 
model [5] whose input is the spectrogram of X. Details of 
the model and the pre-processing procedure for data are 
described below. 
 

2.2.1 Data Pre-processing:  

Considering that not only the heart rate but also the 
morphology of the ECG signals are critical to AF detection, 
we need to pre-process the ECG data in order to provide 
both the long-term and short-term temporal features of 
them to the RNN. One of our choices is the spectrogram, 
which can characterize the short-term spectral morphology 
and the long-term variation of the spectral content. 

A spectrogram is a procedure that performs the Short-
Term Fourier Transform (STFT) of data on a sliding 
window basis. Given the input ECG recording 𝑿 , the 

spectrogram is 𝑺
()

≜ ൣ𝒔
()(1), 𝒔

()(2), … , 𝒔
()(𝑇)൧ ∈

ℝெ×் , where 𝑀 is the size of STFT output and 𝑇 is the 
number of time bins, obtained with a 64-point Hamming 
window that has 90% overlapped input data in each time 

bin. And  𝒔
()

(𝑡) is the result of the kth lead of the 𝑡௧  time 
bin of record i. The STFT sequence forms a spectrogram 
whose horizontal axis represents the temporal sequence 
and the vertical axis represents the frequency components.  

For instance, Fig. 1 consists of the spectrograms 
converted from an AF and a NSR ECG signals. As the 
figure shows, the spectrogram of the NSR ECG signals is 
more regular while that of the AF signals is messy. The 
results also show that the spectrogram can capture more 
features in each waveform of the ECG signals, not only 
limited to that of the R-wave of ECG signals. 

 
Fig.1 Spectrograms of AF (left) and NSR ECGs (right). 

 
2.2.2 Long Short-Term Memory 

 
Fig.2 The structure of the proposed LSTM model 

 
LSTM is an improved architecture of RNN, and is more 

effective at capturing the long-term temporal dependence 
of data. In addition, LSTM resolves the gradient vanishing 
or exploding problem by introducing a memory cell 𝒄(𝑡) 
and means for the control of the information flow by an 
input gate (𝒗), a output gate (𝒗), and a forget gate (𝒗). 
The memory cell and the gates are connected with 
weighting matrices, which are determined in the training 
phase by visiting a huge amount of training data.  

In the proposed model, we apply the LSTM to learn the 
temporal correlation, and convert the inputs into 2 channel 
of spectrograms for characterizing the spatial and temporal 
correlations of the ECG signals. As shown in Fig. 2, the 
proposed model consists of three layers: an input layer, an 
LSTM layer, and an output layer. In the input layer, 𝒔(𝑡) ≜
[𝒔ଵ

்(𝑡), 𝒔ଶ
்(𝑡)]்  represents the input vector, including the 

spectrograms of 2 leads of ECG signals at the 𝑡௧  time bin. 
In the LSTM layer, 𝐻  represents the hidden size of the 
memory cells. The output layer is the label of classifier. 
Several notations of the model are defined as follows:  
 
Input Weights: 𝑾௭, 𝑾, 𝑾, 𝑾 ∈  𝑅 ு×ଶெ  
Recurrent Weights: 𝑹௭, 𝑹, 𝑹, 𝑹 ∈  𝑅 ு×ு 
Bias Weights: 𝒃௭, 𝒃, 𝒃, 𝒃 ∈  𝑅ு  
Output Weights :  𝑾௦ ∈  𝑅 ଶ×ு 

Then, the forward pass of the LSTM layer is given by   
𝒗 =  𝜎൫𝑾𝒔(𝑡) + 𝑹𝒉(𝑡 − 1) + 𝒃൯, 𝑗 ∈ {𝑖, 𝑓, 𝑜}  (1) 

𝒏𝒆𝒕(𝑡) = 𝑾௭𝒔(𝑡) + 𝑹௭𝒉(𝑡 − 1) + 𝒃௭                (2) 
𝒄(𝑡) = 𝒗 ∙ 𝒄(𝑡 − 1) + 𝒗(𝑡) ∙ 𝑔(𝒏𝒆𝒕(𝑡))    (3) 
𝒉(𝑡) = 𝒗 ∙ 𝑔 (𝒄(𝑡))                                       (4) 

𝒛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾௦𝒉(𝑇))                           (5) 
 

where 𝑔(⋅) is the hyperbolic tangent activation function, 
𝜎(⋅)  is the sigmoid activation function, and 𝒉(𝑡)  is the 
hidden vector of dimension 𝐻. 
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3. Experimental Results 

The proposed LSTM model is developed under the 
supervised learning framework, where the model is learned 
from the training data. Therefore, the quality of the 
proposed model is directly related to the size and quality 
of training data. To prepare the AF and the NSR ECG data 
as complete as possible, we collected the AF ECG records 
from six standard databases [8-13] and obtain the NSR 
ECG data from three databases [13, 14] and some normal 
ECG signals collected from our lab and Shin Kong Wu Ho-
Su Memorial Hospital, Taipei, Taiwan. All the ECG 
signals from databases are retrieved from the PhysioNet 
[13] with long-term ECG records splitted into multiple 12-
second segments. Each segment is downsampled to 128 
samples per Hz, and is pre-processed with a high-pass filter 
of finite impulse responses to remove baseline wondering. 

The entire ECG data are classified into 3 different 
categories: NSR, sustained AF, and paroxysmal AF. 
Paroxysmal AF episodes are self-terminated and followed 
by NSR episodes. On the contrary,  sustained AF episodes 
do not terminate untill intervention. In order to balance the 
classified labels, the number of NSR ECG recodings is the 
same to the total number of AF ECG recordings, which 
includes equal numbers of sustained and paroxysmal AF 
recordings. In summary, a total of 3312 ECG segments are 
collected in our experiments, of which a total of 1656 NSR 
segments are extracted from 103 subjects. The other 1656  
AF segments are extracted from 118 subjects with AF.  
 
3.1. Data Preparations 

To verify the performance of the proposed model, two 
validation sets are designed. In the first set, named 
Common Set, 1000 ECG segments are randomly selected 
to form a testing set, and the rest are the training data. In 
the Common Set, the ECG segments from the same subject 
may be categorized as training or testing data. As such, the 
subject-based pattern may lead to model overfitting and, 
hence, the reported accuracy may not imply a similar 
performance of AF detection on unknown subjects. 
Considering clinical practices, we also use an alternative 
set named Separate Set for validation. In this approach, the 
corresponding subjects of the ECG segments in the 
training set are separated from those in the testing set. The 
subjects for the Separate Set are arbitrarily chosen, with the 
number of ECG segments from a subject being 1000. 
Given that the chosen subjects will influence the 
representativeness of the Separate Set, we thus form 10 
different Separated Sets and average their testing outcomes.  

 
3.2 Performance Evaluations 

The training and AF detection with the proposed LSTM 
architecture is implemented with TensorFlow [15]. The 

number of the hidden units is set to 30 in (1)~(5), which is 
determined by examining several trials on model settings. 
The results show more hidden units do not seem to improve 
the accuracy, but rather increase the processing time. 
Besides, a gradient descent method with the Adam 
optimizer [16] is used to update the model parameters, 
whose learning rate is 0.001 and batch size is 34.  

The performance of the proposed algorithm is evaluated 
with the following statistical measures: Accuracy (Acc), 
Positive predictive values (PPV), Sensitivity (Sen), and 
Specificity (Spec). Table 1 shows the performance 
comparisons of making use of single-lead (SL) and double-
lead (DL) ECG measurements from the Common Set. 
Furthermore, to justify the use of the spectrogram as the 
LSTM input, we also present the results of directly using 
the time-series ECG data as the LSTM input. Similarly, a 
64-point sliding window is used to process the time-series 
inputs, with data of adjacent windows overlapped by 90%. 

  
Table 1. Performance with the Common Set 

 Acc PPV Sen Spec 
NSR (SL)1 98.50 98.60 98.40 98.60 
AF (SL)1 98.50 98.40 98.60 98.40 
NSR (DL)1 99.10 99.00 99.20 99.00 
AF (DL)1 99.10 99.20 99.00 99.20 
NSR (SL)2 97.20 97.58 96.80 97.60 
AF (SL)2 97.20 96.83 97.60 96.80 
NSR (DL)2 98.50 97.83 99.20  97.80  
AF (DL)2 98.50 99.19 97.80 99.20 

1: The spectrogram input  2: The time-series ECG input 
 

Table 2 shows the performance comparisons averaged 
over 10 different formations of the Separate Set. All the 
results show that the performance with the spectrogram 
inputs is better than that with the time-series inputs. The 
results also show that the performance of the Common Set 
is much better than that of the Separate Set in either cases. 
It is because the model may separate subjects with personal 
features beyond that of the AF. 

 We note that results with the Separate Set are important 
and more representative in some cases where there is no 
patient’s previous ECG data and need to infer the results 
based on the training ECG data from other subjects.  
 

Table 2. Performance with the Separate Set  
 Acc PPV Sen Spec 
NSR (SL)1 83.21 83.08 86.88 79.55 
AF (SL)1 83.21 86.42 79.55 86.88 
NSR (DL)1 87.57 88.48 87.79 87.35 
AF (DL)1 87.57 87.96 87.35 87.79 
NSR (SL)2 79.46 81.07 79.98 78.95 
AF (SL)2 79.46 79.98 78.95 79.98 
NSR (DL)2 86.19 85.75 87.57 84.81 
AF (DL)2 86.19 87.16 84.81 87.57 

1: The spectrogram input  2: The time-series ECG input 
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Comparing the misclassified results with the SL and the 
DL measurements, we further find that the additional ECG 
channel in the DL measurements helps provide more 
obvious P waves in some NSR cases. Given that the 
absence of P waves is an important feature for AF detection, 
the additional ECG lead thus helps avoid the false alarms.  

In addition to the performance tests with data from the 
PhysioNet, we also use data from the CinC challenge 2017 
database to verify the robustness of the proposed method 
to measurement noises. When using data from the CinC 
challenge 2017 to test the LSTM model learned with data 
from the PhysioNet, the accuracy and the sensitivity 
become 75.6% and 70.17% in each case, degrading by 7% 
and 10%, respectively, compared to the results in Table II. 
This reveals that the quality of ECG measurements is 
important to AF detection. In some cases, the noisy ECG 
signals and motion artefacts in them can lead to 
misclassifications. Besides, considering that the proposed 
scheme is based on the spectrograms of ECG, the 
frequency-based features may not fully characterize the 
morphology of the slightly changing ECG signals, e.g., the 
F waves in AF syndrome. This disadvantage also limits the 
accuracy of the proposed AF detection method. 
 
4 Conclusions 

In this paper, an AF detection method was proposed to 
exploit the spectral and temporal characteristics of AF 
ECG signals with a multi-lead LSTM model. No handcraft 
features were used in the proposed method. To verify the 
performance of the proposed AF detection method, two 
types of data sets, the Common Set and the Separate set, 
were used for testing the accuracy and robustness of the 
proposed LSTM model. Experimental results showed that 
the proposed method could achieve 98% accuracy in the 
Common Set and 85% accuracy in the Separated Set. This 
suggests that the proposed AF detection method has the 
potential to be applied in clinical practices. 
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