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Abstract 

Aim. The presence of myocardial scar is a strong 
predictor of ventricular remodeling, cardiac dysfunction 
and mortality. Our aim was to assess quantitatively the 
presence of scar tissue from cardiac-magnetic-resonance 
(CMR) with late-Gadolinium-enhancement (LGE) images 
using a deep-learning (DL) approach. Methods. Scar 
segmentation was performed automatically with a DL 
approach based on ENet, a deep fully-convolutional 
neural network (FCNN). We investigated three different 
ENet configurations. The first configuration (C1) 
exploited ENet to retrieve directly scar segmentation from 
the CMR-LGE images. The second (C2) and third (C3) 
configurations performed scar segmentation in the 
myocardial region, which was previously obtained in a 
manual or automatic way with a state-of-the-art DL 
method, respectively. Results. When tested on 250 CMR-
LGE images from 30 patients, the best-performing 
configuration (C2) achieved 97% median accuracy  
(inter-quartile (IQR) range = 4%) and 71% median Dice 
similarity coefficient (IQR = 32%). Conclusions. DL 
approaches using ENet are promising in automatically 
segmenting scars in CMR-LGE images, achieving higher 
performance when limiting the search area to the 
manually-defined myocardial region.  

 
1. Introduction 

The presence of nonviable scar tissue in the left 
ventricle (LV) allows assessing LV remodeling, as well 
as patient's cardiac dysfunction or mortality [1].  

The presence of nonviable scar tissue is commonly 

identified with cardiac magnetic resonance with late 
gadolinium enhancement (CMR-LGE) [2]. To perform 
CMR-LGE, Gadolinium (Gd) is injected intravenously.  
Gd deposits in the nonviable tissue resulting in 
hyperehnanced (HE) area in CMR-LGE images.  
 In clinical practice, the presence of scar tissue from 
CMR-LGE images is commonly assessed qualitatively 
using the AHA 17-segment model [3]. Nonetheless, 
several quantitative approaches have been proposed:   a 
large class of methods exploit threshold-based or 
clustering techniques that require heavy operator 
intervention [4]. However, these approaches are barely 
able to tackle variability in images (e.g., noise, resolution 
and intensity level) and patients (e.g., scar location and 
extent).  
 Recently, deep learning (DL) methods based on 
convolutional neural networks (CNNs) have been 
proposed to tackle this variability. A CNN is made of 
convolutional layers, that extract image features through 
convolutional kernels, and fully-connected layers, that 
classify these features [5]. The convolutional kernels and 
the fully-connected layer weights are automatically 
learned during a training process.  
 CNN approaches for scar segmentation commonly 
extract features from image patches and assign a class 
(i.e., scar or background) to the patch central pixel.  
Nonetheless, advancements in DL in other fields are 
focusing on methodologies that directly provide image 
segmentation instead of pixel classification. These 
methodologies exploit fully-convolutional neural 
networks (FCNNs), where fully-connected layers are 
replaced by upsampling layers [5]. 
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Fig. 1: ENet stages.

Fig. 2: Examples of scar masks obtained with manual tracing. Each row 
refers to a different patient. Masks are from apex (left) to base (right). 

 Inspired by these recent methodologies, the aim of this 
work was to assess quantitatively the presence of scar 
tissue in CMR-LGE images using a DL approach based 
on FCNNs. 
 
2. Methods 

In this work, a modified version of the efficient neural 
network (ENet) was exploited [6]. ENet was originally 
presented for natural-image segmentation and takes 
inspiration from residual networks. The architecture has 7 
stages, as shown in Fig. 1.  

The first stage was inspired to the inception module, 
and consisted of 13 convolutional kernels, with sizes 

equal to 1x1, 3x3 and 5x5, in parallel with a 2x2 max-
pooling layer.  

Stages from 2 to 4 were made of bottleneck modules, 
as in [6], and acted as encoders for feature extraction. 
Stages from 5 to 6 acted as decoders and performed 
upsampling. In the decoder, max pooling and padding 
were  replaced by max unpooling and spatial convolution 
without bias, respectively. The last stage was a bare full 
convolution with two channels (for the scar and 
background classes). 

Spatial dropout, which improves the FCNN 
generalization ability by preventing activations from 
being strongly correlated, was also used.  
 
2.1. Segmentation protocols 

To perform scar segmentation, three different ENet 
configurations were considered. The first configuration 
(C1) exploited ENet to retrieve directly scar segmentation 
from the CMR-LGE images. The second (C2) and third 
(C3) configurations performed scar segmentation only in 
the myocardial region, previously obtained respectively in 
a manual or automatic way using a state-of-the-art DL 
method [7]. 
 
2.2. Training 

For each segmentation protocol, training was 
performed with mini-batch gradient descent, using a batch 
size equal to 4. ADAM (with an initial learning rate equal 
to 5e-5) was used to optimize the cross entropy, which 
was chosen as loss function.  The FCNNs was trained on 
100 epochs. and the best model among epochs was 
chosen according to the Dice similarity coefficient (DSC): 

Page 2



 
 
 
 
 

3 

 
𝐷𝑆𝐶	   = 	  2 ∗ 𝑇𝑃/(𝐹𝑃 + 𝐹𝑁 + 2 ∗ 𝑇𝑃)  (1) 

where TP, FN are the number of scar pixels that are 
classified correctly and as background, respectively, and 
FP is the number of background pixels classified as scar 
tissue. 
 
2.3. Evaluation  

To test the three segmentation protocols, 250 short-
axis CMR-LGE images of 30 patients (26 men and 4 
women) with ischemic-heart disease were retrospectively 
selected and analyzed. Images were acquired at Centro 
Cardiologico Monzino in Milan, Italy using a 1.5-T 
scanner (Discovery MR450, GE Healthcare, Milwaukee, 
WI). Scar tissue was present in all patients, but only in 
215 CMR-LGE images. Image size was 256x256 pixels 
(pixel resolution: 1.49x1.49 mm).  

The ground-truth (GT) scar segmentation was 
manually obtained by an expert clinician using 
commercial software (Circle Cardiovascular Imaging 
v.5.6). LV-myocardial contours for protocol C2 were 
obtained in the same way. The datasets granted high intra- 
and inter-patient variability, as can be seen from Fig. 2 
where sample scar masks are shown for three patients. 

For each of the three protocols, CMR-LGE images 
were pre-processed prior to FCNN training and testing. In 
particular, CMR-LGE images were automatically cropped 
to reduce the processing area, as commonly suggested in 
the literature [8]. The circular structure was used to 
identify the LV cavity in the CMR-LGE image. Then, a 
squared cropping, centered on the LV center and with 
side equal to the 5/3 of the LV radius was performed. The 
crop operation was applied also to the corresponding GT 
masks. All the cropped images were resized to 64x64 and 
normalized for standardization.  Finally, data 
augmentation was performed on the training set using 7 
linear and non-linear transformations.  

Considering the limited number of patients, leave-one-
patient-out cross-validation was the method of choice to 
guarantee proper analysis. For each patient, the ENet 
trained on the remaining 29 patients was tested. 

Segmentation performance was assessed with three 

pixel-classification metrics: sensitivity (Se), specificity 
(Sp) and accuracy (Acc): 

𝑆𝑒	   = 	   (𝑇𝑃	   + 	  𝐹𝑁)/𝑇𝑃    (2) 
𝑆𝑝	   = 	   (𝑇𝑁	   + 	  𝐹𝑃)/𝑇𝑁    (3) 
𝐴𝑐𝑐	   = 	   (𝑇𝑃	   + 	  𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (4) 

where TN is the number of background pixels classified 
correctly. DSC was measured as overlap metric.  
 
3. Results 

With the best-performing configuration (C2), scar-
segmentation median Acc and DSC were 97% (inter-
quartile (IQR) range = 4%) and 71% (IQR = 32%), 
respectively. Sp and Se for C2 were 97% (IQR=3%) and  
88% (IQR = 18%), respectively 

C2 outperformed both C1 (Acc = 96%, DSC = 55%, Sp 
= 97% Se = 69%) and C3 (Acc = 95%, DSC = 51%, Sp = 
97%, Se = 73%), where Acc and DSC for automatic 
myocardial segmentation were 94% and 86%, 
respectively. 

Visual segmentation examples are shown in Fig. 3. 
 

4. Discussion 

In this pilot study, as only 30 patients were included, 
data augmentation techniques allowed increasing the total 
number of available images up to 2000 and leave-one-
patient-out cross-validation was the method of choice to 
guarantee proper analysis.  

Computational training time was about 30 hours, and 
could be considered acceptable considering this approach 
and the use of not optimized computer architecture. The 
segmentation testing time was about 1s per CMR-LGE 
image. 

All the three protocols showed a tendency to 
overestimate the scar contours with respect to the GT. 
This can be due to the fact that the FCNN recognized as 
part of the scar also those pixels belonging to moderate 
enhanced areas, possibly associated with hibernated tissue 
or border areas between scar and healthy tissue. 
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Fig. 3: Examples of segmentation obtained with C1 (red contour) , C2 (green contour) and C3 (magenta contour) for three patients. The blue contour 
refers to the manual tracing. Each row refers to a different patient. 
 
5. Conclusion 

ENet-based approaches are promising in automatically 
segmenting scar tissue in CMR-LGE images, achieving 
higher performance when limiting the search area to the 
manually-defined myocardial region. A complete 
automated approach still suffers from cumulative errors 
from both myocardial and scar segmentation. 

Finally, it can be concluded that there are good 
margins for improvement in overcoming the limits that 
emerged during the development. By improving the 
quality of input images and consequently of GT masks, it 
will be possible to improve network learning. 
Furthermore, increasing the number of images and 
patients in the training dataset is likely to improve 
network performance. 
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