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Abstract

Hidden Markov models (HMM) are useful tools to char-
acterize the dynamics of observation sequences. However,
the duration of the observation sequence to characterize
is often chosen empirically, based on a priori information.
In this paper, we used a grid search approach to optimize
two hyperparameters of an HMM-based QRS complex de-
tector, namely, the duration of the observation sequence to
be characterized and the adaptive decision threshold that
compares the difference of log-likelihoods of observations
from two competing HMM. To assure the reproducibility of
the results, we have run the optimization process ten times
using different random seeds per realization. Using the
ECG signals from the MIT-BIH Arrhythmia database, we
have found an optimal adaptive decision threshold of 60%
but the optimal value of the observation sequence duration
varies from 100 ms to 120 ms for different realizations of
the optimization process. Consequently, the different pa-
rameters of the HMM-based QRS complex detector found
in each realization do not always lead to the same detec-
tion performance. Using the optimal values, the detector
achieves a sensitivity of 96.53% and a positive predictivity
of 98.16%.

1. Introduction

Machine learning, a branch of artificial intelligence, has
become a leading tool in prediction, classification and clus-
tering tasks in a plethora of areas, ranging from marketing
campaigns to virtual assistants. In particular, in medicine,
machine learning has proven useful in diagnosing cancer [1]
and in predicting epidemic outbreaks [2], and is gaining
popularity to become the backbone of clinical decision sup-
port systems [3, 4]. The success of a machine learning
technique in a specific application depends on many factors,
including those related to the technique, such as the choice
of a particular approach and the parameters and hyperparam-
eters associated with it, and those related to the application,
such as the amount and quality of the data. Concerning the
factors associated with the machine learning approach, the

parameters of the model are estimated in a training phase
from the data using an optimization algorithm, while the
hyperparameters, on the other hand, cannot be estimated
from the data and are, thus, established before the training
phase using heuristic rules and prior knowledge. However,
optimization techniques such as grid search, random search,
Bayesian optimization, and evolutionary algorithms have
also been used to find out hyperparameters [5–7].

A Hidden Markov model (HMM) is a powerful and very
simple machine learning approach used to model a Marko-
vian stochastic process by learning the dynamics of obser-
vation sequences (examples) generated by the process itself.
An HMM is characterized byM states and the set of param-
eters λ , {aij , bj , πi}, where aij is the transition probabil-
ity between states i and j (aii 6= 0), bj is the probability of
emission of observations of state j, πi is the probability of
state i being the initial state. The observation sequence of
duration T is represented by O = {o1, o2, . . . , oT }. HMM
have been applied in classification and clustering tasks in
different domains given their flexibility and robustness for
the treatment of univariate and multivariate, discrete or
continuous, observations.

HMM are commonly used to characterize the dynamic
of observation sequences by two distinct ways. The first,
by analyzing the optimal state sequence associated with the
observation sequence (Problem #2 in [8]), such as in speech
recognition [9] and DNA sequence analysis [10] problems,
and the second, by analyzing the probability of the observa-
tion sequence given the model (Problem #1 in [8]), such as
in apnea-bradycardia detection [11] and ischemic episodes
classification [12]. In the last case, besides the problems
properly associated with the model (learning λ and choos-
ing M ), the selection of features (or feature vector) whose
dynamics must be modeled, the amount of data needed
for training and the duration of the observation sequence
remain as problems generally addressed empirically. For
instance, in the detection of apnea-bradycardia episodes in
preterm infants, the duration of the observation sequence
was related to the time measured from the beginning of the
bradycardia to the peak in the RR interval time series [11],
but a better detection performance could be obtained with
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another choice, not necessarily related to a physiological
phenomenon.

When selecting the observation sequence duration, one
expects that the observation sequence must contain the dy-
namic to be modeled, but this selection can be particularly
difficult and can affect the classification/detection perfor-
mance. For instance, since the length of the observation
sequence is related to the number of frequency components
one can represent, a short duration can enhance the char-
acterization of high-frequency components of the data but
reduce low-frequency ones, and vice versa. In addition, the
model can be biased by using a priori information (mostly
related to the physical phenomenon) that most of the time
is not considered by the model or is meaningless. In this
paper, we are particularly interested whether the observa-
tion sequence duration of an HMM can affect the detection
performance of QRS complexes in single-lead ECG record-
ings. Using the grid search approach, two hyperparameters
of the QRS complex detector based on HMM were opti-
mized: i) the duration of the observation sequence and ii)
the adaptive detection threshold. The optimization looks to
minimize the distance to perfect detection in an ROC curve.

2. Methods

2.1. HMM-based QRS complex detector

ECG signals were preprocessed to reduce noise and arti-
facts and enhance the temporal evolution (dynamics) asso-
ciated with QRS complexes. To this end, ECG signals were
band-pass filtered with sixth-order high-pass and low-pass
Butterworth filters with cut-off frequencies 5 Hz and 30
Hz, respectively. Baseline wandering and P- and T-waves
contributions were reduced in the ECG signal with these
filters.

Like [11], two HMM were used to represent two different
observation sequence dynamics in the preprocessed ECG
signal: i) λQRS to model the presence of a QRS complex in
an observation sequence OQRS , and ii) λNQRS to model
the absence of a QRS complex in an observation sequence
ONQRS . We used continuous density HMM with Gaussian
distribution as the probability of emission of observations
for a given state, i.e. bj is represented as a Gaussian distribu-
tion, bj(µj , σ

2
j ), with mean µj and variance σ2

j , where µj

corresponds to the barycenter of state j in the observation
space. Each Gaussian distribution represents a portion of
the dynamic range of the observation and is tied to a specific
state. Therefore, given the low dynamic range of the ob-
servation sequences OQRS and ONQRS , we used M = 3
states for each HMM. To increase the dynamic range and
avoid having Gaussian distributions with narrow variance
(σ2

j → 0), we multiplied OQRS and ONQRS by 10 and 5,
respectively. The values of these multiplication factors were
chosen by visual inspection of the Gaussian distributions to

get well-defined bell curves for bj(µj , σ
2
j ). In addition, aij

and πi were initialized with uniform probabilities.
Following the recommendations of the ANSI/AAMI

EC38:1998 standard [13], the HMM-based detector was
trained in a learning period represented by the first five
minutes of the records; the remainder of the records were
used to test its detection performance. In this sense, two
training datasets were created: one containing examples
of OQRS and the other containing examples of ONQRS .
Using the annotations of QRS complexes provided in the
database, examples of OQRS of length T , centered at the
annotation marks, were randomly chosen from the first five
minutes of the records. Examples of ONQRS of length T
were also randomly chosen from the first five minutes of the
records but without having a QRS annotation mark within
150 ms. The test dataset is composed of 48 excerpts of the
preprocessed ECG signals, taken from minute 5 to the end
of the record.

During the learning phase, λQRS and λNQRS were es-
timated using the Baum-Welch algorithm [14] on the ap-
propriated training dataset. Training is achieved when the
log-likelihood L = logP (O|λ) converges to a maximum
value or when L

it−Lit−1

Lit < 0.01, where it is the current
iteration of the Baum-Welch algorithm. During the test
phase, the detection of a QRS complex at time t is signaled
when the difference of log-likelihoods of producing a new
observation sequenceO by each model (λQRS and λNQRS)
is greater than an adaptive threshold:

z(t) =
L(t)QRS − L(t)NQRS

T
> αw(t), (1)

where w(t) is the average value of z(t) during the last 15
s and α is a parameter that must be optimized. A sliding
window of length T was used to extract the observation
sequences to be passed through the models. The shift of
this window was set to 30 ms. The HMM-based QRS
detector was implemented in MATLAB using the HMM
toolbox by K. Murphy [15].

2.2. QRS complex detection performance

The detection approach was validated using the first ECG
channel of the MIT-BIH Arrhythmia database [16,17]. This
database contains 48 half-hour excerpts of ECG recordings,
digitized at 360 samples per second with 11-bit resolution
over a 10-mV range, with reference annotations of QRS
complex positions.

Sensitivity (Se) and positive predictivity (+P ) were used
as performance metrics of the QRS complex detector. These
metrics were defined as Se = TP

TP+FN and +P = TP
TP+FP ,

where TP is the number of true positives, FP is the number
of false positives, and FN is the number of false negatives.
A signaled detection is considered a TP if it lies within
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Table 1. Best detection performances, measured as the low-
est DDP , on each realization of the optimization process.

Realization T (ms) α Se +P DDP
1 100 0.6 0.95 0.97 0.047
2 100 0.6 0.96 0.98 0.039
3 110 0.6 0.96 0.98 0.040
4 110 0.6 0.96 0.98 0.040
5 100 0.6 0.96 0.97 0.043
6 110 0.6 0.95 0.98 0.043
7 120 0.6 0.95 0.98 0.045
8 110 0.6 0.96 0.97 0.040
9 110 0.6 0.95 0.98 0.047
10 120 0.6 0.96 0.96 0.047

150 ms from a reference annotation, otherwise, it is consid-
ered an FP.

2.3. Optimization of hyperparameters

The HMM-based detector is composed of several pa-
rameters and hyperparameters. For each model, the Baum-
Welch algorithm was used to find the set of parameters
λ , {aij , bj , πi} in the learning period, using the training
datasets. However, M , the multiplication factor to avoid
narrow Gaussian distributions for bj , and the number of
samples in z(t) to compute w(t) were chosen experimen-
tally in order to provide the best detection performance.

The length of the observation sequence T and the multi-
plication factor α can be considered hyperparameters of the
detection approach. A grid search method was used to find
their optimal values by minimizing an objective function de-
fined as the Euclidean distance to perfect detection (DPD) in
an ROC curve: DPD =

√
(1− Se)2 + (1− +P )2. The

search spaces were set to [50, 200] ms for T and [0, 1]
for α.

The optimization process was repeated 10 times to en-
sure the reproducibility of the results. In this sense, the
random seed was initialized to give different results in each
realization of the optimization process.

3. Results

Table 1 shows the detection performances obtained at
the lowest DDP , for each realization of the optimization
process. We can observe that the optimal value of α is 0.6,
but an optimal value of T ranging from 100 to 120 ms is
obtained on each realization. This means that an observa-
tion sequence of duration 100 to 120 ms, centered at the
R-wave peak in the band-pass filtered ECG signal, con-
tains the greatest amount of information employed by both
HMM to distinguish the two different dynamics (presence
and absence of a QRS complex).
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Figure 1. DDP averaged over 10 realizations of the opti-
mization process.

Table 2. Average of the detection performances over the
10 realizations of the optimization process for α = 0.6.

T (ms) Se +P DDP
50 0.97 0.78 0.220
60 0.97 0.82 0.178
70 0.97 0.83 0.167
80 0.96 0.84 0.157
90 0.96 0.86 0.138
100 0.95 0.92 0.087
110 0.93 0.92 0.100
120 0.94 0.95 0.074
130 0.93 0.96 0.074
140 0.91 0.94 0.100
150 0.92 0.97 0.078
160 0.92 0.96 0.082
170 0.92 0.96 0.087
180 0.91 0.96 0.091
190 0.89 0.95 0.116
200 0.78 0.94 0.221

Figure 1 shows the DDP , averaged over the 10 realiza-
tions of the optimization process, for each value of T and
α. Similarly, Table 2 shows the detection performances, av-
eraged over the 10 realizations of the optimization process,
for the optimal value of α (i.e. α = 0.6) for each T . We
can see that the average DDP curve is composed of many
local minimums, with a global minimum at T = 120 ms
and α = 0.6.

4. Discussion

As shown in Figure 1, the detection performance varies
for different combinations of T and α. In addition, we
have observed that different detection performances were
obtained for different realizations of the optimization pro-
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cess (see Table 1). Indeed, the best detection performances
were achieved for the same value of α (i.e. α = 0.6)
but for different durations of the observation sequence
(100 < T < 120 ms). This can be a consequence of the sus-
ceptibility of the HMM to characterize the dynamics of the
presence and absence of a QRS complex from the prepro-
cessed ECG signal since each iteration of the optimization
process produces a different set of HMM parameters (λQRS

and λNQRS). The optimal value of T range from 100 to
120 ms, which is within the limits of the duration of QRS
complexes from a physiological point of view (70 to 110
ms [18]).

5. Conclusion

Hyperparameters affect the performance of machine
learning approaches. In this work, we have used a grid
search method to find the optimal values of two hyperpa-
rameters of an HMM-based QRS complex detector, namely,
the duration of the observation sequence and the percent-
age of an adaptive threshold to compare the difference in
log-likelihoods. The HMM-based detector was trained to
differentiate two dynamics in the band-pass filtered ECG
signal, i.e. the presence and absence of a QRS complex.
By repeating the optimization process ten times, with dif-
ferent random seed initializations per realization, we have
found that the set of parameters of HMM produces not only
different detection performances but also different optimal
values of the duration of the observation sequence (from
100 to 120 ms). In addition, we have found that an adaptive
threshold that considers the 60% of the average of the dif-
ference in log-likelihoods for 15 s is optimal to maximize
the detection performance. Using the optimal values, the
best QRS complex detection performance was 96.53% of
sensitivity and 98.16% of positive predictivity.
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