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Abstract 

The surface electrocardiogram (ECG) is the most 

widely adopted test to diagnose cardiac diseases. 

Extracting critical biomarkers from these signals, such as 

the QRS width, requires delineating the fundamental 

waves in them. However, even though ECG signals 

significantly change depending on the recording 

methodology and cardiac condition, the available QRS 

delineators are hard to adapt to non-considered cases. 

We present a deep learning-based multilead ECG 

delineation method which can successfully delineate QRS 

complexes. Our approach reached root-mean-square 

errors (RMSE) of 12.1±0.5 and 18.5±1.1 ms for QRS 

onset and offset, respectively, when evaluated on the QT 

database; thus, demonstrating to be comparable to the 

state-of-the-art. Moreover, these results are similar to the 

RMSE calculated from differences between the two 

cardiologists that annotated this database, namely, 14.7 

ms for the QRS onset and 17.2 ms for the offset. 

 

 

1. Introduction 

According to the World Health Organization [1], 

cardiac diseases killed more than 9 million people in 2016 

and are considered the primary cause of death worldwide. 

The surface electrocardiogram (ECG) is the most popular 

non-invasive test employed in clinical practice to 

diagnose and monitor cardiac diseases. The ECG 

provides signal-data of the heart’s electrical activity. 

Analysing these signals requires delineating the main 

waves composing the beats. More precisely, the ECG 

delineation process involves identifying the exact 

positions of the onset, offset and peak of the following 

waveforms: P-wave, QRS-complex and T-wave to 

calculate representative biomarkers. 

Manually delineating ECG recordings is repetitive and 

time-consuming. Therefore, some automatic delineation 

methods have been proposed in the literature [2]–[9]. 

While there exist both, rule-based [2]–[6] and machine 

learning-based QRS delineators [7]–[9], the state-of-the-

art are the former [3], [6]. However, these methods lack 

adaptability to significant differences in the target 

scenario since the rules composing them have been 

carefully designed by experts to match a specific domain, 

for example, a database comprising ECG signals recorded 

from athletes while exercising. Indeed, adapting these 

solutions to non-planned scenarios requires expert-

knowledge about the task and the system’s design, which 

has limited the acceptance of the existing QRS 

delineation approaches. On the other hand, deep learning 

models have the potential to automatically adapt to the 

training-data’s domain. Thus, if an appropriate dataset is 

available deep learning methods can be automatically 

adapted to any domain. 

Deep learning is a subclass of machine learning 

techniques which are capable of automatically extracting 

the feature representation from the data without prior 

expert knowledge [10]. Deep learning techniques have 

shown to outperform the state-of-the-art in several 

complex tasks, such as text translation [11]. In fact, they 

have even outperformed humans in image classification 

[12], lip reading [13] and playing games [14]. Deep 

learning techniques require large datasets to learn 

appropriate representations about the target task. 

Consequently, these methods are typically combined with 

data augmentation strategies. Data augmentation 

strategies generate artificial variants of the samples in the 

data to improve the exploitation efficiency. 

Computing in Cardiology 2018; Vol 45 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2018.292



We present a novel two-stepped deep learning-based 

multilead QRS delineation system. This system first 

segments the QRS waves from the ECG recording and 

then delineates them. More precisely, our approach is 

formed by successive segmentation and delineation 

modules, each of which is composed of a one-

dimensional (1D) convolutional neural network 

(ConvNet) and a fully-connected neural network (NN). 

To validate our approach we used nested cross-validation 

(CV) on the QT database (QTDB) [15]. Previous studies 

have addressed ECG segmentation and detection [16]. 

Nevertheless, to our knowledge, this is the first work to 

propose a deep learning-based QRS delineator. 

 

2. Methods 

We propose a delineator system formed by two 

modules, each of which is composed of two deep learning 

models (see Figure 1). Figure 1 illustrates these two 

modules and how the system works. Firstly, the 

segmentation module, formed by the segmenter and 

segmentation merger, locates the QRS waves in the ECG 

signal. Then, the data are windowed again using only 

areas containing a QRS complex. Finally, the delineation 

module, which is formed by the delineator and 

delineation merger, defines the QRS onset and offset 

marks.   

 

2.1. Architecture 

The architectures proposed are hereafter outlined. The 

segmenter (see Figure 2) is a 19-layered 1D ConvNet 

composed of 16 convolutional and three fully-connected 

layers. Each convolutional layer is formed by 16 kernels 

of length 3. These layers implement batch normalisation 

and use rectified linear unit (ReLU) activation functions. 

Next, the two hidden fully-connected layers have 128 and 

256 neurons, respectively. Furthermore, both layers 

implement batch normalisation, dropout at a rate of 0.5 

and ReLU as the activation functions. Finally, the output 

layer was another fully-connected layer with as many 

sigmoid units as the size of the input window to enable 

the model to perform classification from one-hot encoded 

labels.  

The second model of the segmentation module is the 

segmentation merger. This model is a 2-layered NN 

composed of two fully-connected layers, with 512 and 

one neurons in the first and second layer, respectively. 

The first layer implements batch normalisation, dropout 

at rate 0.5 and ReLU as the activation functions. There is 

a sigmoid output layer. 

Analogously to the segmentation module, the 

delineator and the segmentation merger are also a 1D 

ConvNet and an NN, respectively. Except for having 8 

convolutional layers with kernels of size 5, the delineator 

is composed of the same elements than the segmenter. On 

the other hand, the delineation merger is identical to the 

segmentation one. 

The number of layers and kernel sizes were chosen to 

enable our models to learn patterns with length up to 33 

instances (i.e. 132 ms), which accounts for most QRS 

morphologies. 

Figure 1. Delineation system diagram formed by a segmentation and a delineation modules, each composed of a ConvNet and a NN. 

The first module identifies the QRSs, and the second one locates the QRS’s onsets and offsets, respectively. 
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Figure 2. Segmenter model diagram which is a 19-layered 1D ConvNet composed of 16 convolutional and 3 fully-connected layers.

 

2.2. Data 

The proposed method was validated using the QTDB. 

This database includes 105 two-lead ECG recordings at 

250 Hz sampling rate from 7 databases (e.g. the MIT-BIH 

Arrhythmia database and the European ST-T database). 

These signals were windowed at 2.048 s (i.e. 512 

instances); thus, according to RR-interval known ranges, 

there should be at least one QRS complex in each sample. 

Then each window was normalised by subtracting the 

mean of its values and dividing by their standard 

deviation. 

The augmentation strategies implemented to train our 

models implied using 99%-overlapping when windowing 

the samples, and adding constants and scaling the values 

of the ECG signals. 

 

2.3. Methodology 

Firstly, the segmenter trains using the augmented and 

windowed data. Secondly, it predicts segmentation labels 

on each recording using a sliding window with jumps of 

1% instances. Due to the sliding strategy, this process 

generates a matrix of predictions. Next, the segmentation 

merger takes this matrix and trains on how to combine 

these predictions. Once trained, this merger computes a 

single segmentation prediction for every instance in the 

recording. Then, the system windows the segments of the 

signal with a QRS to 256 ms to give some margin to the 

identified zones. Later, the delineator trains on the task of 

finding the onset and offset marks using these shorter 

windows generated by the segmentation module, each of 

which contains only one QRS complex. Moreover, these 

samples are augmented again to train the delineator. Once 

trained, analogous to the segmentation module, the 

delineator will produce a matrix of predictions using a 

sliding window strategy. Then, the delineator merger uses 

this matrix to compute the QRS onset and offset 

positions. 

 

2.4. Training and evaluation 

Some hyperparameters, namely the number of 

convolutional layers, the kernel sizes and the window 

lengths, were chosen according to domain knowledge 

about the of ECG signals and its waves. Furthermore, we 

used Adam [17] and binary cross-entropy since this task 

is a one-hot-encoding binary classification problem due to 

its resemblance to segmentation. 

We chose the remaining hyperparameters and 

validated the system using nested CV with leave-one-

database-out and grid search. More precisely, each fold 

included the recordings from one of the databases 

included in the QTDB. Then testing performances were 

computed each time for one fold using leave-one-

database-out cross-validation with the others to choose 

the hyperparameters and learn the models’ weights. 

Consequently, the performances reported are an 

approximation of how our approach would generalise to 

other databases. Moreover, the training and assessment 

were repeated 10 times to assess the reproducibility. 

The performance measurements employed in this study 

were the root-mean-square error (RMSE), the mean error 

(ME), the error’s sample standard deviation (STE) and 

the QRS miss rate. The equations for these metrics are 

𝑅𝑀𝑆𝐸 = √∑ (�̂�𝑖 − 𝑦𝑖)
2𝑛

𝑖=1 𝑛⁄ , 𝑀𝐸 = ∑ (�̂�𝑖 − 𝑦𝑖)
𝑛
𝑖=1 𝑛⁄ , 

and 𝑆𝑇 = √∑ ((�̂�𝑖 − 𝑦𝑖) − 𝑀𝐸)2𝑛
𝑖=1 𝑛 − 1⁄ . Where 𝑛 is 

the number of samples and, �̂�𝑖 and 𝑦𝑖  are the predicted 

and the real labels of the 𝑖th sample, respectively. The 

QRS miss rate is the number of missed plus the number 

of wrongly found QRS waves during the segmentation 
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phase, divided by the total number of QRS complexes. 

 

3. Results and discussion 

The RMSE of our approach was 12.1±0.5 ms and 

18.5±1.1 ms for the QRS onset and offset, respectively. 

The ME±ESTD achieved was -2.6±10.8 ms and 4.4±15.2 

ms, for the onset and offset respectively. Whereas, [3] 

reported ME±ESTD of 4.6±7.7 ms and 0.8±8.7 ms for the 

onset and offset, respectively; and [6] reported 7.0±4.3 

ms and -5.0±9.9 ms for the onset and offset, respectively. 

The reference approaches are single-lead delineators 

[3], [6]. The performances of these methods in the QTDB 

were calculated from predicting for each lead 

independently and, later, fusing both outcomes by 

choosing the predicted value with less error for each time-

point. On the other hand, our approach is multilead; thus, 

it overcomes the need for selecting which predictions to 

use. Nevertheless, our performances are similar to the 

ones reported by the reference studies, which suggests 

that our approach is comparable to the state-of-the-art. 

Moreover, the RMSE calculated from the differences 

between the marks given by the two annotators in this 

database is 14.7 ms for the QRS onset and 17.2 ms for the 

offset, which helps to justify the magnitude of our errors. 

 

4.  Conclusions 

We propose a deep learning-based multilead 

delineation system for QRS complexes in ECG signals. 

The implemented data augmentation strategies enabled 

our system to successfully learn from a scarce and highly 

diverse set of multilead ECG recordings how to delineate 

QRS complexes. Moreover, the method achieved 

comparable performances than the state-of-the-art. 
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[4] R. Almeida, J. P. Martínez,  a P. Rocha, and P. Laguna, 

“P wave delineation using spatially projected leads 

from wavelet transform loops,” Comput. Cardiol. 2010, 

vol. XX, pp. 1003–1006, 2010. 

[5] A. Martínez, R. Alcaraz, and J. J. Rieta, “A new 

method for automatic delineation of ECG fiducial 

points based on the Phasor Transform,” 2010 Annu. Int. 

Conf. IEEE Eng. Med. Biol. Soc. EMBC’10, pp. 4586–

4589, 2010. 

[6] J. M. Bote, J. Recas, F. Rincon, D. Atienza, and R. 

Hermida, “A modular low-complexity ECG delineation 

algorithm for real-time embedded systems,” IEEE J. 

Biomed. Heal. Informatics, vol. 22, no. 2, pp. 429–441, 

Mar. 2018. 

[7] N. P. Hughes, L. Tarassenko, and S. J. Roberts, 

“Markov models for automated ECG interval analysis,” 

Adv. Neural Inf. Process. Syst., vol. 16, pp. 611–618, 

2004. 

[8] S. Graja and J. M. Boucher, “Hidden Markov tree 

model applied to ECG delineation,” IEEE Trans. 

Instrum. Meas., vol. 54, no. 6, pp. 2163–2168, 2005. 

[9] G. De Lannoy, B. Frenay, M. Verleysen, and J. 

Delbeke, “Supervised ECG delineation using the 

wavelet transform and hidden markov models,” IFMBE 

Proc., vol. 22, pp. 22–25, 2008. 

[10] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” 

Nature, vol. 521, no. 7553. pp. 436–444, 2015. 

[11] N. Kalchbrenner, L. Espeholt, K. Simonyan, A. van 

den Oord, A. Graves, and K. Kavukcuoglu, “Neural 

machine translation in linear time,” Arxiv, pp. 1–11, 

2016. 

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, 

“ImageNet classification with deep convolutional 

neural networks,” Adv. Neural Inf. Process. Syst., pp. 

1–9, 2012. 

[13] Y. M. Assael, B. Shillingford, S. Whiteson, and N. De 

Freitas, “LipNet: sentence-level lipreading,” arXiv 

Prepr., pp. 1–12, 2017. 

[14] D. Silver et al., “Mastering the game of Go without 

human knowledge,” Nature, vol. 550, no. 7676, pp. 

354–359, 2017. 

[15] P. Laguna, R. G. Mark, A. Goldberg, and G. B. Moody, 

“A database for evaluation of algorithms for 

measurement of QT and other waveform intervals in 

the ECG,” Comput. Cardiol. 1997, vol. 24, pp. 673–

676, 1997. 

[16] Y. Xiang, Z. Lin, and J. Meng, “Automatic QRS 

complex detection using two-level convolutional neural 

network,” Biomed. Eng. Online, vol. 17, no. 1, p. 13, 

Dec. 2018. 

[17] D. P. Kingma and J. Ba, “Adam: A Method for 

Stochastic Optimization,” Arxiv, vol. abs/1412.6, 2014. 

 

 

 

Address for correspondence. 
 

Name. Julià Camps  

Full postal address. Department of Computer Science, Parks 

Road, Oxford, OX1 3QD 

E-mail address. julia.camps@cs.ox.ac.uk 

Page 4


