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Abstract

To overcome the ill-posed nature of the inverse problem
of electrocardiography (ECG) and stabilize the solutions,
regularization is used. Despite several studies on noise,
effect of prefiltering of ECG signals on the regularized in-
verse solutions has not been explored. We used Bayesian
estimation for solving the inverse ECG problem with and
without applying various prefiltering methods, and evalu-
ated our results using experimental data that came from
a Langendorff-perfused pig heart suspended in a human-
shaped torso-tank. Epicardial electrograms were recorded
during RV pacing using a 108-electrode array, simulta-
neously with ECGs from 128 electrodes embedded in the
tank surface. Leave-one-beat-out protocol was used to ob-
tain the prior probability density function (pdf) of electro-
grams and noise statistics. Noise pdf was assumed to be
zero mean-Gaussian, with covariance assumptions: a) in-
dependent and identically distributed (noi-iid), b) corre-
lated (noi-corr). Reconstructed electrograms and activa-
tion times were compared to those directly recorded by the
sock for 3 beats selected from the recording. Noi-corr is
superior to noi-iid when the training set is a good match to
data, but for applications requiring activation time deriva-
tion, careful selection of preprocessing methods, in par-
ticular to adequately remove high-frequency noise, and an
appropriate noise model is needed.

1. Introduction

Inverse problem of electrocardiography (ECG), also
known as electrocardiographic imaging (ECGI), aims to
reconstruct cardiac electric sources using measurements
from the body surface (BSPM) obtained via densely placed

electrodes, and a mathematical model describing the rela-
tionship between the sources and measurements [1]. How-
ever, due to attenuation and smoothing effects within the
body, inverse ECG problem is ill-posed, and regulariza-
tion should be applied to stabilize the solutions. Several
techniques have been proposed in literature to overcome
this ill-posedness, such as Tikhonov regularization [2],
Bayesian estimation [3], Kalman filtering [4], spline fit-
ting [5]. An important criteria in selecting an inverse solu-
tion method for a specific clinical application is its robust-
ness to errors in the mathematical model, and noise in the
ECG signals.

There has been ongoing interest among researchers to
understand the effects of measurement noise [4] and model
errors [4, 6] on the regularized inverse solutions. Most of
these methods aim to reduce the effects of noise within the
inverse solution method. [7] reported that anisotropic fil-
ters applied to BSPMs before solving the inverse problem
yielded better reconstructions. However, despite these ef-
forts, there is still need for a systematic study to assess and
overcome the noise effects by applying prefiltering to the
ECG signals before solving the inverse problem. To ad-
dress this issue, ‘Signal Processing Workgroup’ was cre-
ated during the meeting at Computing in Cardiology 2017.
The work presented in this manuscript resulted from com-
bined efforts of researchers in this workgroup.

Selected filters were applied to ECG signals in two
stages, first stage aims to remove high frequency noise,
including the 50 Hz line interference, and the second
stage removes the base line drift. Epicardial electrograms
were reconstructed using Bayesian Maximum A Posteri-
ori (MAP) estimation, assuming jointly Gaussian epicar-
dial and torso potentials, for raw (unfiltered), and filtered
tank ECGs. Leave-one-beat-out protocol was used to ob-
tain the prior probability density function (pdf) of electro-
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Figure 1. BSPMs recorded from 128 electrodes on the
tank surface. Vertical lines show the three selected test
beats for ECGI.

grams and noise statistics. Noise pdf was assumed to be
zero-mean Gaussian. Two different noise covariance as-
sumptions, independent and identically distributed noise,
and correlated noise, were used to study the effects of noise
model on the solutions with filtered and raw ECGs. Recon-
structed and recorded electrograms and the correspond-
ing activation time maps were compared qualitatively and
quantitatively.

2. Methods

Experimental data came from a Langendorff-perfused
pig heart suspended in a human-shaped torso-tank. Epicar-
dial electrograms were recorded during RV pacing using a
108-electrode array, simultaneously with ECGs from 128
electrodes embedded in the tank surface. A more detailed
explanation of the experimental procedure can be found
in [8] and the references therein. Data consisted of 30 min-
utes of ECG recordings, with 31 beats. ECG signals were
highly contaminated by high frequency noise, 50 Hz line
interference and baseline drift noise, as shown in Figure 1.

Forward problem relating the epicardial data to BSPMs
was solved using the boundary element method (BEM) [9]
assuming a homogeneous volume between the heart and
torso surfaces. In this solution, epicardial and torso sur-
faces were represented by using meshes with 1012 nodes
and 128 nodes, respectively.

Inverse problem was solved using Bayesian Maximum
A Posteriori (MAP) estimation method explained in [3].
This is a statistical approach, in which the epicardial poten-
tials and the noise are treated as random variables, or mul-
tivariate random vectors. Bayesian MAP estimation aims
to obtain the posterior probability density function (pdf) of

the epicardial potentials based on the likelihood function
of the measurements (i.e., pdf of measurements given the
epicardial potentials) and an a priori pdf of the epicardial
potentials, which stands for the available prior information
on the epicardial potentials. Solution is defined as the epi-
cardial potential distribution that maximizes the posterior
pdf. A detailed theoretical background on this method and
its application to ECGI can be found in [3]. In this study,
we assumed that the epicardial potentials and BSPMs are
jointly Gaussian; prior pdf is a Gaussian distribution with
a well-defined mean and covariance; noise in the measure-
ments are zero-mean Gaussian and uncorrelated with the
epicardial potentials.

Three out of 31 beats were chosen as the test beats, as
shown in Figure 1, and inverse problem was solved only
for these test beats. For each test beat, a training set was
composed consisting of all the beats excluding the test beat
itself (leave-one-beat-out protocol). Prior pdf and noise
covariance were then obtained using the corresponding
training set for each test beat, as described in [3]. Two dif-
ferent models were used to define the noise covariance; a)
independent and identically distributed (noi-iid), b) corre-
lated (noi-corr), which were also estimated using the train-
ing sets.

Preprocessing of ECG signals was carried out in two
consecutive stages; stage 1 included 8 different high-
frequency noise removal filters (Filt-High), and stage
2 consisted of 5 different baseline drift removal filters
(BDR), as described in [10] in detail. Inverse problem was
solved and compared for four different preprocessing sce-
narios: 1) no processing (the raw signal), 2) Filt-High only,
3) BDR only, and 4) Filt-High and BDR combined.

For each solution, reconstructed epicardial potentials
were compared quantitatively with the sock recordings at
the corresponding 108 nodes in terms of root mean square
(RMS) voltage, root mean sqaured error (RMSE) and cor-
relation coefficient (CC). Activation times were also cal-
culated for the recorded and estimated epicardial potentials
using the maximum derivative (dV/dt) as described in [11].
Activation times at 108 measurement locations were then
compared using Pearson’s Correlation. Statistical compar-
isons were also performed on these results using unpaired
Student’s t-tests with significance taken for p > 0.05.

3. Results

Top panel in Figure 2 shows the RMS Voltage for
recorded (black) and noi-corr (blue/cyan) and noi-iid
(red/magenta) inverse solutions with and without stage 1
filtering (Filt-High), and bottom panel shows the mean
RMS voltage for all preprocessing scenarios. For all these
scenarios, noi-iid RMS voltage was significantly smaller
than recorded values (p < 0.05). There was no significant
difference between noi-corr RMS voltage and recorded
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Figure 2. Top: RMS voltage for recorded (black) and
noi-corr (blue/cyan) and noi-iid (red/magenta) inverse so-
lutions with and without high pass filtering. Bottom: Mean
RMS values for all preprocessing scenarios.

Figure 3. Top: RMSE at electrode locations for noi–iid
(left) and noi-corr (right) without signal processing. Bot-
tom: Median RMSE values for all preprocessing scenarios.

when signal processing was used (p > 0.07) but there
was a significant difference when no processing was used
(p = 0.009).

Top panel in Figure 3 shows the RMSE values at elec-
trode locations for noi–iid (left) and noi-corr (right) with-
out signal preprocessing, and bottom panel shows the me-
dian RMSE values for all preprocessing scenarios. For noi-
iid, RMSE values were significantly larger than noi-corr
(p < 0.05). For noi-iid, applying BDR (with or without
Filt-High) significantly improved RMSE (p < 0.05). For
noi-corr, applying BDR significantly deteriorated results
compared to Filt-High (p < 0.05).

Top panel in Figure 4 shows the CC values at electrode

Figure 4. Top: CC at electrode locations for noi–iid (left)
and noi-corr (right) without signal processing. Bottom:
Median CC values for all preprocessing scenarios.

Figure 5. Correlation values of the activation times for all
preprocessing scenarios.

locations for noi–iid (left) and noi-corr (right) without sig-
nal preprocessing, and bottom panel shows the median CC
values for all preprocessing scenarios. For noi-iid, ap-
plying BDR (with or without Filt-High) significantly im-
proved CC (p < 0.05) but not Filt-High alone. For noi-
corr, no processing method improved results (p > 0.05)
though applying BDR significantly deteriorated results
compared to BDR with Filt-High (p < 0.05).

Figure 5 shows the correlation values of the activation
times for all preprocessing scenarios. For noi-iid, recon-
structions after BDR and Filt-High combination were sig-
nificantly better than using no processing (p < 0.05).
For noi-corr, reconstructions were significantly better with
Filt-High processing, when used with or without BDR
(p < 0.05). There was no significant difference between
noi-iid and noi-corr except when BDR alone was applied
to signals (p < 0.001).
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4. Discussions

In this study, we approached measurement noise effects
on ECGI from two aspects; preprocessing of the ECG sig-
nals, and modifying the statistical noise model.

Noi-corr is a more realistic noise model, which takes
into account the spatial correlation of noise over the body
surface. It produces better reconstructions when the noise
in the measurements matches well with the training set
properties. However, when the training set deviates from
the measurements, reconstructions deteriorate, as demon-
strated with the BDR results; when BDR is applied to the
test beat but not to the training set, noi-corr results wors-
ened. Noi-iid on the other hand is a simpler model, and
only requires a single parameter (noise variance) to repre-
sent the noise statistics. It has the effect of reducing re-
constructed electrogram amplitudes, but due to its simplic-
ity, if there is no clear information on the noise model, it
is superior to noi-corr, especially in finding the activation
times.

5. Conclusion

Noi-corr is superior to noi-iid when training set proper-
ties match those of the test beat. But if the confidence in
the fidelity of the training set to the test data is low, noi-iid
should be preferred, despite its amplitude attenuation ef-
fects. For applications requiring activation time derivation,
careful selection of preprocessing methods, in particular to
adequately remove high-frequency noise, is needed.
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