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Abstract

Kalman filter has been applied in literature to in-
verse electrocardiography problem as a spatio-temporal
method. However, there is still an open question of how
the essential parameters in the state-space representation
are found without claiming strong assumptions. In this
study, we proposed a maximum likelihood (ML) estimation
based method which incorporates multiple body surface
measurements to estimate the parameters that are essen-
tial to use Kalman filter.

Our proposed approach, Maximum Likelihood Infer-
ence & Filtering (MLIF), was compared with zero order
Tikhonov regularization and Bayesian maximum a poste-
riori estimation (BMAP) by using three different training
sets under two different measurement noise levels. The
results showed that mean correlation coefficient (CC) for
Tikhonov regularization is 0.60, and mean CC ranges 0.64
to 0.82, and 0.66 to 0.99 for Bayesian MAP and MLIF un-
der 30 dB SNR measurement noise, respectively. Under
10 dB SNR, mean CC is 0.37 for Tikhonov regularization,
and mean CC ranges 0.53 to 0.78, and 0.53 to 0.98 for
Bayesian MAP and MLIF, respectively.

1. Introduction

Cardiac diseases are among the leading causes of death
in the world. Early diagnosis is very important to pre-
vent these deaths like any other diseases. 12-lead elec-
trocardiography (ECG) is the mostly used technique for
the diagnosis of cardiovascular diseases. 12-lead ECG is a
very efficient, quick and patient-friendly method but it suf-
fers from spatial smoothing of cardiac signals within the
torso, and low spatial resolution, and some abnormalities
in the heart function cannot be detected by clinicians using
this method. Electrocardiographic imaging (ECGI), also
known as inverse electrocardiography (ECG), aims to de-
termine the cardiac electrical activity from body surface
potential measurements. Reconstruction of the cardiac
electrical activity from the body surface potential measure-

ments is not an easy task, since this problem has an ill-
posed nature due to attenuation and spatial smoothing in-
side the medium between the source and the measurement
sites, meaning that even small errors in the mathematical
model or noise in the measurements may yield unbounded
errors or large oscillations in the solutions [1]. One rem-
edy for this ill-posedness is to apply regularization, where
one imposes deterministic or statistical constraints on the
solution based on available a priori information.
Tikhonov regularization, Bayesian maximum a posteriori
estimation [2] and Kalman filter have been applied to in-
verse ECG problem in this study. In the context of Kalman
filter, the researchers focused on how Kalman filter’s pa-
rameters should be found. For example, Joly et al. [3]
attempted to model the state transition matrix as a constant
times times identity matrix and this approach is a poor ap-
proximation since it ignores the relation between the state
variables. Based on Joly et al.’s study, El-Jakl et al. [4]
proposed another method to find the state transition ma-
trix by using ML estimation. However, El-Jakl’s study as-
sumed the covariance matrix to be a constant times identity
matrix and did not provide information on how the multi-
ple measurements were used. More recently, Aydin et al.
[5] assumed epicardial potential at one lead is related only
to the leads in its neighbourhood or the leads that are acti-
vated at around the same time, while finding the state tran-
sition matrix. Hence, in their study, it is important how
the neighbourhood leads are defined. Furthermore, any er-
rors that are made during the calculation of activation times
may yield incorrect state transition matrix.
In this study, we propose a new method which incorporates
multiple measurements by using ML estimation. Our ap-
proach provides a general way to construct the state-space
formulation of the inverse electrocardiography by using
very few assumptions. After the construction of the state-
space formulation of the problem, we apply Kalman filter
and smoother to the inverse ECG problem.
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2. Maximum Likelihood Inference & Fil-
tering (MLIF)

The relation between the heart sources and the body sur-
face measurements becomes linear when epicardial poten-
tials are used as cardiac source [6]. This relation can be
represented as follows in state-space form:

yk = Hxk + vk

xk+1 = Fxk + wk (1)

where
• xk ∈ RM denotes M dimensional epicardial state vector
at time k,
• yk ∈ RD denotes D dimensional body surface potential
vector at time k,
• F ∈ RMxM is the state transition matrix,
• H ∈ RDxM is the forward transfer matrix,
• wk ∼N (wk; 0, Q) is the Gaussian process noise with
zero mean and covariance matrix QMxM , assumed to be
uncorrelated with the state,
• vk ∼N (vk; 0, R) is the Gaussian process noise with
zero mean and covariance matrix RDxM , assumed to be
uncorrelated with the state,
• x1 ∼N (x̄,Σ) is the initial epicardial potential state.
Kalman filter and smoother is applied to system (1) in the
MLIF method. Discrete Kalman filter steps are as follows:
Step 1. Initialization
For k=1, initialize xk and Pk

• x̂1|1 = E [x1] = x̄

• P1|1 = E [(x1 − x̂1|1)(x1 − x̂1|1)T ] = Σ
Step 2. Forward Recursion: Filtering
For k=2, ..., T do
• x̂k|k−1 = Fx̂k−1|k−1

• Pk|k−1 = FPk−1|k−1F
T + Q

• Kk = Pk|k−1H
T (HPk|k−1H

T + R)−1

• x̂k|k = x̂k|k−1 + Kk(yk −Hx̂k|k−1)
• Pk|k = (I −KkH)Pk|k−1

After the Kalman filter steps, our next step is the Kalman
smoother. In this study, we use Rauch-Tung-Striebel
Smoother (RTS) [7]. RTS is a very convenient approach
for linear Gaussian models, as in our model. RTS steps are
given as follows:
Step 3. Backward Recursion: Smoothing
For k=T-1, ...., 1 do
• Pk+1|k = FPk|kF

T + Q

• Gk = Pk|kF
T (Pk+1|k)−1

• x̂k|T = x̂k|k + Gk[x̂k+1|T − Fx̂k|k]
In Kalman filter and smoother steps, F,Q,R and, the ini-
tial state’s mean and covariance x̄,Σ are needed. These
parameters are found by using by using ML parameter es-
timation technique.

3. Maximum Likelihood (ML) Parame-
ter Estimation

Parameter estimation based on ML method was used ex-
tensively in speech signal processing literature [8, 9]. ML
estimation finds the best estimate of the unknown param-
eter set Θ = {x̄,Σ, F,Q,R}, which maximizes the joint
likelihood function, so that the observed data is the most
probable.
We start by selecting L experiments from an epicardial po-
tential database and simulate body surface potentials for
each experiment. Then, we compose a training set with
epicardial potentials X = {x`

1:T }L`=1 and simulated body
surface potentials Y = {y`1:T }L`=1. Mathematically, we find
the value of the parameter set as follows:

Θ̂ = argmax
Θ

p(X,Y | Θ)︸ ︷︷ ︸
Π(Θ)

(2)

where

Π(Θ) =

L∏
` =1

p(x`
1:T , y`1:T |Θ) (3)

under the assumption of independent experiments. Assum-
ing Markov property, Π(Θ) is written as follows:

Π(Θ) =

L∏
`=1

(
p(x`

1|Θ)

T∏
k=1

p(y`k|x`
k,Θ)

T∏
k=2

p(x`
k|x`

k−1,Θ)

)
(4)

We take the natural logarithm of Π(Θ) and plug the pa-
rameter set into equation (4):

ln
(

Π(Θ)
)

=

L∑
`=1

ln p(x`
1|x̄,Σ) +

L∑
`=1

T∑
k=1

ln p(y`k|x`
k, R)

+

L∑
`=1

T∑
k=2

ln p(x`
k|x`

k−1, F,Q) (5)

where
• p(x`

1|x̄,Σ) ∼N (x`
1; x̄,Σ),

• p(y`k|x`
k, R) ∼N (y`k;Hx`

k, R),
• p(x`

k|x`
k−1, F,Q) ∼N (x`

k;Fx`
k−1, Q).

To find the parameter set {x̄,Σ, F,Q,R}, we take the
derivative of ln(Π(Θ)) with respect to each component
and obtain the roots by equating it to zero.
We summarize the resulting estimates in Table 1.
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Table 1. ML based parameter estimation

Estimated parameters:

ˆ̄x = 1
L

∑L
`=1 x

`
1

Σ̂ = 1
L

∑L
`=1(x`

1 − x̄)(x`
1 − x̄)T

R̂ = 1
LT

∑L
`=1

∑T
k=1(y`k −Hx`

k)(y`k −Hx`
k)T

F̂ =
[∑L

`=1

∑T
k=2 x

`
k(x`

k−1)T
]

×
[∑L

`=1

∑T
k=2 x

`
k−1(x`

k−1)T
]−1

Q̂ = 1
L(T−1)

∑L
`=1

∑T
k=2(x`

k − Fx`
k−1)(x`

k − Fx`
k−1)T

4. Bayesian Maximum a Posteriori Esti-
mation (BMAP)

Bayes’ theorem states that posterior pdf of x given y can
be found by using the following equation [2]:

p(x | y)︸ ︷︷ ︸
Posterior pdf

=

Likelihood︷ ︸︸ ︷
p(y | x)

Prior pdf︷︸︸︷
p(x)∫

x

p(y | x)P (x)dx︸ ︷︷ ︸
Evidence

(6)

Bayesian MAP estimation technique maximizes the poste-
rior pdf of x given y. By maximizing the posterior pdf, we
find the most probable value of x given observed data y.
Maximization of the posterior pdf is given by the follow-
ing equation:

x̂ = argmax
x

p(x | y) = argmax
x

p(y | x)p(x)

p(y)
(7)

We assume that:
• p(y|x) ,N (y;Hx,R)
• p(x) ,N (x; x̄,Σ)
where x̄ = E[xk] and Σ = E[(xk − x̄k)(xk − x̄k)T ] ∀ k.

To maximize equation (7), we take the derivative of the
log of that equation and find the root by setting the deriva-
tive equal to zero. After doing the necessary calculations,
x̂ is found as follows:

x̂ =
(
HTR−1H + Σ−1

)−1(
HTR−1y + Σ−1x̄

)
(8)

The training set in BMAP is composed by following
Serinagaoglu et al.’s approach [2].

5. Results and Conclusion

In this study, three different training sets are used. The
training sets are were constructed as follows:
• Scenario 1: In scenario 1, the beat we used for simulat-
ing the measurements (i.e., the test beat) and the training
set beats came from the same experiment (same dog heart).
The test beat was included in the training set.
• Scenario 2: Leave-One-Beat-Out Protocol [2]: In sce-
nario 2, we used the same training set as in scenario 1, but
excluded the test beat.
• Scenario 3: Leave-One-Experiment-Out Protocol [2]:
In scenario 3, the test beat came from a different experi-
ment (i.e., a different dog heart) than the experiments from
which we obtained the training set beats.

In this study, University of Utah’s epicardial potential
database was used. Body surface potentials were calcu-
lated by simulation, i.e., the epicardial potentials were
multiplied by the forward transfer matrix, which was found
by using boundary element method, and a proper noise (10
dB or 30 dB SNR) was added to the result.

For all the scenarios, 100 Monte Carlo runs were used to
obtain the results. The average of all these 100 simulations
was taken in each case.

In order to quantitatively compare performances of the
proposed algorithms, correlation coefficient (CC) between
the real and the reconstructed epicardial potential distribu-
tions is used. The correlation coefficient can be defined as
follows:

CCx,x̂(k) =

∑M
i=1

(
x̂i(:, k)− ¯̂x(:, k)

)(
xi(:, k)− x̄(:, k)

)
||x̂(:, k)− ¯̂x(:, k)|| · ||x(:, k)− x̄(:, k)||

(9)
where || · || is the L2 norm, M is the number of epicardial
nodes, x̂k is the estimated epicardial potential state vector
and xk is real the epicardial potential state vector at time k.

As seen in Tables 2 and 3, MLIF outperforms Tikhonov
and BMAP methods at both measurement noise levels.
MLIF is more robust to measurement noise since it uses
not only spatial correlations but also temporal correlations
between epicardial potentials. Due to over-fitting nature of
ML estimation, when the training set data and the test beat
are not similar, its performance is significantly degraded.
This fact can be observed by looking at training set 3 re-
sults. Tikhonov regularization is applied independent of
the training sets, hence the results are the same in different
training sets. Tikhonov regularization is the most affected
method among the proposed methods when the SNR is in-
creased from 30 dB to 10 dB. BMAP uses the training set
data as a prior information, hence it is more robust to mea-
surement noise than Tikhonov regularization.
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Table 2. Mean correlation coefficients under 10 dB mea-
surement noise

Method Training Set 1 Training Set 2 Training Set 3
Tikhonov 0.37±0.31 0.37±0.31 0.37±0.31
BMAP 0.78±0.27 0.77±0.26 0.53±0.29
MLIF 0.98±0.02 0.88±0.11 0.53±0.30

Table 3. Mean correlation coefficients under 30 dB mea-
surement noise

Method Training Set 1 Training Set 2 Training Set 3
Tikhonov 0.60±0.28 0.60±0.28 0.60±0.28
BMAP 0.82±0.18 0.79±0.19 0.64±0.26
MLIF 0.99±0.02 0.88±0.10 0.66±0.23

6. Discussions and Future Works

In general, spatio-temporal method MLIF outperformed
spatial methods and enhanced the reconstruction accuracy.
When the training set data and the test beat are simi-
lar, finding Kalman filter’s parameters with ML estimation
yielded better results. However, due to over-fitting, if the
training set data and the test beat are not similar, i.e., if
they come from different physiological models, the perfor-
mance of ML estimation was degraded. In such situations,
maximum a posteriori estimation can be used to overcome
the over-fitting issue [10].

As a future work, maximum a posteriori parameter esti-
mation technique will be implemented.
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