
A Statistical Comparative Study of Photoplethysmographic Signals in Wrist-

Worn and Fingertip Pulse-Oximetry Devices 

Kais Gadhoumi12, Kevin Keenan3, Rene Colorado3, Karl Meisel3, Xiao Hu12 

1 Department of Physiological Nursing, School of Nursing, UCSF, San Francisco, California, USA 

2
 Center for Physiologic Research, UCSF, San Francisco, California, USA 

 3 School of Medicine, UCSF, San Francisco, California, USA 

 

Abstract 

Prolonged time-matching continuous recordings of 

electrocardiogram and photoplethysmographic 

waveforms from fingertip pulse oximeter and wrist-worn 

devices obtained from stroke patients admitted to the 

intensive care unit were analyzed. Heart rate and pulse 

rate variability indices and signal complexity were 

estimated and statistically compared to investigate the 

reliability of heart rate estimation using 

photoplethymography and whether fingertip pulse 

oximetry and radial photoplethymography reflect the same 

pulse rate variability. Heart rates were generally found to 

be accurately estimated by both photoplethysmographic 

modalities when using the electrocardiogram as a 

reference. Pulse rate variability analysis showed 

statistically comparable properties between 

photoplethysmographic modalities, suggesting that 

fingertip pulse oximetry and wrist photoplethymography 

reflect the same cardiovascular changes. 

 

1. Introduction 

Photoplethymography (PPG) is an optical measurement 

technique used primarily in the detection of the blood 

volume changes and offers a convenient and cost-effective 

means for assessing vital signals like oxygen saturation, 

blood pressure, and cardiac output. The interest of using 

photoplethymography for monitoring health condition 

outside the hospital setting has recently increased with the 

abundance of wearable devices in the consumer market 

that offer readily available low-cost photoplethymography 

sensors powered with relatively long-lasting batteries.  

Recent studies have shown that accurate detection of 

heart rhythm irregularities or arrhythmia using wearable 

devices is now possible [1]. However, in most of these 

studies, the analysis of the photoplethysmographic 

waveform was based on an intermittently recorded signal 

due to power saving requirements for a majority of existing 

consumer-grade wearable devices. In some patients with 

conditions of paroxysmal (intermittent) arrhythmia, non-

continuous analysis may lead to undetected episodes of 

arrhythmia resulting in underdiagnoses of otherwise 

actionable conditions such as atrial fibrillation, which is a 

major risk-factor that require careful extended screening 

[2]. Prolonged recording and continuous analysis of 

photoplethysmographic waveforms increase the chance of 

unraveling such risk-factors. 

In this study, we analyzed continuous 

photoplethysmographic recordings from a wrist-worn 

device and a fingertip pulse oximeter device in a goal to 

assess their accuracy in estimating the heart rate and to 

evaluate whether photoplethymography of the radial artery 

reflect the same cardiovascular changes as those recorded 

in the peripheral capillaries of the hand finger. 

 

2. Methods 

2.1. Patients and Data 

Fourteen patients (aged between 19 and 91; median=74) 

admitted in the intensive care units of the University of 

California San Francisco Medical Centre between October 

2016 and January 2018 for ischemic stroke were 

prospectively selected to wear a wristband (E4 wristband, 

Empatica Inc, Cambridge, USA) for continuous recording 

of the radial blood volume pulse (BVP) while being 

monitored by standard bedside patient monitors. Patient 

consent and approval of the UCSF Institutional Review 

Board was obtained prior to patient enrollment. BVP 

waveforms were recorded with E4 wristband at 64 Hz. 

Time-matching physiological waveform recordings of 7-

lead electrocardiogram (ECG) and fingertip pulse 

oximetry (SpO2) acquired at 240 Hz were extracted for 

thirteen of fourteen patients (bedside monitor data was not 

accessible for one patient). Between 3 and 24.7h of 

recordings were obtained (average duration = 13.5h). All 

analyses were carried out in Matlab (MathWorks, Inc). 

 

2.2. Signal Quality Assessment 
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The BVP and SpO2 recordings were segmented into 

contiguous non-overlapping 30s-segments (simply referred 

to as segments in the rest of manuscript) for all patients and 

assessed for signal quality in each segment. The choice of 

the segment length was primarily dictated by the clinical 

definition of atrial fibrillation [3] given that this study 

subscribes under a larger study on atrial fibrillation. A 

singular value decomposition (SVD) based approach, 

adapted from Asgari et al. [4, 5], was used for the quality 

assessment procedure:  A library of pulses is constructed for 

each segment and decomposed using SVD into signal and 

noise subspaces. Ratio of projected signal in the signal 

space to the projected signal in the noise space is calculated 

and compared to an empirically determined threshold. If the 

ratio is greater than the threshold, the segment is considered 

as a valid physiological signal (QoS = 1), otherwise the 

signal is considered as a non-valid physiological signal 

(QoS = -1). Pulse onset was detected using two methods. 

The first method uses the weighted slope sum and adaptive 

thresholding approach for onset detection of blood pressure 

waveforms as proposed by Wong’s et al [6]. The second 

method [7] implements a pulse onset detection algorithm 

for arterial blood pressure waveforms and it is largely 

inspired by the derivatives and thresholds described in Pan-

Tompkins method [8]. Both methods were visually 

assessed for correctly identifying the pulse onset in 50 

randomly selected BVP and SpO2 recordings from all 

patients. The method with best accuracy was adopted for 

pulse detection in subsequent analyses.  

To compare the trend of the quality of signal between 

BVP and SpO2 recordings for a given patients, the 

cumulative sum of the QoS values calculated over the 

segments was used. The spearman’s rank correlation 

coefficient was then calculated for the QoS trends. 

Only patients with 30 min or more of cumulated good 

quality BVP and SpO2 segments were selected for 

subsequent analyses for statistical power of results. 

Figure 1. Illustration of temporal (upper panel) and spectral 
(lower panel) heart rate estimation. 

 

2.3. Pulse Rate Variability Analysis 

Inter-pulse intervals (IPIs) were derived from pulse 
onsets in BVP and SpO2 segments with good quality 
assessment by calculating the difference between 
successive pulse onsets. 

For the calculation of the ECG heart rate, inter-beat-
intervals were extracted for each non-overlapping segment 
of ECG recordings by using a Pan-Tompkins algorithm [8] 
to detect the peaks of QRS complexes. Intervals 
corresponding to heart rates outside the physiological range 
of 30-240 bpm were considered outliers and were 
discarded. 

The average heart rate and a series of time-domain and 
frequency-domain indices quantifying the amount of 
variability in the inter-pulse interval across each recording 
were calculated from the aggregated IPIs [9] and compared 
for statistical significance of the difference in mean values 
using two-sample Kolmogorov-Smirnov tests. Metric 
definitions are given in table 1. 

Table 1. Heart-rate and pulse rate variability metrics. 

Index Description 

HR  60/Average IPI (bpm) 
SDNN Standard deviation of IPI (ms) 

RMSSD Root mean square of successive IPI (ms) 
pNN50 

(%) 
Percentage of successive IPI that differ 

by more than 50 ms 
pNN20 Percentage of successive IPIs that differ 

by more than 50 ms (%) 
Triangular 

Index 
Integral of the density of IPIs histogram 

divided by its height (ms) 
TINN Baseline width of IPI histogram (ms) 
Lf/Hf Ratio of low ([0.04 0.15]𝐻𝑧) to high 

([0.15 0.4]𝐻𝑧) frequency power (%) 

 

To compare signal complexities between recordings, the 

sample entropy [10] was used. Sample entropy values were 

calculated across each BVP and SpO2 recording 

(maximum template length = 2, matching tolerance 

threshold = 0.2 were used). Additionally, a frequency-

domain analysis was carried out to compare the spectral-

based estimation of the heart rate in ECG, SpO2 and BVP 

recordings.  The power spectral density was estimated in 

each segment using Welch’s method (2048 FFT points, 

25% overlap ensured good spectral resolution). The heart 

rate was then estimated by finding the fundamental 

frequency of the power spectral density in the frequency 

band corresponding to the patient heart rate range as 

calculated in the HRV analysis. The fundamental 

frequency was determined by locating the first of 

equidistant peaks with significant spectral power. In most 

cases, the fundamental frequency was observed to be the 

peak frequency of the power spectrum. Fig. 1 shows an 

example of detected pulses and beats in time-matching 

30s-segments of BVP, SpO2 and ECG and the estimated 

heart rates using power spectral density analysis. 
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3. Results 

3.1. Signal Quality Assessment 

Pulse detection was found to be more accurate with the 

second method than with the first method (See Methods) 

and was used in subsequent analysis. Five of thirteen 

patients enrolled in the study had 30 min or less of 

cumulative good quality segments and were not analyzed 

further. In all five patients, BVP recordings had very few 

segments (less than 2 min) of good quality segments while 

SpO2 recordings in three of these five patients were totally 

of bad quality. Temporal trends of BVP and SpO2 signal 

quality were positively correlated in most patients (Fig. 

3a). Spearman’s ρ was above 0.85 in eight of thirteen 

patients. In three of five patients where trends were poorly 

or negatively correlated, a high positive correlation could 

be appreciated in the first hours of recordings (patients P2, 

P8, and P9). Fig. 2b shows the proportion of good quality 

segments in each patient. 

 

 
Figure 2. Trends of signal quality (a) and proportion of 

good quality segments (b). 

 

3.2.  Heart Rate Estimation 

In eight of thirteen patients who had 30+ min of good 

quality segments, the difference between inter-pulse 

interval values in SpO2 and BVP was not statistically 

significant (p-value = 0.93; Two-sample Kolmogorov-

Smirnov test). The estimated average heart rate derived 

from the average inter-pulse interval in SpO2 and in BVP, 

and from the average inter-beat interval of ECG had very 

close values in each patient (Fig. 3; p-value = 0.79; one-

way ANOVA test). 

 

 
Figure 3. Average heart rates and inter-pulse intervals. 

 

3.3. Segment-Wise Heart Rates  

Heart rates estimated using power spectral density 

calculated in each BVP and SpO2 segment (𝐻𝑅{𝑃𝑆𝐷} =

60 ∗ 𝑓 with f being the fundamental frequency of the signal 

in the physiological range) showed relatively poor 

agreement with segment-wise ECG heart rate values 

calculated using inter-beat intervals of each segment (95% 

limits of agreement = ± 10bpm). Heart rates estimated 

using IBIs showed however a good agreement with 

segment-wise ECG-based heart rate estimates. Fig. 4 

illustrates such an agreement for eight of thirteen patients 

who had 30+ min of goof quality signals (spearman’s ρ = 

0.97. 95% limits of agreement below the clinically 

acceptable difference threshold of 5bpm). 

 

 

 
 

Figure 4. Correlation and agreement analysis (Bland-

Altman plot) between heart rates. 

 

3.4. Pulse Rate Variability and Signal 

Complexity Analysis 
 

Average values of the pulse rate variability indices and 

the sample entropy were comparable (p-value > 0.05; Two-

sample Kolmogorov-Smirnov test) among the eight 

patients who had 30+ min of good quality signals (Fig. 5) 

in BVP and SpO2 recordings. 
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Figure 5. Average values of PRV indices and Sample 

Entropy. 

 

4. Conclusion 
 

A comparison between continuous and long-lasting 

photoplethysmographic and electrocardiographic 

recordings in a cohort of patients with ischemic stroke was 

presented. The findings are preliminary given the limited 

number of patients analyzed. However, results on the 

comparison between heart rates estimated using the 

electrocardiogram and photoplethysmograms corroborate 

early reports on the validity of the heart rate estimation in 

wearable devices under resting conditions [11]. Heart rate 

estimation under moderate or intense physical activity 

conditions remain controversial and was not a subject of 

this study [12, 13]. To our knowledge, this study is the first 

to report a comparison between pulse-oximetry and 

photoplethymography from continuous prolonged 

recordings. In most patients, both modalities showed 

comparable statistical properties when analyzing the pulse 

rate variability. The quality of plethysmographic 

waveforms was also comparable between modalities for 

most of recording duration. The discrepancies of signal 

quality trends between both modalities in some recordings 

may be due to unsynchronized limb movement. In fact, in 

some patients, the E4 device and the fingertip pulse 

oximeter were worn on different hands. The statistical 

concordance between heart rates and PRV indices 

evaluated in both modalities suggest that SpO2 recordings 

can be used as surrogates for BVP recordings. Such 

interchangeability between signals recorded from different 

photoplethymography modalities can prove very useful in  

building large datasets of expertly annotated 

photoplethysmographic waveforms as a great deal of 

continuous SpO2 recordings is readily accessible in most 

healthcare institutions. Large annotated datasets can be 

extremely valuable in the training of data-hungry 

algorithms ― such as in deep learning approaches — for 

the accurate detection of arrhythmia in wearable devices. 
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