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Abstract

ECG imaging aims to reconstruct the cardiac electri-
cal activity from non-invasive measurements of body sur-
face potentials (BSP) by finding unique and physiologi-
cally meaningful solutions to the inverse problem of elec-
trocardiography. This can be accomplished using regular-
ization, which reduces the space of admissible solutions
by demanding solution properties that are already known
beforehand. Messnarz et. al. proposed a regularization
scheme that requires transmembrane voltages (TMV) to
not decrease over time. We suggest a generalization of this
method that forces TMVs to decrease only slowly and as
a result can also be applied to irregular cardiac activity.
We first develop the method using a simplified spherical
geometry and then show its benefit for imaging fibrillatory
activity on a realistic geometry of the atria.

1. Introduction

The transfer of electrical potentials from the heart to the
body surface represents an attenuation and spatial smooth-
ing. Reversing this process leads to an amplification of
measurement noise and is generally not unique, as many
cardiac source patterns with high spatial frequency can re-
sult in smoothed BSP patterns that differ only by a magni-
tude smaller than the measurement noise. In a more mathe-
matical way, this can be seen from a singular value decom-
position (SVD) of the lead field matrix, which shows that
increasingly high frequency source basis patterns are asso-
ciated with declining singular values. A unique solution
can be obtained by truncating the SVD or explicitly forc-
ing the source pattern to be of low spatial frequency. This
motivates the use of Tikhonov regularization, especially in
its second order form that minimizes the Laplacian of the
solution. While this approach is sensible from a purely
electrodynamic point of view, it can be questioned from a
physiological perspective. Spatial source patterns resulting
from the physiological spread of cardiac excitation waves
are characterized by a sharp edge caused by depolarization
and a less steep gradient caused by repolarization. Classi-
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cal regularization methods smear the depolarization edge
in space — and as a consequence often also in time. To-
tal variation regularization can be used to promote sharp
edges by assuming source values to be piecewise constant
in space. However, this assumption is violated for trans-
membrane voltages during repolarization, which may also
impede the reconstruction of other node’s depolarization.
In the following, we want to explore a new idea for reg-
ularization in the temporal domain that makes use of the
stereotypical time course of action potentials and might al-
low for a less severe spatial regularization.

2. Methods

2.1. Geometries and excitation patterns

In this work, we use two different sets of geometries
(Fig. 1). A spherical test geometry is used to study
the effect of different regularization configurations under
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Figure 1. Top: Spherical test geometry. Bottom: Realis-
tic torso-atria geometry. Green dot: stimulus location. Red
dots: Reference electrodes. Black dots: Evaluation nodes.
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idealized conditions. It consists of three concentrically
aligned icosphere surfaces with 642 nodes each. The out-
most surface has a diameter of 25 cm and represents the
torso surface. The other two surfaces have a diameter of 5
and 4.6 cm and represent the epi- and endocardial surfaces
bounding the myocardium. With a diameter of 5cm and
a wall thickness of 2 mm, the geometry best resembles the
left atrium. Monodomain simulations of a focal activity
were performed on a finer tetrahedral mesh of the spher-
ical myocardium and transferred onto the surface mesh.
We used the atrial cell model by Courtemanche et al. [1].
Homogeneous and isotropic monodomain conductivities
were used and adapted to obtain a conduction velocity of
800 mm/s. The stimulus location is marked by a green dot
in Fig. 1. The black dots mark 10 evaluation nodes placed
equidistantly along the equator parallel to the direction of
excitation propagation.

A more realistic geometry of the torso and the atria is later
used to demonstrate the new regularization method in an
application to irregular atrial activity. The geometry is the
same as in [2], but the number of atrial nodes has been
reduced to 1696 in order to speed up computations. The
“simple atrial fibrillation” simulation from [3] is chosen as
activity to be reconstructed, which includes rotational ac-
tivity on the right atrium repeating at 7.3 Hz, while the left
atrium is activated at 4.7 Hz.

2.2. Forward calculations

We assume equal intra-to-extracellular anisotropy ratios
and thus the BSPs can be calculated from transmembrane
voltages on the surface bounding the myocardium [4]. Fur-
thermore, the torso is assumed isotropic and thus the lead
field matrix A can be obtained using the boundary element
method. The forward model then is:

b(t) = Ax(t) + e(t)

where b(t) are the BSPs, x(t) the surface TMVs and &(t)
white gaussian noise for all nodes at a time ¢. All nodes
of the torso models are used as electrodes. It is assumed
that each electrode is affected by the same absolute noise
power, which is set to the average signal power of all nodes
divided by the signal-to-noise ratio (SNR). We use an SNR
of 0 dB for the spherical geometry and an SNR of 20 dB for
the realistic geometry. BSPs are not filtered.

2.3. Inverse calculations

For solving the inverse problem, we assume perfect
knowledge of A and thus neglect errors due to imperfect
geometries and conductivities. The epi-endo projection
from [2] is applied for both geometries to resolve ambigu-
ities between sources on the epi- and endocardial surfaces
by reducing the source space to effectively one layer.

2.3.1. New temporal regularization

The regularization method by Messnarz et. al. [5] re-
duces the solution space by restricting TMVs to be non-
decreasing over time. It works well, if for every node
only one depolarization and ideally only the subsequent
plateau phase lies within the time window to be recon-
structed. However, it cannot be used to simultaneously re-
construct multiple successive beats or even irregular activ-
ity arising during arrhythmias. In order to overcome this
problem, we suggest to slightly loosen the restriction of
non-decreasing TMV's by imposing a small negative lower
bound on the temporal derivative instead. Additionally, we
add a zero-order constraint that pulls TMVs to their lower
bound. From a physiological view, this can be seen as a
force to bring the system back to its resting state. The reg-
ularized least-squares problem can be written as follows:

x(t) = arg min{ | Ax(t) = b(t)|}
FALX()3 + nllx() = Vienll3 } (1)
st Vinax = x(t) > Vipin
X(t 4+ 1) = X() = s

L is an approximation of the surface Laplacian operator.
Viin and V.« are lower and upper bounds of the TMV,
respectively and sy, is a lower bound of the TMV slope.
This quadratic problem with linear constraints is solved si-
multaneously for 200 consecutive time steps a At = 2ms.
We used the freely available software package CVX [6]
in combination with MOSEK’s conic interior point opti-
mizer. The focal activity for the spherical geometry com-
prised only 400 ms and could thus be solved at once. The
irregular activity for the realistic atrial geometry however
spans 4s. Therefore we split the whole time span in 20
segments a 200 time steps with an overlap of 50 %. The
solution was then joined together from the 100 central time
steps of each segment.

Three different configurations of (1), shown in Table 1,
are evaluated with the spherical geometry: temporal slow-
decreasing (TSD), TSD without Laplacian and temporal
non-decreasing (TND), which corresponds to Messnarz’s
method. For the realistic atrial geometry, only TSD is used.

Table 1. Regularization configurations for (1).

A n Vmin Vmax Smin/At
(mV) (mV) (mV/ms)
TSD £0 | 20 | =80 | oo 0.5
(default)
TSD w/o 0 %0 | =80 00 —0.5
Laplacian
TND £0] 0 | —80| O 0
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Applying an a posteriori parameter choice method like
the L-curve method requires to compute solutions for
many different parameter values. As solving problem (1)
is computationally very expensive, we manually tuned the
regularization parameters in steps of whole decades until a
visually meaningful solution was obtained.

2.3.2. Tikhonov regularization

Reconstructions using the new method are compared
with a Tikhonov regularization (Tikh) using zero- and
second-order terms [7]:

X = argmin { | AX = BJ[} + A[LX|[} + 1l|X |} |

B and X contain all time steps along the column dimen-
sion. As Tikhonov regularization is applied to all time
steps simultaneously, the regularization parameters A and
n are constant over time. For fibrillatory activity, it was
found that constant parameters do not impair the solution
quality compared to instantaneous ones [2]. In this work,
the optimal Tikhonov parameters were obtained by maxi-
mizing the temporal mean of spatial TMV correlation with
the ground truth using downhill simplex optimization.

2.4. Post-processing and metrics

Similarity between true and reconstructed TMVs is
measured using the Pearson correlation coefficient (CC) in
two versions: The temporal CC is computed separately for
each node using all time steps while the spatial CC treats
nodes and time steps the opposite way. To quantify similar-
ity of high frequency components of spatial TMV distribu-
tions, we calculate the spatial CC for the gradient norm of
TMVs as well. Local activation times (LAT) are extracted
and compared as described in [2]. In short, the peaks of a
spatio-temporal derivative signal [8] are detected and ab-
solute errors between only true positive detections are cal-
culated together with the false negative rate (FNR) and the
false positive rate (FPR).

3. Results

3.1. Spherical geometry

Results for the configurations given in Table 1 and for
Tikhonov regularization are depicted in Fig. 2. It can be
seen that TSD without Laplacian (B) is able to recover
the steep depolarization gradient in both space and time.
Tikh with optimal parameters (E) led to spatially strongly
smoothed TMVs and a less steep temporal upstroke. TSD
with a Laplacian term weighted by the same A as for Tikh
led to a less severe smoothing in space and largely retained
temporal steepness. LAT errors were best for TND and

second best for TSD. Therefore we decided to use TSD for
the following atrial fibrillation reconstructions.
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Figure 2. Comparison of reconstructions for the spherical
geometry. (A) Ground truth. (B) TSD without Laplacian.
(C) TSD. (D) TND. (E) Tikh. Left: TMV time courses at
the 10 evaluation nodes marked in Fig. 1 (the truth is added
in each graph). Right: Spatial TMV patterns at 50 ms.

3.2. Realistic atrial geometry

Fig. 3 shows that TSD is also able to recover spatial
details for the atrial fibrillation case that are lost with Tikh.

True TSD Tikh

Normalized TMV (SD): -2

Figure 3. TMV patterns for two time steps 30 ms apart.
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This is also reflected by the metrics in Fig. 4. Although the
spatial CC of TMVs is smaller for TSD than for Tikh that
was parameterized to maximize this measure, the spatial
CC of the TMV gradient norm is markedly larger for TSD.
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Figure 4. Metrics for atrial reconstructions.
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Figure 5. Time courses of reconstructed (red) and true
(blue) TMVs for the three atrial evaluation nodes marked
in Fig. 1. (A) RA lateral wall. (B) RA appendage. (C) LA
posterior wall. The first diagram in each group shows the
results for TSD and the second for Tikh. Circles indicate
regions, where Tikhonov led to a flattened time course.

The time courses in Fig. 5 reveal that TSD is able to
reconstruct the sharp depolarization edges even in cases,
where Tikhonov led to flattened TM Vs (encircled regions).

4. Discussion and conclusion

The good correspondence between time courses recon-
structed with TSD and true time courses for atrial fibrilla-
tion, especially during repolarisation, might in part be at-
tributed to the triangular shape of action potentials. Exper-
iments with the spherical geometry and the Courtemanche
cell model showed that the linear decay does not necessar-
ily correspond to true repolarization. A way to efficiently
determine the optimal regularization parameters for TSD
still has to be developed. In conlusion, the new temporal
regularization forcing TM Vs to decrease slowly can be ap-
plied to irregular cardiac activity and helps to recover spa-
tial as well as temporal details in inverse reconstructions.
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