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Abstract 

The identification and localization of premature 
ventricle contractions (PVC) can be a lengthy procedure. 
In each treatment, a great deal of time is spent in the 
precise localization of the origin of the cardiac 
arrhythmia.  

This work investigates the acceleration of the PVC 
detection process, using standard 12-lead ECG data as 
input and localizes PVC on the right ventricular (RV) or 
left ventricular (LV). The proposed neural network (NN) is 
a shallow NN which consists of only one hidden layer with 
multiple hidden units. Three data sets consisting of a total 
of 328 resting ECG samples are used to train and evaluate 
the NN. Multiple iteration tests with different training sets 
have been done to identify the most promising 
configuration. The training cohorts differ in the 
distribution of data with PVC (cohort 1 ratio 1:1, cohort 2 
ratio 25:4; NO PVC:PVC). 

High sensitivity and specificity values have been 
reached in NNs with uniformly distributed training data 
providing a sufficient performance, which might be 
comparable to an expert. 

 
 

1. Introduction 

Premature ventricular conduction (PVC) occur in a 
large part of the population and are harmless to the healthy 
heart. 1-2% of patients who have had a heart attack can 
develop ventricular cardiac arrhythmias, which can have 
life-threatening consequences. It can be treated by 
localization and ablation of the diseased tissue. The exact 
localization of the cardiac arrhythmia’s origin can be a 
very time-consuming process, which, according to 
experience, can take two to twelve hours. Therefore, an 
automatic process should be developed to detect and 
localize the arrhythmogenic zone. This would speed up the 
diagnosis and keep the stress phase for the patient as short 
as possible. Moreover, it would also reduce treatment 

costs.  
There is a trend towards approaches that are being made 

to automatize the ECG analysis such as arrhythmia 
detection in ECGs by using complex algorithms [1 – 11]. 
In addition, several algorithms are being developed in 
order to discover more detailed clinical pictures and to 
identify more specific arrhythmias, such as the VIVO 
method [12,13]. First results have been published which 
demonstrate the accuracy of PVC localization algorithms 
by comparing them against experts [14].  

This work concentrates on developing a shallow neural 
network (NN), which can identify PVCs and match their 
origin to the LV or RV. The NN will be able to read 
standard 12-lead ECGs as well as detect them on PVC and 
respond with the corresponding ventricle side. 

 
2. Materials and methods 

2.1. Neural network 

The NN was developed in MATLAB (R2016b, 
Mathworks, Natick, USA), which has a toolbox especially 
for developing and creating NNs. This toolbox provided an 
easy interface to build up the NN by identifying the input 
and the desired output. This work aimed to create a simple 
solution. Thus, a shallow NN with only one hidden layer 
was used. 

The input for the NN are ECG data. On the one hand 
standard 12-lead resting ECGs are used, on the other hand 
the independent 8-lead resting ECGs. Due to the simplicity 
of the shallow NN, the input is static. Therefore, each data 
point from each lead is simultaneously given as an input to 
the NN. In order to assure that all ECG data are consistent 
in their length and form, the NN takes only samples of 10 
seconds as input. Consequently, the NN has, depending on 
the number of leads, 120’000 input units (12-leads) or 
80’000 input units (8-leads). This number is the equivalent 
to the number of leads multiplied by the number of seconds 
and sampling frequency.  

The output is divided into three sections: PVC on the 

Computing in Cardiology 2018; Vol 45 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2018.327



RV, PVC on the LV and NO PVC. These are the three main 
categories in this work. The NN does not localize the PVC 
exactly, but rather indicates a probability where the 
arrhythmia originates from. 

 
2.2.  Data and preparation 

This work uses standard 12-lead resting ECGs of a total 
of 328 patients with and without PVC. Each ECG sample 
is recorded with a sampling frequency of 1kHz. The ECG 
data are gained from three different clinical data sets. The 
VESRamin data [14] set consists of 55 resting ECGs with 
PVC. The second data set, the CEBRiS data set, consists 
of 255 stress ECGs without PVC. The NN should only use 
resting ECGs, which is why only the first minute of each 
stress ECG sample was extruded. The last data set is the 
ALVALE data set which consists of 18 resting ECGs. The 
VESRamin and CEBRiS data sets are used as the 
derivation cohort and the ALVALE as the validation 
cohort. The gold standard derives from a visual inspection. 

The NN takes static data as input. Consequently, the 
data have to be prepared to fit into the NN. Each ECG file 
has to be split into multiple samples of 10 seconds each. 
The information from the ECG is stored in a matrix after 
reading it into MATLAB with the dimensions 12 x 
(seconds times sampling frequency). Therefore, each file 
is divided into many 12 x 10,000 matrices, depending on 
their length. This resulted in a higher number of samples 
for the training and validation of the NN. The final number 
of samples in the VESRamin data set was 466, in the 
CEBRiS 970 and ALVALE 579. The distribution of the 
data samples with PVC incident is not 0.5 to 0.5, except 
the VESRamin data set, which has an approximately even 
distribution of data samples with PVC and without PVC. 
The CEBRiS data set has no PVC occurrence in any 
sample. The independent 8-lead ECGs are generated by 
deleting the leads III, aVR, aVL and aVF from the matrix. 

In a final step each matrix has to be transformed into a 
vector. This was handled by ranking each column from the 
matrix after the other. In the end each sample was a column 
vector with the dimension 120’000 (12-leads) or 80’000 
(8-leads).  

 
2.3. Iteration tests and training NN 

A shallow NN consists of one hidden layer. However, 
the number of units can be changed to improve 
performance and output. Therefore, multiple iteration tests 
with different hidden units (HU) have been performed and 
compared. The comparison was made by calculating the 
sensitivity and specificity of the iterations. Four 
configurations with different data sets were used to find out 
any differences in the output result. The VESRamin data 
set was used twice for training, once with the 12-leads and 
once with the 8-leads ECG. The other two iteration tests 

were done with a combination of the VESRamin and 
CEBRiS data set (12- leads and 8-leads). The two data sets 
differ in the number of samples and PVC distribution. The 
VESRamin set consists of 466 samples with an even 
distribution. The combination has 1436 samples, but the 
distribution ratio is 25:4 (NO PVC: PVC).  
Before the NN can deliver correct results, it has to be 
trained with the corresponding data sets. However, not the 
entire data set is used for the training. 60% of the data set 
is used for training, 30% for validation and 10% for the test 
phase. The data gets randomly distributed to the various 
sets of the training.  The training phase is used to adjust the 
weights and bias of the NN. The validation phase checks 
the error rate of the NN to get the best performance. In the 
test phase no more values are changed, but data is passed 
through without any comparison to the gold standard. This 
method is used to check whether the NN has learned 
anything at all.  

A hundred iterations were made for each configuration 
set-up. The iterations differ in the number of HUs. The 
starting number of HUs was five with an increase of five 
after each number with a resulting final number of 100. For 
each HU number five iterations have been made. The 
repeated use of the same number of HUs is done because 
the data is randomly distributed among the different sets. 
This approach makes it possible to identify whether the 
distribution of the data has an effect on the training.  

 
3. Results 

The number of HUs has a big influence on the 
performance. Since it cannot be calculated, it has to be 
determined with tests. For this reason, several iterations 
were performed. In order to filter out the best value, the 
sensitivity and specificity were calculated for each main 
category.  

The results of the iteration tests are depicted in figure 1. 
The NNs trained with a uniformly distributed data set have 
median sensitivity values of 69.3% (12-lead) and 71.7% 
(8-lead). Their median specificity values are 88% (12-lead) 
and 90.6% (8-lead). In comparison, NN without uniform 
distribution provided sensitivity values of 7.1% (12-lead) 
and 7% (8-lead) and have median specificity values of 
98.9% (12- and 8-lead). 

The sensitivity and specificity values regarding each 
category (PVC on RV, PVC on LV) show significant 
difference. In the uniformly distributed data sets the 
median sensitivity values for finding PVC on the RV is 
73.3% (12-lead) and 75.8% (8-lead), while the median 
specificity is 84.7 (12-lead) and 88.7% (8-lead). On the LV 
sensitivity values are 22.2% (12-lead) and 34.9% (8-lead), 
whereas specificity values are 98.5% (12-lead) and 98.5% 
(8-lead). The combination set-up shows sensitivity of 7.9% 
(12-lead) and 6.7% (8-lead) for PVC detection on the RV 
as well as specificity values of 99.1% (12-lead) and 98.9%  
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(8-lead). PVC detection on the LV resulted in sensitivity 
values of 3.2% (12-lead) and 1.6% (8-lead), and specificity 
values of 99.9% (12-lead) and 98.5% (8-lead). 

The best performance regarding sensitivity and 
specificity was achieved with a HU number of 45 
(VESRamin 12-lead), 100 (VESRamin, 8-lead), 75 
(combination, 12-lead) and 85 (combination, 8-lead). 

 
4. Discussion 

 There are two major points that have to be analyzed more 
in-depth. First, an analysis had to be conducted regarding 
the difference it makes when training the NN with two 

different training cohorts. Although the combination 
shows more data samples, the results are significantly 
worse compared to the VESRamin data set on its own. The 
sensitivity decreased significantly, but the specificity is 
very compact, close to 100%. The reason for the large 
difference in values is the relatively smaller distribution of 
samples with and without PVC. In the VESRamin data set 
the distribution is almost 1:1, but in the combination only 
one in six is a case with PVC. 

It is expected that there is hardly any difference between 
the results of the 12-leads and the 8-leads. When 
comparing the two methods, however, small differences 
can be seen. If the two box plots are placed next to each 
other, the shapes and distributions are similar, but on closer 
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Figure 1. Boxplots of all the iteration tests A) VESRamin 12-lead B) Combination set 12-lead C) VESRamin 8-lead  
D) Combination set 8-lead 
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inspection it becomes apparent that the values shift by a 
few percent. From a purely mathematical point of view, the 
standard 12-leads can be calculated from the independent 
8-leads. For this reason, the results should look identical. 
Since the single results depend on the arbitrary division of 
the data and the HU numbers, it is not inconceivable that 
differences can occur. Basically, they are small differences 
that could possibly be reduced with a higher number of 
iterations. Statistically speaking, the standard deviation 
would be reduced and therefore also the error between the 
two methods. 

The results show a reasonably high sensitivity and 
specificity on the VESRamin data set. However, it should 
be analyzed if the NN is possibly overfitted. For this, the 
sensitivity and specificity were calculated for each phase 
of the training. In Table 1. can be seen how the sensitivity 
values decrease from the training to the test phase. 
Specificity, however, remains consistent. This pattern in 
the sensitivity values indicates overfitting of the NN.  

 
Table 1. Sensitivity and Specificity values of a single 
iteration test in the VESRamin 12-lead training set. 

 
 Tot(%) Trai(%) Val(%) Test(%) 
SEN RV  79.4 90.8 69.4 44.4 
SPE RV 93.4 95.6 87.9t 96.6 
SEN LV 63.5 82.1 38.1 0 
SPE LV 96 97.1 94.1 95.5 
SEN PVC 81.6 92.7 72.9 38.1 
SPE PVC 91.2 93.7 87.1 88.5 
 

5. Conclusion 

It is a desirable goal to develop an algorithm to identify and 
locate PVC faster and more efficiently. This work showed 
a simple solution generated with the MATLAB toolbox. It 
is possible to locate PVC with the help of a shallow NN. 
The general sensitivity and specificity values could yield 
results with a similar accuracy as an expert, with the 
advantage that the NN delivers a constant performance 
[14].  
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