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Abstract

Spline-based methods have been applied to inverse
problems in science and engineering. Those studies have
shown that if proper spline bases can be chosen, prob-
lem complexity can be significantly reduced while increas-
ing estimation accuracy and robustness against the dis-
turbances. We proposed non-parametric regression spline
based approach for the solution of inverse ECG problem
and assessed its robustness against measurement noise,
variation of the heart size from its true size, and their com-
bination. Our model defines the spline functions in terms of
spatial coordinate variables based on the given epicardial
surface geometry. The results demonstrated that, proposed
method performed better than the Tikhonov regularization
and can be feasible alternative for the inverse ECG prob-
lem.

1. Introduction

Inverse problem of ECG can be described as inferring
cardiac electrical activity from the given body surface po-
tential measurements (BSPM) and mathematical model
that characterizes the relationship between measurements
and sources. Here, the mathematical model is constructed
by solving the forward ECG problem which mainly depen-
dent on size, location and electrical properties of the heart,
torso and other internal structures between the heart and
torso surfaces. However, due to dispersing effect of the
torso and the discretization process, this inverse problem
has an ill-posed nature. The term ill-posed inverse problem
often stands for problems that have either no solution or
many solutions in the desired class, or alternatively that the
solution is unstable. But in common use, the term ill-posed
is related to unstable problems [1]. From the perspective
of inverse ECG problem, instability means that relatively
small changes in the body surface measurements are abun-
dantly amplified in the solution. Consequently, problem
needs to be appropriately constrained by introducing prior
information about the solution in order to obtain physio-

logically meaningful outcomes.

Spline-based methods have been applied to ill-posed in-
verse problems in various fields of science and engineer-
ing including electrocardiography [2, 3]. The main advan-
tages of the spline-based methods are the parametrization
of the problem in terms of a small number of unknowns
and changing the approximation in local regions without
affecting remote portions of the curve or the surface that
we wish to approximate. These properties improve the ro-
bustness of the inversion and increase the accuracy of the
reconstruction [4]. In this context, the constructed model
for the unknown parameter of the inverse problem is the
projection of data onto the space spanned by the selected
spline basis in the model. The aforementioned applica-
tions of splines in inverse problems use parametric meth-
ods. In other words, assumptions on functional relation-
ship between dependent and independent variables must
be specified in advance. Typical approach to choose these
parameters is quite arbitrary by using trial-and-error [5].

The method that we considered in this study is the con-
tinuation of our previous work [6] and it is simplified by
reducing number of constraints. Proposed approach solves
the inverse ECG problem by using non-parametric regres-
sion technique. Different than the parametric approaches,
non-parametric spline-based method allowed us to select
proper splines for the representation of unknown epicardial
potential distribution step by step in an algorithmic way
by using available measurements and supplied epicardial
surface geometry. As a non-parametric method we modi-
fied and utilized Multivariate Adaptive Regression Splines
(MARS) [7] for the solution of the inverse electrocardio-
graphy problem considering the temporal and spatial evo-
lution of the epicardial potentials. Our model defines the
spline functions in terms of spatial parameters based on
the given epicardial surface geometry, but the selection of
those splines for the model is dependent on the defined
lack-of-fit criteria. Thus, any change in geometry or mea-
surements can alter the constructed model for the purpose
of obtaining an accurate estimate. Consequently, the con-
structed epicardial potential distribution model may pos-
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sess different functional relationships at each time instant
in order to obtain a model that yields minimum lack-of-fit
error.

In this study, we carried out simulations with a combi-
nation of measurement noise and geometry error (the size
of the heart) and evaluated their effects on the proposed
MARS-based method. Estimation results were compared
with the zero-order Tikhonov regularization solutions.

1.1. MARS

Multivariate Adaptive Regression Splines (MARS) pro-
posed by Friedman [7], is a non-parametric regression pro-
cedure. Different than the parametric approaches, non-
parametric methods do not make any specific assumption
about the structure of the regression function and tries to
estimate the form of the relationship between dependent
and independent variables [8].

MARS is an adaptive procedure because the selection
of the basis functions (BFs) is data-based and specific to
the given problem at hand. A special advantage of MARS
lies in its ability to estimate the contributions of the ba-
sis functions so that both the additive and the interactive
effects of the predictors are allowed to determine the re-
sponse variable. MARS uses expansions in piecewise lin-
ear one-dimensional basis functions of the form (v − τ)+
and (τ − v)+, where `̀ (·)+ ´́ means the positive part:

(v − τ)+ =

{
v − τ, if v > τ,
0, otherwise, (1)

(τ − v)+ =

{
τ − v, if v < τ,
0, otherwise. (2)

The relation between the input and the response in the
general model is expressed as:

T = f(V) + ε, (3)

where T is a response variable, V = (V1,V2, . . . ,Vp)
T

is a vector of predictors and ε is the additive stochas-
tic error term in the observation with zero mean and fi-
nite variance. MARS builds reflected pairs for each in-
put Vj (j = 1, 2, . . . , p) with p-dimensional knots τi =
(τi1, τi2, . . . , τip)

T at, or just nearby, each input data
vectors ṽi = (ṽi1, ṽi2, . . . , ṽip)

T of that input (i =
1, 2, . . . , N). Then, the collection of BFs is:

ϕ := {(Vj − τ)+, (τ − Vj)+ | τ ∈ {ṽ1j , ṽ2j , . . . , ṽNj} ,
j ∈ {1, 2, . . . , p}}.

(4)

The fundamental idea of MARS is to use products and,
then, the combination of the linear truncated basis func-
tions to approximate the model. Thus, the functions of

MARS consist of single spline functions or the product of
two or more of the truncated power functions to allow for
the interactions.

2. Reformulation of the Problem

Proposed method in this study model the potential dis-
tribution on the epicardial surface, based on MARS using
the heart geometry and the body surface potential values.

We treat and model the potential distribution on the
epicardial surface as a function f(p) defined over a 3-
dimensional epicardial surface. Consequently, the epicar-
dial potential vector x = [x1,x2, . . . ,xN]T can be ex-
pressed as a collection of function values f(p) at prede-
fined coordinates pi (i = 1, 2, ..., N):

xi = f(pi) (pi ∈ Ω). (5)

Here, Ω ∈ R3 denotes the 3-dimensional epicardial sur-
face and p stands for coordinate vector of any point on this
surface. We then write the linear inverse ECG problem as
follows:

y = Ax + n. (6)

If we treat yi (i = 1, 2, . . . ,M) as the responses, and
pj (j = 1, 2, . . . , N) as the predictor values, then MARS
method can be applied to estimate the function f(p). Thus,
the MARS estimate of the unknown function f̂(p) can be
written in the following form:

f̂(p) = θ0 +

L∑
l=1

θlψl(p). (7)

Here, L is the number of basis functions in the model,
ψl (l = 1, 2, . . . , L) are BFs from ϕ or products of two
or more such functions, ψl is taken from a set of L linearly
independent basis elements, and θl are the unknown coeffi-
cients for the lth basis function (l = 1, 2, . . . , L) or for the
constant 1 (l = 0). In light of the equations given above,
the ith torso measurement yi can be written as:

yi =

N∑
j=1

aij f̂(pj) + ni. (8)

If we substitute Eqn. (7) into Eqn. (8):

yi =

N∑
j=1

aij

(
θ0 +

L∑
l=1

θlψl(pj)

)
+ ni. (9)

Then the Eqn. (6) can be expressed based on spline func-
tions and corresponding coefficients:

y = AΨθ + n. (10)

Here, Ψ is a matrix composed by spline bases, which
are constructed based on epicardial surface geometry, θ
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represents a corresponding coefficient vector, A is the for-
ward transfer matrix, y is the torso measurements and n
is measurement noise. In other words, the Ψθ term is the
approximation of the unknown epicardial potential vector.

MARS is a regression procedure to explore the relation-
ships between dependent and independent variables. It as-
sumes there exist no transformation between the measure-
ments and the function we wish to approximate. Thus,
MARS algorithm needs to be modified to solve the ill-
posed inverse problem defined in Eqn. (10). Consequently,
we replaced the standard MARS algorithm lack-of-fit cri-
teria with the following optimization problem:

minimize
Ψθ

‖y −AΨθ‖22 + λ‖Ψθ − x̂k−1‖22. (11)

Here, λ and x̂k−1 are the regularization parameter and es-
timated epicardial potential vector for the previous time
instant, respectively. The initial state x̂0 was taken as the
Tikhonov solution at time instant k = 1.

2.1. Results and Conclusion

The effects of modeling inaccuracies and measurement
noise are important for the success of applied regulariza-
tion techniques. Modeling errors originate from several
parameters or assumptions that are used in the solution
of the forward problem. Variations in the conductivities
of torso tissues, segmentation errors of medical images,
discretization errors, movement of the heart, geometry pa-
rameters such as size, location of the heart and electrode
positions on the torso. Common sources of measurements
errors are faulty calibration or unpredictable variations in
the measuring instruments because of the environmental
conditions. These disturbances degrade the estimation ac-
curacy of the regularization methods by generating data
different from the exact model parameters and potential
values. Therefore, it is important to test robustness of reg-
ularization methods against the modeling errors and mea-
surement noise.

In this part of our study, we carried out simulations with
combination of geometry error and measurement noise to
evaluate the performance of proposed method. In our ex-
periments we only considered the variation of the heart size
as a modeling error. The noise free body surface potentials
were simulated using forward transfer matrix correspond-
ing to exact heart-torso geometry and then 10, 20 and 30
dB SNR Gaussian noise were to added these potential val-
ues. We utilized 2 recordings with 2 different stimulation
sites on the epicardial surface. The results were compared
with classical zero-order Tikhonov solutions.

Estimation performances for the reconstructed epicar-
dial potential distributions in terms of average CC values
were presented at the Tables 1 and 2 for various noise lev-
els and scaled heart sizes. MARS-based method produced

Table 1. Estimation mean correlations for MARS-based
method for different heart sizes and measurement noise
levels.

Measurement Noise (dB SNR)
Scale factor 10 20 30

0.8 0.73± 0.19 0.77± 0.15 0.77± 0.11
1.0 0.74± 0.18 0.79± 0.15 0.83± 0.12
1.2 0.72± 0.20 0.76± 0.13 0.77± 0.12

Table 2. Estimation mean correlations for Tikhonov
method for different heart sizes and measurement noise
levels.

Measurement Noise (dB SNR)
Scale factor 10 20 30

0.8 0.59± 0.21 0.65± 0.18 0.67± 0.15
1.0 0.58± 0.23 0.66± 0.20 0.72± 0.19
1.2 0.58± 0.21 0.64± 0.18 0.67± 0.17

higher mean CC values compared to Tikhonov regulariza-
tion in all experiments. When noise level changed from 30
dB to 10 dB SNR, proposed method and Tikhonov regu-
larization performances degraded approximately 11% and
19% respectively in terms of mean CC values if no geo-
metric error was imposed into the problem. On the other
hand, when the modeling error imposed to the model by
changing size of the heart, estimation performances of the
MARS-based and Tikhonov methods decreased approxi-
mately 5% and 12%. In addition, if size of the heart were
scaled by factors 0.8 and 1.2 both methods estimation ac-
curacies degraded about 7% when measurement noise lev-
els were 30 dB SNR. However, according the results the
effects of measurement noise dominates estimation quality
while noise SNR is increasing.

Table 3. Average activation time Pearson correlation co-
efficients of MARS-based method for different heart sizes
and measurement noise levels.

Measurement Noise (dB SNR)
Scale factor 10 20 30

0.8 0.89 0.93 0.92
1.0 0.90 0.95 0.93
1.2 0.90 0.91 0.91

Activation times provide information about the propaga-
tion pattern of the reconstructed epicardial potentials. This
information could be useful for calculating propagation ve-
locity in different parts of the heart surface and determin-
ing the stimulation site. In order to evaluate the estimated
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Table 4. Average activation time Pearson correlation co-
efficients of Tikhonov method for different heart sizes and
measurement noise levels.

Measurement Noise (dB SNR)
Scale factor 10 20 30

0.8 0.60 0.89 0.92
1.0 0.82 0.88 0.93
1.2 0.61 0.75 0.84

activation times, we calculated the average Pearson CC
values corresponding to each method given in the Tables
3 and 4. Estimated activation times were very close to true
ones and obtained high CC values, ≥ 0.90 on the average,
for the proposed MARS-based method in all heart scales
and measurement noise levels. On the other hand, com-
bination of heart size error and measurement noise caused
significant degradation on the Tikhonov regularization out-
puts.

2.2. Discussions and Future Works

In this study we examined the effects of variation in size
of the heart from its true size combined with measurement
noise on the proposed adaptive spline-based solution tech-
nique. Proposed method yielded more accurate estima-
tions and stayed robust against the combination of geom-
etry error and measurement noise compared to Tikhonov
regularization. Our study is continuing using larger set of
experimental data to comprehensively understand and in-
vestigate the effects of various disturbances.
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