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Abstract

Our purpose is to assess different methods for
choosing the regularization parameter combined with the
Method of Fundamental Solutions (MFS) for solving the
electrocardiography imaging (ECGi) inverse problem but
also to assess their sensitivity to the nature of recorded
signals.  Results are provided using left, right and
bi-ventricular pacing experiments performed in an ex-
vivo pig heart. In the experiment, some electrodes
are too close to the pericardium so that they seem
to be measuring monophasic action potential signals
(MAPs) rather then extracellular epicardial potential. The
electrodes suspected to measure MAPs are identified by
thresholding the epicardial potential in the plateau phase.
This leads to compare the computed epicardial potential
to measurement results with and without considering these
electrodes measurements. Removing the MAPs electrodes
improves the quality of the RE and CC by at least 5% .
Results show that the Generalized Cross Validation (GCV)
approach provides the best results in the three pacing
cases.

1. Introduction

The electrocardiographic imaging (ECGi) is a non-
invasive technique providing the electrical potential on
the epicardial surface from measures realized on the
thoracic surface using a set of electrodes. It’s based
on a mathematical model which describes the heart-torso
electrical activity. This is called an inverse problem
and is known to be ill-posed resulting from different
factors such as the uncertainty of the mathematical
model. In fact, modeling the electrical activity by a
laplacian equation and considering the heart-torso domain
as homogeneous generate modeling errors. In addition,
experimental protocols yields measurement errors and
geometries’ innaccuracy especially in determining the
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heart position [1,2]. These conditions can generate large
and even discontinuous errors in the inverse solution.
Regularization procedures are then used to stabilize the
solution and ensure its uniqueness and its dependence
on the data. To date, many regularization approaches
are suggested. In this work, we depicted the zero-
order Tikhonov regularization, presumed to be the most
simple and appropriate non-a-priori regularization method
to solve the inverse problem of electrocardiography [3].
One of the issues of the regularization methods is the
choice of the regularization parameter. Actually, few
works have compared the different developed approaches
[4-6]. In this study, we compare different regularization
parameter choice approaches combined with the Method
of Fundamental Solutions using an experimental set of
data containing monophasic action potential-like signals
presumed to be ischemic ones in order to assess their
effects on the reconstruction process.

2. Methods

The regularization approach most commonly used
to solve the ECGi inverse problem is the Tikhonov
regularization defined by the following objective function:

mwin{||A:c—b||2+)\2||Lm||2}, (D

where A is the transfer matrix defined by MFS, b is the
vector illustrating the Dirichlet and Neumann boundary
conditions and x is a vector of weighting coefficients
used to compute the epicardial potential in any point of
the torso domain. The regularization operator L. can be
the identity matrix for zero-order Tikhonov or a gradient
operator for first or second order regularization. The A is
the regularization parameter and ||.|| is the L2-norm. Here,
L is the identity matrix.

To date, the use of the Singular Value Decomposition
(SVD) of A is the best way to assess the different
regularization parameter choice methods. Following [7],
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we decompose A as follows :
A=UxvT = Zuioﬂ)?, 2)
i=1

where U is a m X n orthonormal matrix containing the
left singular vectors of A,V is a n x n orthonormal matrix
containing the right singular vectors of A and ¥ is a
n x n diagonal matrix with the singular values of A on
its diagonal. Note that u;, v; and o; are respectively, the
columns of U, V and the singular values of A arranged in a
decreasing order. The solution of the regularized problem
is expressed, using the SVD, by:

Ab= (ATA 4N ATy = T
T = =( + ) _;U?Jrv Uivi.
(3

As shown in [8], the two terms of (1) can be written as :
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where ||r) ||? = ||[Azss — b||? is the residual of the least
squares solution z 1,55 and j; = ul b.

2.1. Determination of the Regularization
Parameter

2.1.1. U-Curve

The U-Curve is a plot of the sum of the inverse of ()
and the inverse of the corresponding residual p()\) in terms
of A on a log-log scale:

1 1
Ucurve(\) = —— + ——. (6)
SURNTOVRRTOY
The U-Curve method was first proposed by [9]. It has been
shown that Ucurve(X) reaches a local minimum A, , the
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optimum value of ), in the interval {6,%,/ 3761 }, where

61 and J,, are respectively the biggest and the smallest
singular values.

2.1.2. ADPC

ADPC is a regularization parameter choice method
based on the Discrete Picard Condition (DPC) [10]. The
idea is to look for the last index i before the DPC is
no longer satisfied [11]. This means before o; becomes
smaller than |ul'b;| in a log-log scale where t is time.

For the sake of simplification, log(|ul'b;|) is fitted by a
polynomial p;(i,log(|ulb|)) of degree 5 to 7. Then, for
each p;, we seek for oy = o; such that log(o;) > py,
for all 7 < j. The ADPC regularization parameter is then
A = median(ay).

2.1.3. CRESO

According to the Composite REsidual and Smoothing
Operator (CRESO) method [12], the optimal A corresponds
to the first local maximum of the derivative of the
difference between the constraint term and the residual
term with respect to \2.

_ d 2
) = g5 (%) — pN). ™
In terms of SVD, this can be written as [8]:
_ N oiHi(of = 3))
N =3 G e ®)
2.14. GCV

The idea behind The Generalized-Cross Validation
(GCV) [13] is that the optimum of the regularization
parameter provides the best prediction of a measurement
as a function of the others. It provides the optimal value of
A by minimizing the function :

G(\) = P . )
[Trace(I — AA*)]
In terms of SVD, G() is expressed by :
no Ny
Zi:l (072 T A2)2 + ||71||2
G\ = . . (10)
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2.1.5. RGCV

In [14], the RGCV estimate is defined by the minimizer
of the following function:

RQA) = [y + (1 =71)ENIGO), (11)
where G(\) is given by (9) and £()) is defined as:

n

* o;
&(N) =Trace [(AA )2} = ——  (12)
2 sy
Here, 7 is called a robustness parameter, 7 € [0, 1].
The RGCV method is based on the average influence

LS ||Azy — Azl)2, where [|Azy — Al1|2 is a
measure of the influence of the i*” data point on the

regularized solution.
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2.2.  Ex-vivo experimental data and metrics

Experimental data were obtained using an ex-vivo pig
heart perfused in Langendorff mode suspended into a
human-shaped torso tank paced on the left and right
ventricular surfaces. Epicardial ventricular electrograms
were recorded using a 108-electrode sock, from which 93
were used, simultaneously with torso potentials from 128
electrodes embedded in the tank surface as it appears in
Figure 1. The tank mesh contains 1234 nodes and the
epicardium 649 nodes. More details about the ex-vivo
experimental protocol can be found in Bear et al [15].
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Figure 1. A : The heart-human shaped torso tank

model used for the experiments, B : The segmented pig
heart covered by the sock used for potential records, C :
Measured Epicardial potential map at a sample time of the
plateau phase. The surrounded zones are ischemic regions,
D : Measured MAP-like electrograms.

Preprocessing of the experimental data revealed the
existence of a few localized sites of ischemia produced
due to electrode pressure on the epicardium represented
in Figure 1C. This produced monophasic action potential-
like signals (MAPs). These electrodes are identified when
the potential is greater than a fixed threshold equal to
50% of the maximum signal magnitude in the plateau

phase, 250 ms after pacing as it’s illustrated in Figure 1D.
This choice is based on observations of the QT interval
in order to eliminate the ischemic signals. This leads
us to run two sets of comparisons, with all the working
electrodes (WE) and after removing the above threshold
electrodes (TE). According to the ex-vivo experimental
protocol, the sock doesn’t cover the whole surface of the
epicardium. So, a linear interpolation was applied to the
ex-vivo recordings with and without thresholding to obtain
respectively potential recordings (TE) and (WE) for all the
mesh nodes.

To assess the performance of the different methods, we
use the standard metrics : the relative error (RE) and the
correlation coefficient (CC).

3. Results

Table 1 presents the mean RE and CC of the
reconstructed epicardial potentials using the different
regularization parameter choice methods combined with
MES for the 3 experiences : RV, LV and BiV. Also, we
compare, in this table, the results obtained using the non-
thresholded signals (WE) versus those computed with the
thresholded signals (TE). Results show that thresholding
improves the RE from 0.92 to 0.80 for RV, from 0.78
to 0.72 for LV and from 0.99 to 0.72 for BiV, using
GCV. CC values are also improved. Regarding the
regularization parameter choice methods, we observe that
GCV outperforms the other methods.

Simulation
RVP LVP BivP

Method Data set RE CcC RE CcC RE cC
WE 093 032 084 061 1.00 040

CRESO —1g——08> 057 081 066 08I 066
Gev WE 092 031 078 067 099 034
TE 080 060 072 072 072 072

WE 093 032 086 061 1.00 040

RGCV TE 085 054 084 066 084 066
UCurve _ WE_ 094 033 098 06 1.02_ 040
ury TE 096 053 097 065 097 065
WE 092 031 082 062 098 0338

ADPC TE 082 056 078 067 078 067
Table 1. Means of RE and CC of the reconstructed

epicardial potentials using MFS combined with the
different regularization parameter choice methods for
thresholded data sets and non-thresholded ones.

Figure 2 shows a measured monophasic action
potential-like signal and the corresponding thresholded
one with the reconstructed version by MFS-GCV. We
observe that the thresholding affects the results essentially
during the plateau phase where it reduces the gap between
the reconstructed and the measured amplitudes.
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Figure 2. Measured (WE), thresholded (TE) and
reconstructed electrograms of the RV (A), LV (B) and BiV
(C) in the same ischemic-like point using MFS-GCV.

4. Discussion and conclusion

In this paper, we assessed 5 methods for choosing

the regularization parameter for a zero-order Tikhonov
regularization combined with MFS CRESO, GCV,
RGCYV, U-Curve and ADPC. Results show that all the
methods work well combined with MFS. However, GCV
outperforms all the other methods in terms of RE and CC
for the three cases : RV, LV and BiV.
Regarding the thresholding applied to the reference
potential measures, results seem to be better using the
thresholded epicardial potentials. Nevertheless, we can’t
decide on the impact of the monophasic action potential-
like signals on the quality of the results unless we have
experiments providing non ischemic potentials.
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