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Abstract

Machine learning (ML) methods have seen an explo-
sion in their development and application. They are in-
creasingly being used in many different fields with consid-
erable success. However, although the interest is grow-
ing,their impact in the field of electrocardiographic imag-
ing (ECGI) remains limited. One of the main reasons that
ML has yet to become more prevalent in ECGI is that the
published literature is scattered and there is no common
ground description and comparison of these methods in an
ML framework.

Here we address this limitation with a review of ECGI
methods from the perspective of ML. We will use proba-
bilistic modeling to provide a common ground framework
to compare different methods and well known approaches.
Finally, we will discuss which approaches have been used
to do inference on these models and which alternatives
could be utilized as the methods in ML become more ma-
ture.

1. Introduction

Electrocardiographic Imaging (ECGI) attempts to image
the electrical activity in the heart from the electrical record-
ings on the body surface and a model of their relationship.
This is a challenging problem due to the ill-posedness of
the inverse problem being solved [/1]] and, thus, all methods
have to introduce prior knowledge as assumptions about
the solution, the noise and/or the model to help stabilize
the inverse. A classical method to solve this problem and
the reference for most approaches is Tikhonov regulariza-

tion [2[], which solves

min [y — Az[|3 + A3 (D

where z is a vector of heart surface potentials at a chosen
set of nodes, y is a corresponding vector of body surface
potentials, and the matrix A encodes a solution to the for-
ward problem that relates x to y. For simplicity here we
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assume that are are only considering a single time sample
here.

The balance between the residual ||y — Ax||3 and the
regularization term A||x||3 —which enforces the assumed
prior knowledge— in is typical for inverse
solvers. Other regularization approaches modify the regu-
larization term, introduce hard constraints to the objective
function or project the solutions onto a “valid” set.

The field of Machine Learning (ML) has seen an explo-
sion in the number of publications and corresponding tech-
nical development and are increasingly being used in many
fields with considerable success. In particular, Bayesian
ML approaches allow us to model the data through the
dependence relationships between random variables (RVs)
and their probability distributions. These tools could help
researchers in ECGI to properly model their assumptions
about the problem and easily test them. However, although
the interest is growing, the impact of ML in the field re-
mains limited. One of the main reasons that ML has yet
to become more prevalent in ECGI is that the published
literature is scattered and there is no common ground de-
scription and comparison of these methods.

Here, we describe both classic and newer ECGI meth-
ods through the lens of ML. We use the parallel be-
tween classical optimization methods and Maximum-A-
Posteriori (MAP) inference to derive the assumed prob-
abilistic models in the ECGI methods. This framework
will elucidate the inherent modeling assumptions, allow
for comparison across methods, and easily incorporate dif-
ferent types of assumed prior knowledge. Finally, we will
provide a quick glance at some inference approaches that
can be applied to the models described

I'We have tried to include a representative and broad sample of pub-
lished methods but have by necessity (due to both space limitations and
our authorial limitations) omitted or missed some relevant methods; we
apologize to those investigators and encourage them to contact us with
any concerns.

ISSN: 2325-887X DOI: 10.22489/CinC.2018.348



2. Theoretical background

The probabilistic model describing the most basic ECGI
method is the following:

pla) = N(al0. ) o
plylz) = N (Azlo),

where N (-) is a Gaussian distribution and o and p are
known scalar variances. The objective function in
is then equivalent to doing inference on this model
with a maximum a posteriori (MAP) objective, with A =
2. This is a very simple probabilistic model as it only in-
cludes the observed data y and the latent variable x and
assumes known variances and forward matrix. However, it
is the building block from which we will develop the rest
of models we describe. We will do so by adding new as-
sumptions about the relevant RVs as well as introducing
assumed prior physiological knowledge about them.

3. Modeling Approaches

Even though the potentials on the heart have a strong
spatial structure, Tikhonov regularization does not assume
any spatial correlation across the heart. Exploiting this
characteristic has been the common theme of many new
ECGI methods in the literature. The simplest models are
the higher order versions of Tikhonov, which introduce a
fixed correlation structure between nearby nodes through
a regularization matrix R. In those models, the prior used
to describe the potential distribution is a multivariate Gaus-
sian with covariance matrix given by X = R_lﬂ Tikhonov
274 order uses the Laplacian operator of the heart geome-
try to encourage higher correlation between neighboring
nodes on the heart geometry [2,|3]. Changing the co-
variance matrix modifies the type of “ground truth” being
enforced. For example, some groups have modified the
Laplacian operator to enforce correlation between nodes
on both sides of the myocardial wall [4-6] or introduced
varying weights on the covariance matrix to favor more
uncertainty in nodes on the epicardium than on the endo-
cardium [7]]. The previous methods assume known covari-
ance matrices —i.e. regularization matrices— however,
these can also be learned from the data. The covariance pa-
rameters can be treated as RVs and thus be learned jointly
with the unknown heart potentials [[8,/9] or derived a priori
from simulations or ex-vivo recordings [10].

Spatial modeling is not limited only to employing dif-
ferent covariance matrices with a Gaussian distribution. It
is also possible to change the base probability distribution

2Note that many regularization matrices are not full rank. In those
cases, the corresponding prior distribution is degenerate and is ill-defined
for some dimensions. To provide stability, it is then necessary to increase
the rank, by introducing a small weight to the diagonal of the covariance
matrix to stabilize the results.

used. For example, it is possible to use the Laplace distri-
bution, which is equivalent to an L1 norm constraint of the
solution and used to favor the presence of a small num-
ber of large values. Total Variation uses this same dis-
tribution —with a covariance matrix equal to the inverse
gradient operator— to allow for a small number of large
gradients on the heart potentials [[11H15]. Other groups
have extended this idea to induce sparsity with generalized
Gaussian distributions —equivalent to the Lp norm in clas-
sical optimization [[16}/17].

The heart potentials also have a strong temporal struc-
ture that is often leveraged to add prior knowledge. The
simplest approach is to extend the dimensions of the latent
variable z to include time and define the covariance ma-
trix to introduce temporal structure. For example, stacking
the time instances on top of each other into a block vector
and employing a spatio-temporal covariance matrix with a
block diagonal form assumes independence between time
instances. Any non-zero entry outside of the main block
diagonal introduces correlation in time. For example, if
two regularization matrices R and 7'—in space and time—
are used, the inverse covariance has the spatial regular-
ization R repeated along the diagonal and the temporal
regularization 7" repeating in off-diagonal positions [|18].
Greensite and Huiskamp [19] introduced an optimal struc-
ture based on assumptions of separability of temporal and
spatial correlations; for a comparative study of three such
methods see [20]. However, the most common approach
to model temporal behavior is to use deterministic restric-
tions of the solution space. This is done via projection
of the data and solutions onto a feasible set [4}21+25]] or
through explicit constraints in the optimization [26]. These
temporal restrictions correspond to setting probability zero
to the unfeasible space and creating truncated probability
distributions.

An even more restrictive approach is to assume a spe-
cific temporal shape for the potentials. Activation-based
methods do this, solving for unknown activation times on
each node of the heart [27]]. This restriction can be refined
with more complex propagation models for the heart po-
tentials. These models are equivalent to Hidden Markov
probabilistic models, typically of order 1 [28]. The com-
plexity of the model can vary from a simple curve defining
the wave-front [29] to a full propagation models [[12].

The models described so far only introduce prior knowl-
edge about the heart potentials. It is possible, however, to
also characterize the uncertainty introduced by other pa-
rameters. For example, a set of parameters that is often
assumed fixed but that also introduces uncertainty is con-
tained in the forward solutions. Miss-specifications of the
geometry such as position of the heart or conductivities of
the organs introduce error into the forward model and thus
the inverse solutions. The literature addressing this prob-
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lem is still small, but there has been some work trying to
characterize the uncertainty introduced by these model er-
rors [30H32[] and, more recently to correct for those from
the data [[33-35].

Other parameters that can be further characterized as an
RV are those that describe properties of the physiologi-
cal propagation models. These models invariably depend
on underlying parameters, typically chosen from “healthy”
priors, post-mortem hearts or animal models. This RV can
be set a priori [36,|37]], learned outisde of the inverse so-
lution with discriminative methods or learned jointly with
the heart potentials [38-40].

It is important to note that the extension of these models
with new variables increases the complexity of the model.
Deep probabilistic models usually demand more resources
to compute and, more importantly, more data for inference.
The curse of dimensionality limits the number of parame-
ters added and they should only be introduced if enough
prior knowledge exists about them to learn them correctly
with reasonable probability.

4. Inference

So far we have used the equivalence between classical
optimization and MAP inference to develop a probabilis-
tic framework for ECGI. A key advantage of translating
standard classical optimization problems to probabilistic
models is that it is then possible to test different infer-
ence methods from the ML literature. Variational Infer-
ence (VI), Markov Chain Monte Carlo (MCMC) methods
or, more recently, disentanglement approaches in the deep
learning literature, all provide estimates of the full poste-
rior distribution and not just its mode or mean. Thus, one
can include an estimate of the uncertainty of the results
[[12,28L[31,40-42].

One significant limitation of these methods is that they
require advanced knowledge in ML to design and code.
Fortunately, there has been a considerable recent effort in
ML research to develop probabilistic programming lan-
guages that offer readily usable black-box variational in-
ference and MCMC algorithms [43]]. With these tools, it
is possible to describe the probabilistic model directly in
a tailored programming language and then learn the pos-
terior distributions without the limitation of having to de-
velop the entire inference structure.

5. Conclusions

We have described some relevant methods in the
ECGI literature in the context of probabilistic modeling.
This framework helps contextualize efforts from different
groups and may allow further development with incorpo-
ration of new prior knowledge about the problem. Finally,
we have suggested how some inference techniques in the
ML literature may facilitate the adoption of advanced ML

methods in ECGI.
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