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Abstract

This study aimed to develop a detector with few
physiologically-meaningful parameters, that could be ca-
pable of detecting pseudo periodic patterns. The algo-
rithm is based in a signal detection based on a matched
filter, and a threshold calculation based on robust stadis-
tics. The evaluation of the detector was performed under
a corpus consisting in two sets. One set of human ECGs,
and one set of rodent pseudo ECGs. The evaluation was
performed with respect to the gold standard annotations,
and was calculated in terms of sensitivity (S) and positive
predictive value (P). For the human ECG set of record-
ings, the detector had 100 S and 99.9 P, while for the ro-
dent pseudo ECG set of recordings the results where 97.1 S
and 79.1 P. Both sets results are median values. The results
obtained under the rodent set where compared to those ob-
tained with another two detectors, where our detector ob-
tained the best results. The algorithm achieved promising
results, in a broad set of ECG recordings of very different
nature, with the additional capability of further adaptation
provided by expert assistance.

1. Introduction

The automatic analysis of pseudo periodic signals, such
as those of cardiovascular origin, often relies on the de-
tection of a synchronization pattern in order to perform a
reliable estimation through averaging. In certain applica-
tions such as fetal ECG analysis or transmembrane action
potential measurement, the automatic synchronization task
can be a challenging problem by itself. The detections
of heartbeats in the ECG can also be a challenging task,
specially in those long-term and/or noisy recordings, with
broad and sudden changes in rhythm and morphology. The
success commonly relies on the a priori knowledge about
the timing and morphologic description about the pattern
to detect, therefore limiting the generality.

In the past two decades several cardiovascular pattern
detectors were developed, e.g. ECG heartbeat detectors,
blood pressure pulse detectors, etc. Some of them adapted
for noninvasive signals such as the ECG or the plethysmo-

graphic signal, but also for other invasive signals, such as
the electrogram and blood pressure recordings, among oth-
ers. Several of the developed detectors are freely available
on internet [1], and were described in the literature [2, 3].
All the reviewed algorithms are commonly adapted to an
specific type of pattern/signal, making difficult or impos-
sible the possibility of changing the target pattern and/or
signal. As a consequence, these algorithms have a limited
adaptation capacity to real life applications, where noise
interference and large morphological changes in the sig-
nal/patterns often occur.

The objective of this work is to develop and analyze an
algorithm to detect impulsive and pseudo periodic patterns
in cardiovascular signals given a small set of timing and
morphological constraints. In addition, it must be capable
of both automatic and assisted operation, i.e. the algorithm
must provide a simple interface for an eventual expert.

2. Material and methods

The performance of the algorithm was evaluated in a
data corpus consisting in two evaluation sets. The first
evaluation set consists in 178 human ECG recordings from
12 publicly available databases [1]. Details of the human
set are shown in Table 1. The second evaluation set con-
sists in 17 pseudo ECG recordings, performed in explanted
rodent hearts put through hipokalemia [4]. The recordings
length were between 20 and 50 minutes, accounting for a
total time of 10 hours aproximately. For all ECG record-
ings, only lead II or the first available was selected for ex-
perimentation.

The algorithm proposed in this work is mainly based on
the analysis of a detection signal calculated as

a(θ) =

θ+L−1∑
i=θ

s(i).p(θ − i), θ = 0, 1 · · · , N (1)

where p(n) (p hereafter) is a pattern of lengthN , and s the
signal under analysis, of N samples length. This method
is also known as the matched filter [2], where p is the time
reversed version of the pattern to detect. The matched filter
is the maximum likelihood delay estimator (θ) of a pattern
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Table 1. Human evaluation set composition.
Group Name Length #Rec Leads

Sinus nsrdb 1 day 17 2
fantasiadb 2 h 17 2-3

Arrhytmia
mitdb 30 m 17 2
svdb 30 m 17 2

incartdb 30 m 17 12

ST-T changes edb 2 h 17 2
ltstdb 21-24 h 17 2-3

Stress thew 15 m 17 12
stdb 10-40 m 17 2

Long Term
ltdb 14-22 h 7 2
sddb 23 h 12 2
ltafdb 1 day 17 2

Total ~92 days 178

p immerse in a noisy signal s. One of its limitations can be
that p must be a priori known, which is an important draw-
back at the moment of designing and automatic algorithm.
In this work we proposed to overcome this limitation with
the use of a two step algorithm. 1) First we perform an
approximation step, which consists of generating a generic
p to perform an approximate detection. 2) The refinement
step consists on repeating step 1), but with a set of patterns
P estimated from the results of the first step, as described
below. The scheme of Figure 1 attempt to ease the expla-
nation.

The first part of the approximation step 1) consists in
calculating the detection signal, a(n), using eq. 1, with a
generic impulsive pattern calculated as

p(n) = g(n) · ∂
∂n
· g(n), (2)

g(n) = e−
n²
2σ² , σ =

N − 1

5
.

Note that the generic p(n) is the derivative of a Gaussian
pattern with a user-defined width N . The derivative was
approximated by finite differences of the sequence g. The
detection signal a is then smoothed with an averaging low-
pass FIR filter of integer length M = 1.2 ∗ N , obtaining
as(n). In the following block, all the maxima extreme val-
ues of as above a threshold ta = P30{as}, are located and
stored in

b = argmax
n

{as(n) ≥ ta} .

The value of ta was calculated as the 30th. percentile of
as, and was empirically adopted in order to sample the
noise floor. Another restriction required for the values of
b, is that the occurrence of two subsequent maxima must
be greater or equal than a user-defined parameter m0. In
case this condition is not satisfied, only the

bi = max
n∈W

{as(n)}

with

W = {j = 1, · · · , B ∧ ∀k : bk ≥ bj ∧ bk ≤ (bj +m0)}

are stored. Once all the B relevant extreme values are
stored in b, the algorithm continues with the calculation
of tb, a second threshold used for the final impulse detec-
tion in signal as. The value of tb is calculated from hb,
i.e. the curve defined by the histogram values of b. The
histogram was calculated by counting occurrences over an
ad-hoc equally spaced grid, with a grid step calculated as

gs = med

{
∂

∂i
p(i)

}
p(i) = Pqi{aS}, q= 1, 2 · · · , 100.

Note that gs is the median finite difference of an uniformly
sampled percentile grid over the values of as. The value of
gs favors an adequate representation of hb, in order to per-
form the detection of the first minimum, tb, corresponding
to the final detection threshold to use with the detection
signal as. The approximation step concludes after storing
the M0 detections in

d0 = (n0,n1, · · · ,nM0) ,

being ni =
arg
n
{as(n) ≥ tb}.

The refinement step starts by seeking Q locations in d0
corresponding to representative patterns based on a rank-
ing criterion. The criterion quantifies the stability of the
1) rhythm and 2) morphology of the pattern. The selected
patterns should be those whose stability and frequency (or
rhythm) are more stable. The quantification of the rhythm
stability starts by calculating the instantaneous rhythm

r0 = (r0, r1, · · · , rM0−1) ,

using the locations in d0 being ri = ni+1−ni. Then, from
r0 an estimate of the instantaneous median rhythm r̃0 was
calculated where r̃i = med {rS}, being rS the sequence of
rhythm values included in a centered window S around the
i-th value. With these two sequences, an scatter sequence
s̃0 was calculated, with elements

s̃i =
(ri − r̃i)

r̃i
.

The value s̃i represents the instantaneous relative change
in rhythm. Finally a two column matrix Tj with the start-
end of each stable segment is constructed. An s̃i element
is considered stable if its value is less than the median of
s̃0. Then, an stable segment is defined as a sequence of
adjacent and stable s̃i, whose length is grater than a time
ws. The start and ending sample of all L0 segments that
meet this condition are stored in Tj. A first rhythm score
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Figure 1. Block diagram of the proposed algorithm.
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Figure 2. Rhythm evolution in a rodent recording. Qual-
itative example of the rhythm and morphology scores in
stable (1 and 3) and unstable rythm segments. The 3rd
segment presents morphology unstability.

xrj with j = 1, 2, · · · , L0 is calculated for each row in
Tj.

The morphology score xmj was also calculated for each
of the L0 stable segments. For each segment, a Dj × N
pattern matrix Uj is constructed with all the Dj detected
patterns of length N found. The mean variance across the
ensemble of patterns was used as morphology score and
was calculated as

xmj = Mean
x

[Var
y
(Uj)],

where y means the column (or ensemble) direction and x
the row (or time) direction of matrix Uj. With both scores
the final score was simply xfj =xrj+x

m
j , and was used to

select the Q most promising rows in Tj (stable segment).
A qualitative example can be observed in Figure 2. The
refinement step continues by calculating a representative
pattern from each segment

P = (p0, p1, · · · , pQ).

The Woody method was used to calculate pk patterns
from the d0 detections [2, 5]. Note that p0 is the generic

pattern defined in equation 2. Once the pattern matrix
P is calculated, the algorithm concludes by repeating the
approximation step for each pk and producing the corre-
sponding detection vector dk for k = 1, 2, · · · , Q. We
only considered the detections from the first ranked pat-
tern d1 for the performance calculation presented in the
next section.

The experimentation was performed with the following
user defined parameters: for the human set mo=300ms,
N=60ms andQ=2; for the rodent setmo=120ms,N=20ms
and Q=2.

The evaluation of the proposed algorithm was per-
formed with respect to the gold standard annotations in-
cluded in each database. It was calculated by means of the
sensitivity and positive predictive value for each recording.
The median results for each set of the corpus were calcu-
lated for a global performance assessment.

3. Results

The results obtained for both evaluation sets are sum-
marized in Table 2. The worst cases for each database are
shown, and the median result for each set of the corpus.
In this work we also evaluated the gqrs detector [1] and a
threshold independent algorithm [6] under the rodent set.
Results where S=72.1; P=61.2 for the gqrs, and S=74.5;
P=87.4 for the threshold independent algorithm.

4. Discussion and conclusions

In this work we evaluated an algorithm for pseudo pe-
riodic patterns. As explained above, the pattern descrip-
tion was made with two time parameters: the pattern du-
ration (N ) and the minimum time between successive pat-
terns (m0). This representation achieved promising results
for the detection of QRS complexes in human and rodent
recordings. The evaluation set includes recordings from 12
human ECG databases publicly available [1, 7], as shown
in Table 1. Another set of 17 pseudo ECG recordings of
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Table 2. Worst result for each database in the corpus. Me-
dian values in percent.

Database Recording Name S P
edb e0116 99.5 50.6

fantasia f1o04 99.9 99.7
INCART I03 90.0 83.8

ltafdb 45 88.1 49.6
ltdb 14179 99.8 100

ltstdb s30801 87.9 90.3
mitdb 201 96.6 99.9
nsrdb 16272 98.3 92.7
sddb 49 99.0 88.3
stdb 843 99.6 99.9
svdb 854 100 99.3
thew * 99.4 99.5

Human set 100 99.9

rodendb #6 77.0 57.2
rodendb #16 99.2 42.2

Roden set 97.1 79.1

* 25_PR01_121003_4

ECG
Detections

Detections

correct

calculated

hb

as

thr

Figure 3. Case of failure: Bad threshold calculation. Ex-
ample taken from recording 0116 from edb database.

explanted rodent hearts [4] was used to evaluate the gener-
ality of the pattern description.

The results presented in Table 2 show that the algorithm
achieved a very good overall performance over a wide set
of recordings, obtaining a S = 100 and P = 99.9 in the
whole human set. In the same table, the worst cases were
selected in order to visualize where the algorithm requires
further improvement, despite the fact that the median per-
formances are very promising. We observed in those cases
that the algorithm failed calculating the threshold tb, as is
shown in Figure 3, and where a proper threshold should be
located. During real-life use of the algorithm, these kind
of errors are easy-to-correct, since the value of tb could be
corrected by expert assistance, if available.

The results in the rodent set were not as good as in the

human set, in Table 2 the median performance show an
slight decrease in S = 97.1 and a more important decrease
in P = 79.1. This performance drop could be explained
in first place by the severe changes in morphology and
rhythm observed in rodent recordings, as shown in Fig-
ure 2. Another explanation can be the experimental setup,
i.e. explanted hearts subject to severe changes in the potas-
sium concentration to induce ventricular fibrillation. It is
certainly a difficult scenario for any automatic algorithm,
as said above when comparing the performances with other
public algorithms, where the proposed algorithm is the best
performing.

The implementation of the proposed algorithm, with
more detailed results can be found in [8] for compar-
ison. Despite the limitations described, the algorithm
achieved promising results with only two physiologically-
meaningful parameters, in a broad set of ECG recordings
of very different nature, with the additional capability of
further adaptation provided by expert assistance.
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