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Abstract

We prove that the modified C'R-iteration procedure converges strongly to a fixed point of a nonlinear quasi
contractive map in convex metric spaces which is the main result of this paper. The convergence of Picard-S
iteration procedure follows as a corollary to our main result.
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1. Introduction and preliminaries
In 1970, Takahashi [11] introduced the concept of convexity in metric spaces as follows.

Definition 1.1. Let (X,d) be a metric space. A map W : X x X x [0,1] — X is said to be a ‘convez
structure’ on X if

for x,y,u € X and X € [0,1].

A metric space (X, d) together with a convex structure W is called a convex metric space and we denote
it by (X,d,W). We note that W (z,y,1) =z and W(x,y,0) = y. A nonempty subset K of X is said to be
‘conver” if W(x,y,\) € K for z,y € K and A € [0, 1].

Remark 1.2. Every normed linear space (X, ||.||) is a convex metric space with the convex sructure W defined
by W(z,y,\) = (1 = Ny + Az for z,y € X, A € [0,1]. But there are convex meric spaces which are not
normed linear spaces [1, 8, 11].
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In 1974, Ciri¢ [3] introduced quasi-contraction maps in the setting of metric spaces and proved that the
Picard iterative sequence converges to the fixed point in complete metric spaces.

Definition 1.3. Let (X, d) be a metric space. A selfmap T : X — X is said to be a quasi-contraction map
if there exists a real number 0 < k£ < 1 such that

d(Tz, Ty) < kM(z,y) (1.2)

where

M(z,y) = max{d(x,y),d(z,Tx),d(y, Ty),d(z, Ty),d(y, Tx)} (1.3)
for z,y € X.

Let K be a nonempty convex subset of a normed linear space X and let {a,}2%, and {8,}22, be
sequences in [0, 1]. The Ishikawa iteration procedure [7] in the setting of normed linear spaces is as follows :
For xp € K,

Yn = (1= Bn)an + BTy

Tnt1 = (1 —ap)zy + apTy,, for n=0,1,2,... (1.4)

Ding [5] considered the Ishikawa iteration procedure in the setting of convex metric spaces as follows :
Let K be a nonempty convex subset of a convex metric space (X, d, W), and let {a,}72 and {3,}5°, be
the sequences in [0, 1]. For z¢ € K,

Yn = W(Tﬂjna Tn, 571)

Tpt1 = W(Tyn, Tn,an) for n=0,1,2,... (1.5)

and proved that the Ishikawa iteration procedure (1.5) converges strongly to a unique fixed point of a
quasi-contraction map in the setting of convex metric spaces, provided Y > a;, = 0.

In 1999, Ciri¢ [4] introduced a more general quasi-contraction map and proved the convergence of an
Ishikawa iteration procedure in convex metric spaces to the unique fixed point and the result is the following.

Theorem 1.4. (Ciric’ [4]) Let K be a nonempty closed convex subset of a complete conver metric space X
and let T : K — K be a selfmap satisfying

d(Tz, Ty) < w(M(z,y)), (1.6)
where M (z,y) is as defined in (1.3) for z,y € K and

w : (0,00) = (0,00) is a map which satisfies (i) 0 < w(t) <t for each t >0,
(77) w increases, and the following conditions :

tlgglo(t —w(t)) =oc0: and (1.7)
either ¢t —w(t) 1is increasing on (0, c0) (1.8)
or w(t) is strictly increasing and li_>m w"(t) =0 for ¢ > 0. (1.9)

Let {an }22 o and {Bn}o be sequences in [0,1] such that )" oy, = 00. For xg € K, the Ishikawa iteration
procedure {x,}>2 defined in (1.5) converges strongly to the unique fized point of T'.

Sastry, Babu and Srinivasa Rao [10] improved Theorem 1.4 by replacing (1.8) and (1.9) with a single
condition, namely 0 < w(t*) < ¢ for each ¢ > 0 and proved the following theorem.
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Theorem 1.5. [10] Let (X,d, W) be a complete convex metric space and T : X — X be a map that satisfies

d(Tz, Ty) < w(M(z,y)) (1.10)
where M (x,y) is defined as in (1.3) for x,y € X and w : (0,00) — (0,00) is a map such that (i) w increases,
(ii) tlim (t —w(t)) = 0o (iii) 0 < w(tt) <t fort > 0.

— 00
Let {an}52 and {5, }22 be sequences in [0,1] such that Y77 4 o, = 00.

Then for any xo € K, the sequence {x,}5°, generated by the iteration procedure (1.5) converges strongly
to a unique fized point of T.

Here we note that a map that satisfies (1.10) is said to be a nonlinear quasi contractive map on X.
Remark 1.6. (i) and (i4i) of Theorem 1.5 imply that 0 < w(t) < ¢ for each ¢t > 0.

Remark 1.7. If w(t) = kt for t € (0,00) and 0 < k < 1 then the map T of Theorem 1.5 reduces to a quasi
contraction map.

In 2012, Chugh, Kumar and Kumar [2] introduced ‘C R-iteration procedure’ as follows:
Let K be a nonempty convex subset of a normed linear space X, and let {a, }02, {Bn}reg and {v,}o2 be
sequences in [0, 1].
For xzp € K,
Zn = (1 - 'Yn)xn + Tz,
Yn = (1 = Bp)Txp + BT zn, (1.11)
Tnt1 = (1 —ap)yn + Ty, for n=0,1,2,....

By choosing a,, = 1 for all n in (1.11), we have the following.

For xp € K,
Zn = (1 - ’Yn)l‘n + v Twy
Yn = (1= Bp)Tan + BpTzn, (1.12)
Tnt1 = L'Yn, for n=0,1,2,....

The iteration procedure (1.12) is called the ‘Picard-S iteration procedure’ [6].
In 2014, Chugh and Malik [9] introduced an anlaogue of C R-iteration procedure (1.11) in convex metric
spaces as follows:
Let K be a nonempty convex subset of a convex metric space (X,d, W).
For any zp € K,
Zn = W(Txna Tn, 'Yn)
Yn = W<szTxmﬁn) (1‘13)
Tn41 = W(Tyn) Yn, an)

where {a,}5% o, {8}, and {7,}22, are in [0, 1].

We call the iteration procedure {z,} defined in (1.13) is a ‘modified C R-iteration procedure’ in convex
metric spaces.
If a,, = 1 then the iteration procedure (1.13) reduces to the following which is an analogue of Picard-S
iteration procedure (1.12) in a convex metric space.

For zg € K,
zn = W(Tp, Tn, V)
Yn = W(Tzp, Ty, Br) (1.14)
Tn41 = Tyn

where {8,}72 and {y,}5>, are in [0, 1].

We call the iteration {z,} defined in (1.14) is a ‘modified Picard-S iteration procedure’.

Motivated by the results of Ciri¢ [4] and Sastry, Babu and Srinivasa Rao [10], in Section 2 of this paper,
we prove the strong convergence of modified C R-iteration procedure to a fixed point of a nonlinear quasi
contractive map (Theorem 2.2) which is the main result of this paper. The convergence of modified Picard-S
iteration procedure (1.14) follows as a corollary to our main result.
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2. Main results

Lemma 2.1. Let (X,d, W) be a convex metric space, and let K be a nonempty convexr subset of X. Let
T: K — K be a map such that

d(Tx,Ty) < w(M(z,y)) for z,y € K, (2.1)

where M(z,y) is defined in (1.3) with M(z,y) > 0 and w : (0,00) — (0,00) is a map such that (i) w is
increasing on (0,00) (ii) tlim (t —w(t)) = oo, and (i1i) 0 < w(tT) < t for each t > 0. For zyg € K, let
{zn}, {yn} and {z,} be the sequences generated by the modified CR-iteration procedure (1.13). Then the
sequences {xn}, {yn}, {zn}, {Txn}, {Tyn} and {Tz,} are bounded.

Proof. For each positive integer n, we define the set
An = {ziking U{yitine U{zitise U{Tzito U{Tyi}i_o U{T2}i0-
We denote the diameter of A, by a,. We show that {a,}52 is bounded. For this purpose,
we define b,, = max{ sup d(zg,Tz;), sup d(xo,Ty;), sup d(xo,Tz;)} forn=1,2, ...

0<i<n 0<i<n 0<i<n
We now show that a,, = b, forn=1,2,... .
Clearly, b, < ay, forn=1,2,... .
Without loss of generality, we assume that a, >0 forn=1,2,... .
Case (i) : ap = d(Tx;,Txj) for some 0 < i,j < n.
Now, ap = d(Tx;, Tx;) < w(M(zi,x;)) < w(an) < ap,
a contradiction.
Hence, a,, # d(Tx;, Tx;) for any 0 <i,j < n.
With the similar reason, it is easy to see that a,, # d(Tz;, T'y;), an # d(Tx;, Tzj),
an # d(Ty;, Ty;), an # d(Tyi, Tz;), and a,, # d(Tz;, Tz;) for any 0 < 4,5 < n.
Case (it) : an = d(y;, Tx;) for some 0 <i,j < n.
an = d(yi,ij) = d(w(Tzi,Txi,Bi),ij) < ,Bid(TZZ', ij) + (1 - &)d(Taci,ij)

<max{d(Tz,Tz;),dTx;,Tx;)} < ap so that
an = d(Tz;, Txj) or ap = d(Tx;, Txj),
which fails to hold by Case (i).
Therefore a, # d(y;, Tx;) for any 0 <1i,j < n.
Similarly, it is easy to see that a, # d(y;, T'y;) and ay, # d(y;, Tz;) for any 0 < 4,5 < n.
Case (iii) : a, = d(y;,y;) for some 0 < i,j < n.
an = d(yi,y;) < AW (T2, T, Bi), y5) < Bid(y;, Tzi) + (1 — B;)d(y;, Tx;)
< max{d(y;, Tz),d(y;, Tx;)} < ay so that
an = d(yj,Tz) or an = d(y;,Tz;),
which fails to hold by Case (i7).
Therefore, a,, # d(y;,y;) for any 0 <i,j < n.
Case (iv) : an = d(z;, Tx;) for some 0 < i, < n.
If ¢ > 0 then an = d(xi,T:rj) = d(W(Tyi_l, Yi—1, Ozi_l),T.I‘j)
< @i—1d(Tyi—1, Txj) + (1 — aj—1)d(yi—1, Tzj)
< max{d(Tyi—1,Tz;),d(yi—1,Tz;)} < a, so that
Qp = d(Tyi_l,ij) or an = d(yi_l,T:Uj),
which is absurd by Case (i) and Case ().
Therefore i = 0 and hence a,, = d(x, T'z;) so that a, < by,.
Case (v) : Either a,, = d(z;, T'y;) or d(x;,Tz;) for some 0 < 4,5 < n.
By the similar argument as in Case (iv), i = 0 and hence a,, < by,.
Case (vi) : an = d(x;,y;) for some 0 < i,7 < n.
an = d(xi,y;) = d(xi, W(T'z;, Txj, B;)) < Bjd(xs, Tz;) + (1 — B)d(xi, Txj)
< max{d(z;, Tz;),d(z;, Tx;)} < ay, so that

an = d(z;, Tz;) or d(x;, Txj). By Case (iv) and Case (v), we have
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an = d(xo, Txj) or d(xg,Tz;) so that a, < by.
Case (vii) : an, = d(x;,2;) for some 0 <i < j <n.
d(ws, x5) = d(wi, W(Tyj-1,yj-1, aj-1)) < jad(wi, Tyj—1) + (1 — oj1)d(wi, yj—1)
< max{d(z;, Tyj-1), d(zi, yj-1)} < an
so that a, = d(x;, Tyj—1) or d(x;,yj—1).
Hence, a,, < b, follows from from Case (v) and Case (vi).
Case (viii) : a, = d(x;,2;) for some 0 < 4,5 < n.
an = d(xi, zj) = d(xi, W(Txj, 25,7;)) < vid(@s, Teg) + (1 = ;)d(@s, ;)
< max{d(z;, Tx;),d(x;, z;)} < a, so that
an = d(z;, Txzj) or d(x;, xj).
Hence, a,, < b, follows from Case (iv) and Case (vii).
Case (ix) : an, = d(y;, zj) for some 0 < 4,5 < n.
an = d(yi, zj) = d(ys, W(Txj, x5,7;)) < vidyi, Teg) + (1= ;) d(ys, z5)
< max{d(y;, Tz;),d(yi,z;)} < ay so that
an = d(yi, Txj) or d(y;, x;).
By Case (ii), an # d(yi, T'z;).
Therefore a,, = d(y;, ;) and hence a,, < b, follows from Case (vi).
Case () : an = d(z;, Tx;) for some 0 < i,j < n.
an = d(zi, Txj) = dW (Tx;, i, vi), Trj) < vid(Txi, Taj) + (1 — ) d(z, Txj)
< max{d(Tz;, Tx;),d(x;, Txj)} < ap so that
an = d(Tx;, Txj) or d(x;, Txj).
By Case (i), an # d(Tx;, Tx;).
Therefore a,, = d(x;, Tx;) and hence a,, < b, follows from Case (iv).
Case (xi) : an = d(z;, ;) for some 0 < 4,5 < n.
an = d(zi, 2;) = d(zi, W (T, x5,75)) < vd(zi, Tey) + (1 = 75)d(z, ;)
< max{d(z,Tx;),d(z,z;)} < ay so that
an = d(2;, ;) or d(z;,,Tx;). Hence it follows from Case (viii) and Case (x) that a, < by,.
Case (xii) : Either a,, = d(z;,Ty;) or a, = d(z;, T%;).
In this case, clearly a, < b,.
Hence, by considering all the above cases, it follows that a, < b, so that a, = b, forn=1,2,... .
Now for any 0 < i <mn,
d(.%'(), T%i) < d(l‘o, T.Z'o) + d(T&?o, T.’L‘i)
< A+ w(M(zo,z;))
< A+ w(ay), where A = d(zo, Tzp).
Similarly, it is easy to see that
d(xo,Ty;) < A+ w(ay,) for 0 <i<n and
d(xo,Tz;) < A+ w(ay,) for 0 <i <n.
Therefore b, < A 4+ w(ay,) so that
an —w(ay) <A (2.2)

forn =1,2,..., since b, = a,.

Since tlirélo(t — w(t)) = oo, there exists ¢ > 0 such that t — w(t) > A for all t > c.

If ay, > ¢ for some n > 1 then a,, — w(a,) > A,

a contradiction.

Thus a,, < ¢ for all n, i.e., the sequence {a,}7 ; is bounded.

Hence the conclusion of the lemma follows. O

Theorem 2.2. Let (X,d, W) be a complete convex metric space and K be a nonempty closed convez subset
of X. Let T : K — K satisfy all the hypotheses of Lemma 2.1. Let {on}o2 o, {8}y, and {v}32, be
sequences in [0, 1] such that Y7 oy, = 0o. Then the sequence {x,} generated by the modified C R-iteration
procedure (1.13) converges strongly to a unique fized point of T.
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Proof. Without loss of generality, we assume that x,, # Tz, for any n =0,1,2,... .
For each integer n > 0, we let
By Lemma 2.1, (), is bounded. We denote the diameter of C,, by c,.
Let d,, = max{sup d(zy, T'z;),sup d(xy, T'y;),sup d(xy, Tz;)} for n =0,1,2, ... .
>n >n >n
Then it is easy to see that ¢, = d, forn =0,1,2,... .
Clearly, the sequence {¢,} is a decreasing sequence of nonnegative real numbers so that li_>m ¢, exists, we
n o

let it be c.
Now we prove that ¢ = 0. On the contrary, we assume that ¢ > 0 so that ¢, > 0 forn=0,1,2,... .
For each positive integer n and for each j > n, we have
d(xna T'I]) = d(TfL'], W(Tynfla Yn—1, O‘?’L*l))

< an—ld(ijy Tyn—l) + (1 - O‘n—l)d(ij7 yn—l)

< ap—1w(M(xj,yn-1)) + (1 — an-1)d(Tzj, yn-1)

< ap—1w(cp—1) + (1 — ap—1)cp—1 so that
supd(zn, Txj) < ap—1w(cp—1) + (1 — ap—1)cn—1.

j>n

Similarly, sup d(z,, Ty;) < an—1w(cp—1) + (1 — ap—1)cp—1 and
jzn

sup d(zy, Tzj) < ap—1w(cp—1) + (1 — ap—1)cpn—1 hold.

jzn

Therefore

dp < apqw(cp—1) + (1 —ap—1)ep—1 for n=1,2 ...

Since ¢, = d,, we have
an-1(cn—1 —w(cp-1)) < cp—1—cp for n=1,2,... (2.3)

Let s = inf{c, —w(cy) : n > 0}. If s = 0 then there exists a subsequence {c, )} of the sequence {c,} such
that klim (cn(ky — w(cpmy)) =0, ie., ¢ —w(ch) =0,
—00

a contradiction, from (4i7) of Lemma 2.1.
Therefore s > 0 so that there exists a real number n > 0 such that ¢, — w(¢,) >n forn=0,1,2,... .
It follows from the inequality (2.3) that na,—1 < c¢p—1 — ¢, forn=1,2, ... .

Since the sequence {c,} is convergent, we have the series ) a,, < o0,

a contradiction.

Therefore ¢ = 0 so that the sequence {x,,} is Cauchy and hence there exists x € K such that lim z, = x.
n—o0

Since ¢ = 0, we have lim d(x,,Tx,) =0 so that lim Tz, = z.
n—00 n—oo

Now, we prove that z is a fixed point of T'.
Since T satisfies the inequality (2.1), we have

d(Txy, Tz) < w(M(zp,x)) for n=0,1,2.. (2.4)

Since M(xy,x) > d(z,Tx) for n =0,1,2,... and le M(zy,x) = d(z,Tx), we have
li_>m w(M(zp,z)) = w(d(z,Tz)") so that d(z, Tz) < w(d(z, Tz)").
Hence z is a fixed point of T' by using (#ii) of Lemma 2.1.
Now from the inequality (2.1) and Remark 1.6, clearly the uniquness of fixed point of T" follows. O

If @, = 1 in the modified CR-iteration procedure (1.13) then we have the following corollary from
Theorem 2.2.

Corollary 2.3. Let X, K,T be as in Theorem 2.2. Let {fn}02 o and {1}, be sequences in [0,1]. For
zo € K, let the sequence {x,}52, be generated by the modified Picard-S iteration procedure (1.14). Then
{zn}52 converges to a unique fized point of T
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In the following, we prove that C'R-iteration procedure (1.11) and Picard-S iteration procedure (1.12)
converge to a unique fixed point of a quasi-contraction map under certain hypotheses in the setting of
Banach spaces.

Corollary 2.4. Let X be a Banach space, K be a nonempty closed convex subset of X, andT : K — K be a
quasi contraction map. Let {0152, {Bn}olq, and {1n}52, be sequences in [0,1] such that Y 2 oy = o0.
For xg € K, let {z,} be the sequence generated by either CR-iteration procedure (1.11) or by Picard-S
iteration procedure (1.12). Then {x,} converges strongly to a unique fized point of T

Proof. Follows from Remark 1.7, Theorem 2.2 and Corollary 2.3. O
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