

Communications in Nonlinear Analysis

Journal Homepage: www.cna-journal.com

Convergence of ${\it CR}$ -iteration procedure for a nonlinear quasi contractive map in convex metric spaces

G. V. R. Babu^a, G. Satyanarayana^{b,*}

Abstract

We prove that the modified CR-iteration procedure converges strongly to a fixed point of a nonlinear quasi contractive map in convex metric spaces which is the main result of this paper. The convergence of Picard-S iteration procedure follows as a corollary to our main result.

Keywords: Convex metric space, quasi contraction map, CR-iteration procedure and Picard-S iteration procedure.

2010 MSC: 47H10, 54H25.

1. Introduction and preliminaries

In 1970, Takahashi [11] introduced the concept of convexity in metric spaces as follows.

Definition 1.1. Let (X,d) be a metric space. A map $W: X \times X \times [0,1] \to X$ is said to be a 'convex structure' on X if

$$d(u, W(x, y, \lambda)) \le \lambda d(u, x) + (1 - \lambda)d(u, y) \tag{1.1}$$

for $x, y, u \in X$ and $\lambda \in [0, 1]$.

A metric space (X,d) together with a convex structure W is called a *convex metric space* and we denote it by (X,d,W). We note that W(x,y,1)=x and W(x,y,0)=y. A nonempty subset K of X is said to be 'convex' if $W(x,y,\lambda) \in K$ for $x,y \in K$ and $\lambda \in [0,1]$.

Remark 1.2. Every normed linear space (X, ||.||) is a convex metric space with the convex sructure W defined by $W(x, y, \lambda) = (1 - \lambda)y + \lambda x$ for $x, y \in X$, $\lambda \in [0, 1]$. But there are convex meric spaces which are not normed linear spaces [1, 8, 11].

 ${\it Email \ addresses: \ gvr_babu@hotmail.com\ (G.\ V.\ R.\ Babu),\ gedalasatyam@gmail.com\ (G.\ Satyanarayana)}$

^aDepartment of Mathematics, Andhra University, Visakhapatnam-530 003, India.

^bDepartment of Mathematics, Dr. Lankapalli Bullayya college, Visakhapatnam-530 013, India.

^{*}Corresponding author

In 1974, Ćirić [3] introduced quasi-contraction maps in the setting of metric spaces and proved that the Picard iterative sequence converges to the fixed point in complete metric spaces.

Definition 1.3. Let (X, d) be a metric space. A selfmap $T: X \to X$ is said to be a quasi-contraction map if there exists a real number $0 \le k < 1$ such that

$$d(Tx, Ty) \le kM(x, y) \tag{1.2}$$

where

$$M(x,y) = \max\{d(x,y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)\}\tag{1.3}$$

for $x, y \in X$.

Let K be a nonempty convex subset of a normed linear space X and let $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ be sequences in [0,1]. The Ishikawa iteration procedure [7] in the setting of normed linear spaces is as follows: For $x_0 \in K$,

$$y_n = (1 - \beta_n)x_n + \beta_n T x_n x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T y_n, \quad \text{for} \quad n = 0, 1, 2, \dots$$
 (1.4)

Ding [5] considered the Ishikawa iteration procedure in the setting of convex metric spaces as follows: Let K be a nonempty convex subset of a convex metric space (X, d, W), and let $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ be the sequences in [0, 1]. For $x_0 \in K$,

$$y_n = W(Tx_n, x_n, \beta_n)$$

 $x_{n+1} = W(Ty_n, x_n, \alpha_n)$ for $n = 0, 1, 2, ...$ (1.5)

and proved that the Ishikawa iteration procedure (1.5) converges strongly to a unique fixed point of a quasi-contraction map in the setting of convex metric spaces, provided $\sum_{n=0}^{\infty} \alpha_n = \infty$.

In 1999, Ćirić [4] introduced a more general quasi-contraction map and proved the convergence of an Ishikawa iteration procedure in convex metric spaces to the unique fixed point and the result is the following.

Theorem 1.4. (Ćirić [4]) Let K be a nonempty closed convex subset of a complete convex metric space X and let $T: K \to K$ be a selfmap satisfying

$$d(Tx, Ty) \le w(M(x, y)),\tag{1.6}$$

where M(x,y) is as defined in (1.3) for $x,y \in K$ and $w:(0,\infty) \to (0,\infty)$ is a map which satisfies (i) 0 < w(t) < t for each t > 0, (ii) w increases, and the following conditions:

$$\lim_{t \to \infty} (t - w(t)) = \infty : \text{ and }$$
 (1.7)

either
$$t - w(t)$$
 is increasing on $(0, \infty)$ (1.8)

or
$$w(t)$$
 is strictly increasing and $\lim_{n \to \infty} w^n(t) = 0$ for $t > 0$. (1.9)

Let $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ be sequences in [0,1] such that $\sum_{n=0}^{\infty} \alpha_n = \infty$. For $x_0 \in K$, the Ishikawa iteration procedure $\{x_n\}_{n=0}^{\infty}$ defined in (1.5) converges strongly to the unique fixed point of T.

Sastry, Babu and Srinivasa Rao [10] improved Theorem 1.4 by replacing (1.8) and (1.9) with a single condition, namely $0 < w(t^+) < t$ for each t > 0 and proved the following theorem.

Theorem 1.5. [10] Let (X, d, W) be a complete convex metric space and $T: X \to X$ be a map that satisfies

$$d(Tx, Ty) \le w(M(x, y)) \tag{1.10}$$

where M(x,y) is defined as in (1.3) for $x,y \in X$ and $w:(0,\infty) \to (0,\infty)$ is a map such that (i) w increases, (ii) $\lim_{t \to \infty} (t - w(t)) = \infty$ (iii) $0 < w(t^+) < t$ for t > 0.

Let $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ be sequences in [0,1] such that $\sum_{n=0}^{\infty} \alpha_n = \infty$. Then for any $x_0 \in K$, the sequence $\{x_n\}_{n=0}^{\infty}$ generated by the iteration procedure (1.5) converges strongly to a unique fixed point of T.

Here we note that a map that satisfies (1.10) is said to be a nonlinear quasi contractive map on X.

Remark 1.6. (i) and (iii) of Theorem 1.5 imply that 0 < w(t) < t for each t > 0.

Remark 1.7. If w(t) = kt for $t \in (0, \infty)$ and $0 \le k < 1$ then the map T of Theorem 1.5 reduces to a quasi contraction map.

In 2012, Chugh, Kumar and Kumar [2] introduced 'CR-iteration procedure' as follows:

Let K be a nonempty convex subset of a normed linear space X, and let $\{\alpha_n\}_{n=0}^{\infty}$, $\{\beta_n\}_{n=0}^{\infty}$ and $\{\gamma_n\}_{n=0}^{\infty}$ be sequences in [0,1].

For $x_0 \in K$,

$$z_{n} = (1 - \gamma_{n})x_{n} + \gamma_{n}Tx_{n}$$

$$y_{n} = (1 - \beta_{n})Tx_{n} + \beta_{n}Tz_{n},$$

$$x_{n+1} = (1 - \alpha_{n})y_{n} + \alpha_{n}Ty_{n}, \text{ for } n = 0, 1, 2, \dots$$
(1.11)

By choosing $\alpha_n \equiv 1$ for all n in (1.11), we have the following. For $x_0 \in K$,

$$z_{n} = (1 - \gamma_{n})x_{n} + \gamma_{n}Tx_{n}$$

$$y_{n} = (1 - \beta_{n})Tx_{n} + \beta_{n}Tz_{n},$$

$$x_{n+1} = Ty_{n}, \quad \text{for} \quad n = 0, 1, 2, \dots$$
(1.12)

The iteration procedure (1.12) is called the 'Picard-S iteration procedure' [6].

In 2014, Chugh and Malik [9] introduced an anlaogue of CR-iteration procedure (1.11) in convex metric spaces as follows:

Let K be a nonempty convex subset of a convex metric space (X, d, W).

For any $x_0 \in K$,

$$z_n = W(Tx_n, x_n, \gamma_n)$$

$$y_n = W(Tz_n, Tx_n, \beta_n)$$

$$x_{n+1} = W(Ty_n, y_n, \alpha_n)$$
(1.13)

where $\{\alpha_n\}_{n=0}^{\infty}$, $\{\beta_n\}_{n=0}^{\infty}$ and $\{\gamma_n\}_{n=0}^{\infty}$ are in [0, 1].

We call the iteration procedure $\{x_n\}$ defined in (1.13) is a 'modified CR-iteration procedure' in convex metric spaces.

If $\alpha_n \equiv 1$ then the iteration procedure (1.13) reduces to the following which is an analogue of Picard-S iteration procedure (1.12) in a convex metric space. For $x_0 \in K$,

$$z_n = W(Tx_n, x_n, \gamma_n)$$

$$y_n = W(Tz_n, Tx_n, \beta_n)$$

$$x_{n+1} = Ty_n$$
(1.14)

where $\{\beta_n\}_{n=0}^{\infty}$ and $\{\gamma_n\}_{n=0}^{\infty}$ are in [0,1].

We call the iteration $\{x_n\}$ defined in (1.14) is a 'modified Picard-S iteration procedure'.

Motivated by the results of Ciric [4] and Sastry, Babu and Srinivasa Rao [10], in Section 2 of this paper, we prove the strong convergence of modified CR-iteration procedure to a fixed point of a nonlinear quasi contractive map (Theorem 2.2) which is the main result of this paper. The convergence of modified Picard-S iteration procedure (1.14) follows as a corollary to our main result.

2. Main results

Lemma 2.1. Let (X, d, W) be a convex metric space, and let K be a nonempty convex subset of X. Let $T: K \to K$ be a map such that

$$d(Tx, Ty) \le w(M(x, y)) \quad \text{for } x, y \in K, \tag{2.1}$$

where M(x,y) is defined in (1.3) with M(x,y) > 0 and $w: (0,\infty) \to (0,\infty)$ is a map such that (i) w is increasing on $(0,\infty)$ (ii) $\lim_{t\to\infty} (t-w(t)) = \infty$, and (iii) $0 < w(t^+) < t$ for each t>0. For $x_0 \in K$, let $\{x_n\}, \{y_n\}$ and $\{z_n\}$ be the sequences generated by the modified CR-iteration procedure (1.13). Then the sequences $\{x_n\}, \{y_n\}, \{z_n\}, \{Tx_n\}, \{Ty_n\}$ and $\{Tz_n\}$ are bounded.

```
Proof. For each positive integer n, we define the set
```

 $A_n = \{x_i\}_{i=0}^n \cup \{y_i\}_{i=0}^n \cup \{z_i\}_{i=0}^n \cup \{Tx_i\}_{i=0}^n \cup \{Ty_i\}_{i=0}^n \cup \{Tz_i\}_{i=0}^n.$

We denote the diameter of A_n by a_n . We show that $\{a_n\}_{n=1}^{\infty}$ is bounded. For this purpose,

we define $b_n = \max\{\sup_{0 \le i \le n} d(x_0, Tx_i), \sup_{0 \le i \le n} d(x_0, Ty_i), \sup_{0 \le i \le n} d(x_0, Tz_i)\}$ for n = 1, 2,

We now show that $a_n = b_n$ for n = 1, 2, ...

Clearly, $b_n \leq a_n$ for $n = 1, 2, \dots$.

Without loss of generality, we assume that $a_n > 0$ for n = 1, 2, ...

Case (i): $a_n = d(Tx_i, Tx_j)$ for some $0 \le i, j \le n$.

 $\overline{\text{Now, } a_n} = d(Tx_i, Tx_j) \le w(M(x_i, x_j)) \le w(a_n) < a_n,$

a contradiction.

Hence, $a_n \neq d(Tx_i, Tx_j)$ for any $0 \leq i, j \leq n$.

With the similar reason, it is easy to see that $a_n \neq d(Tx_i, Ty_i), a_n \neq d(Tx_i, Tz_i),$

 $a_n \neq d(Ty_i, Ty_j), a_n \neq d(Ty_i, Tz_j), \text{ and } a_n \neq d(Tz_i, Tz_j) \text{ for any } 0 \leq i, j \leq n.$

Case (ii): $a_n = d(y_i, Tx_j)$ for some $0 \le i, j \le n$.

 $\overline{a_n = d(y_i, Tx_j)} = d(w(Tz_i, Tx_i, \beta_i), Tx_j) \le \beta_i d(Tz_i, Tx_j) + (1 - \beta_i) d(Tx_i, Tx_j)$

 $\leq \max\{d(Tz_i, Tx_j), d(Tx_i, Tx_j)\} \leq a_n$ so that

 $a_n = d(Tz_i, Tx_j)$ or $a_n = d(Tx_i, Tx_j)$,

which fails to hold by Case(i).

Therefore $a_n \neq d(y_i, Tx_j)$ for any $0 \leq i, j \leq n$.

Similarly, it is easy to see that $a_n \neq d(y_i, Ty_j)$ and $a_n \neq d(y_i, Tz_j)$ for any $0 \leq i, j \leq n$.

Case (iii): $a_n = d(y_i, y_j)$ for some $0 \le i, j \le n$.

 $\overline{a_n = d(y_i, y_j)} \le d(W(Tz_i, Tx_i, \beta_i), y_j) \le \beta_i d(y_j, Tz_i) + (1 - \beta_i) d(y_j, Tx_i)$

 $\leq \max\{d(y_i, Tz_i), d(y_i, Tx_i)\} \leq a_n$ so that

 $a_n = d(y_j, Tz_i)$ or $a_n = d(y_j, Tx_i)$,

which fails to hold by Case(ii).

Therefore, $a_n \neq d(y_i, y_j)$ for any $0 \leq i, j \leq n$.

Case (iv): $a_n = d(x_i, Tx_j)$ for some $0 \le i, j \le n$.

 $\overline{\text{If } i > 0 \text{ then } a_n = d(x_i, Tx_j) = d(W(Ty_{i-1}, y_{i-1}, \alpha_{i-1}), Tx_j)$

 $\leq \alpha_{i-1}d(Ty_{i-1}, Tx_j) + (1 - \alpha_{i-1})d(y_{i-1}, Tx_j)$ $\leq \max\{d(Ty_{i-1}, Tx_j), d(y_{i-1}, Tx_j)\} \leq a_n \text{ so that }$

 $a_n = d(Ty_{i-1}, Tx_j) \text{ or } a_n = d(y_{i-1}, Tx_j),$

which is absurd by Case(i) and Case(ii).

Therefore i = 0 and hence $a_n = d(x_0, Tx_i)$ so that $a_n \leq b_n$.

Case (v): Either $a_n = d(x_i, Ty_j)$ or $d(x_i, Tz_j)$ for some $0 \le i, j \le n$.

By the similar argument as in Case (iv), i = 0 and hence $a_n \leq b_n$.

Case (vi): $a_n = d(x_i, y_j)$ for some $0 \le i, j \le n$.

 $\overline{a_n = d(x_i, y_j)} = d(x_i, W(Tz_j, Tx_j, \beta_j)) \le \beta_j d(x_i, Tz_j) + (1 - \beta_j) d(x_i, Tx_j)$

 $\leq \max\{d(x_i, Tz_i), d(x_i, Tx_i)\} \leq a_n$ so that

 $a_n = d(x_i, Tz_j)$ or $d(x_i, Tx_j)$. By Case (iv) and Case (v), we have

```
a_n = d(x_0, Tx_i) or d(x_0, Tz_i) so that a_n \leq b_n.
Case (vii): a_n = d(x_i, x_j) for some 0 \le i < j \le n.
\overline{a_n = d(x_i, x_j)} = d(x_i, W(Ty_{j-1}, y_{j-1}, \alpha_{j-1})) \le \alpha_{j-1} d(x_i, Ty_{j-1}) + (1 - \alpha_{j-1}) d(x_i, y_{j-1})
                                                        \leq \max\{d(x_i, Ty_{i-1}), d(x_i, y_{i-1})\} \leq a_n
so that a_n = d(x_i, Ty_{j-1}) or d(x_i, y_{j-1}).
Hence, a_n \leq b_n follows from from Case (v) and Case (vi).
Case (viii): a_n = d(x_i, z_j) for some 0 \le i, j \le n.
a_n = d(x_i, z_j) = d(x_i, W(Tx_j, x_j, \gamma_j)) \le \gamma_j d(x_i, Tx_j) + (1 - \gamma_j) d(x_i, x_j)
                                               \leq \max\{d(x_i, Tx_i), d(x_i, x_i)\} \leq a_n so that
a_n = d(x_i, Tx_j) or d(x_i, x_j).
Hence, a_n \leq b_n follows from Case\ (iv) and Case\ (vii).
Case (ix): a_n = d(y_i, z_j) for some 0 \le i, j \le n.
\overline{a_n = d(y_i, z_j)} = d(y_i, W(Tx_j, x_j, \gamma_j)) \le \gamma_j d(y_i, Tx_j) + (1 - \gamma_j) d(y_i, x_j)
                                              \leq \max\{d(y_i, Tx_i), d(y_i, x_i)\} \leq a_n so that
a_n = d(y_i, Tx_j) or d(y_i, x_j).
By Case (ii), a_n \neq d(y_i, Tx_i).
Therefore a_n = d(y_i, x_j) and hence a_n \leq b_n follows from Case(vi).
Case (x): a_n = d(z_i, Tx_j) for some 0 \le i, j \le n.
a_n = d(z_i, Tx_j) = d(W(Tx_i, x_i, \gamma_i), Tx_j) \le \gamma_i d(Tx_i, Tx_j) + (1 - \gamma_i) d(x_i, Tx_j)
                                                   \leq \max\{d(Tx_i, Tx_i), d(x_i, Tx_i)\} \leq a_n so that
a_n = d(Tx_i, Tx_j) or d(x_i, Tx_j).
By Case (i), a_n \neq d(Tx_i, Tx_j).
Therefore a_n = d(x_i, Tx_j) and hence a_n \leq b_n follows from Case (iv).
Case (xi): a_n = d(z_i, z_j) for some 0 \le i, j \le n.
a_n = d(z_i, z_j) = d(z_i, W(Tx_j, x_j, \gamma_j)) \le \gamma_j d(z_i, Tx_j) + (1 - \gamma_j) d(z_i, x_j)
                                              \leq \max\{d(z_i, Tx_j), d(z_i, x_j)\} \leq a_n so that
a_n = d(z_i, x_j) or d(z_i, Tx_j). Hence it follows from Case (viii) and Case (x) that a_n \leq b_n.
Case (xii): Either a_n = d(z_i, Ty_i) or a_n = d(z_i, Tz_i).
In this case, clearly a_n \leq b_n.
Hence, by considering all the above cases, it follows that a_n \leq b_n so that a_n = b_n for n = 1, 2, ...
    Now for any 0 \le i \le n,
d(x_0, Tx_i) \le d(x_0, Tx_0) + d(Tx_0, Tx_i)
              \leq A + w(M(x_0, x_i))
              \leq A + w(a_n), where A = d(x_0, Tx_0).
Similarly, it is easy to see that
d(x_0, Ty_i) \le A + w(a_n) for 0 \le i \le n and
d(x_0, Tz_i) \leq A + w(a_n) for 0 \leq i \leq n.
Therefore b_n \leq A + w(a_n) so that
                                                         a_n - w(a_n) \le A
                                                                                                                                 (2.2)
for n = 1, 2, ..., \text{ since } b_n = a_n.
```

Since $\lim_{t \to \infty} (t - w(t)) = \infty$, there exists c > 0 such that t - w(t) > A for all t > c.

If $a_n > c$ for some $n \ge 1$ then $a_n - w(a_n) > A$,

Thus $a_n \leq c$ for all n, i.e., the sequence $\{a_n\}_{n=1}^{\infty}$ is bounded.

Hence the conclusion of the lemma follows.

Theorem 2.2. Let (X, d, W) be a complete convex metric space and K be a nonempty closed convex subset of X. Let $T: K \to K$ satisfy all the hypotheses of Lemma 2.1. Let $\{\alpha_n\}_{n=0}^{\infty}$, $\{\beta_n\}_{n=0}^{\infty}$, and $\{\gamma_n\}_{n=0}^{\infty}$ be sequences in [0,1] such that $\sum_{n=0}^{\infty} \alpha_n = \infty$. Then the sequence $\{x_n\}$ generated by the modified CR-iteration procedure (1.13) converges strongly to a unique fixed point of T.

Proof. Without loss of generality, we assume that $x_n \neq Tx_n$ for any n = 0, 1, 2, ...

For each integer $n \geq 0$, we let

 $C_n = \{x_i\}_{i=n}^{\infty} \cup \{y_i\}_{i=n}^{\infty} \cup \{z_i\}_{i=n}^{\infty} \cup \{Tx_i\}_{i=n}^{\infty} \cup \{Ty_i\}_{i=n}^{\infty} \cup \{Tz_i\}_{i=n}^{\infty}.$

By Lemma 2.1, C_n is bounded. We denote the diameter of C_n by c_n .

Let $d_n = \max\{\sup_{i \ge n} d(x_n, Tx_i), \sup_{i \ge n} d(x_n, Ty_i), \sup_{i \ge n} d(x_n, Tz_i)\}$ for n = 0, 1, 2, ...

Then it is easy to see that $c_n \stackrel{i \geq n}{=} d_n$ for $n = 0, 1, 2, \dots$

Clearly, the sequence $\{c_n\}$ is a decreasing sequence of nonnegative real numbers so that $\lim_{n\to\infty} c_n$ exists, we let it be c.

Now we prove that c=0. On the contrary, we assume that c>0 so that $c_n>0$ for n=0,1,2,...

For each positive integer n and for each $j \geq n$, we have

$$\begin{split} d(x_n, Tx_j) &= d(Tx_j, W(Ty_{n-1}, y_{n-1}, \alpha_{n-1})) \\ &\leq \alpha_{n-1} d(Tx_j, Ty_{n-1}) + (1 - \alpha_{n-1}) d(Tx_j, y_{n-1}) \\ &\leq \alpha_{n-1} w(M(x_j, y_{n-1})) + (1 - \alpha_{n-1}) d(Tx_j, y_{n-1}) \\ &\leq \alpha_{n-1} w(c_{n-1}) + (1 - \alpha_{n-1}) c_{n-1} \text{ so that} \end{split}$$

 $\sup_{x \in S} d(x_n, Tx_j) \le \alpha_{n-1} w(c_{n-1}) + (1 - \alpha_{n-1}) c_{n-1}.$

Similarly, $\sup d(x_n, Ty_j) \le \alpha_{n-1} w(c_{n-1}) + (1 - \alpha_{n-1}) c_{n-1}$ and

$$\sup_{j \ge n} d(x_n, Tz_j) \le \alpha_{n-1} w(c_{n-1}) + (1 - \alpha_{n-1}) c_{n-1} \text{ hold.}$$

Therefore

$$d_n \le \alpha_{n-1} w(c_{n-1}) + (1 - \alpha_{n-1}) c_{n-1}$$
 for $n = 1, 2, \dots$

Since $c_n = d_n$, we have

$$\alpha_{n-1}(c_{n-1} - w(c_{n-1})) \le c_{n-1} - c_n \quad \text{for} \quad n = 1, 2, \dots$$
 (2.3)

Let $s = \inf\{c_n - w(c_n) : n \ge 0\}$. If s = 0 then there exists a subsequence $\{c_{n(k)}\}$ of the sequence $\{c_n\}$ such that $\lim_{k \to \infty} (c_{n(k)} - w(c_{n(k)})) = 0$, i.e., $c - w(c^+) = 0$,

a contradiction, from (iii) of Lemma 2.1.

Therefore s > 0 so that there exists a real number $\eta > 0$ such that $c_n - w(c_n) \ge \eta$ for n = 0, 1, 2, ...

It follows from the inequality (2.3) that $\eta \alpha_{n-1} \leq c_{n-1} - c_n$ for n = 1, 2, ...

Since the sequence $\{c_n\}$ is convergent, we have the series $\sum \alpha_n < \infty$, a contradiction.

Therefore c=0 so that the sequence $\{x_n\}$ is Cauchy and hence there exists $x \in K$ such that $\lim_{n\to\infty} x_n = x$.

Since c = 0, we have $\lim_{n \to \infty} d(x_n, Tx_n) = 0$ so that $\lim_{n \to \infty} Tx_n = x$.

Now, we prove that x is a fixed point of T.

Since T satisfies the inequality (2.1), we have

$$d(Tx_n, Tx) \le w(M(x_n, x))$$
 for $n = 0, 1, 2...$ (2.4)

Since $M(x_n, x) \ge d(x, Tx)$ for n = 0, 1, 2, ... and $\lim_{n \to \infty} M(x_n, x) = d(x, Tx)$, we have

 $\lim_{n\to\infty} w(M(x_n,x)) = w(d(x,Tx)^+) \text{ so that } d(x,Tx) \leq w(d(x,Tx)^+).$

Hence x is a fixed point of T by using (iii) of Lemma 2.1.

Now from the inequality (2.1) and Remark 1.6, clearly the uniqueness of fixed point of T follows.

If $\alpha_n \equiv 1$ in the modified CR-iteration procedure (1.13) then we have the following corollary from Theorem 2.2.

Corollary 2.3. Let X, K, T be as in Theorem 2.2. Let $\{\beta_n\}_{n=0}^{\infty}$ and $\{\gamma_n\}_{n=0}^{\infty}$ be sequences in [0,1]. For $x_0 \in K$, let the sequence $\{x_n\}_{n=0}^{\infty}$ be generated by the modified Picard-S iteration procedure (1.14). Then $\{x_n\}_{n=0}^{\infty}$ converges to a unique fixed point of T.

In the following, we prove that CR-iteration procedure (1.11) and Picard-S iteration procedure (1.12) converge to a unique fixed point of a quasi-contraction map under certain hypotheses in the setting of Banach spaces.

Corollary 2.4. Let X be a Banach space, K be a nonempty closed convex subset of X, and $T: K \to K$ be a quasi contraction map. Let $\{\alpha_n\}_{n=0}^{\infty}$, $\{\beta_n\}_{n=0}^{\infty}$, and $\{\gamma_n\}_{n=0}^{\infty}$ be sequences in [0,1] such that $\sum_{n=0}^{\infty} \alpha_n = \infty$. For $x_0 \in K$, let $\{x_n\}$ be the sequence generated by either CR-iteration procedure (1.11) or by Picard-S iteration procedure (1.12). Then $\{x_n\}$ converges strongly to a unique fixed point of T.

Proof. Follows from Remark 1.7, Theorem 2.2 and Corollary 2.3.

References

- [1] M. Bridson and A. Haefliger, *Metric spaces of non-positive curvature*, Springer-Verlag, Berlin, Heidelberg, New York, 1999. 1.2
- [2] R. Chugh, V. Kumar, and S. Kumar, Strong convergence of a new three step iterative scheme in Banach spaces, Amer. J. Compu. Math., 2 (2012) 345-357.
- [3] L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45(2) (1974), 267-273.
- [4] L. B. Ćirić, Convergence theorems for a sequence of Ishikawa iterations for nonlinear quasi contractive mappings, Indian J. pure appl. Math., 30(4), (1999) 425-433. 1, 1.4, 1
- [5] X. P. Ding, Iteration process for Nonlinear mappings in Convex metric spaces, J. Math. Anal. Appl., 132, (1988), 114-122.
- [6] F. Gürusoy and V. Karakaya, A Picad-S Hybrid type iteration method for solving a differential equation with retarted argument, arXiv:1403.2546v2. 1
- [7] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147-150.
- [8] M. Moosaei, Fixed point theorems in convex metric spaces, Fixed Point Theory and Appl., Vol. 2012, article 164, (2012) 6 pages. 1.2
- [9] Renu Chugh, Preety Malik, Convergence and fixed point theorems in convex metric spaces: a survey, International Journal of Applied Mathematical Research, 3(2) (2014)133-160. 1
- [10] K. P. R. Sastry, G. V. R. Babu and Ch. Srinivasa Rao, Convergence of an Ishikawa iteration scheme for non linear quasi-contractive mappings in convex metric spaces, Tamkang J. Math., 32 (2), (2001), 117-126.
- [11] W. Takahashi, A convexity in metric space and nonexpansive mappings, Kodai Math. Sem. Rep., 22 (1970), 142-149. 1, 1.5, 1 1, 1.2