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Risk Assessment for Banking Systems

Abstract

In this paper we suggest a new approach to risk assessment for banks. Rather than
looking at them individually we try to undertake an analysis at the level of the banking
system. Such a perspective is necessary because the complicated network of mutual credit
obligations can make the actual risk exposure of banks invisible at the level of individual
institutions. We apply our framework to a cross section of individual bank data as they
are usually collected at the central bank. Using standard risk management techniques in
combination with a network model of interbank exposures we analyze the consequences
of macroeconomic shocks for bank insolvency risk. In particular we consider interest rate
shocks, exchange rate and stock market movements as well as shocks related to the business
cycle. The feedback between individual banks and potential domino effects from bank de-
faults are taken explicitly into account. The model determines endogenously probabilities
of bank insolvencies, recovery rates and a decomposition of insolvency cases into defaults
that directly result from movements in risk factors and defaults that arise indirectly as a
consequence of contagion.

Keywords: Systemic Risk, Interbank Market, Financial Stability, Risk Management
JEL-Classification Numbers: G21, C15, C81, E44
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1 Introduction

Risk management at the level of individual financial institutions has been substantially improved
during the last twenty years. These improvements have been very much spurred by the pres-
sure to cope with a more volatile and dynamic financial environment after the breakdown of the
Bretton Woods system compared to the postwar period. Pressure has however not only come
from the markets. Regulators have undertaken great efforts since the eighties to impose new risk
management standards on banks. To gain public support for these measures it has frequently
been argued that they are necessary to attenuate dangers of systemic risk and to strengthen the
stability of the financial system. But is current regulatory and supervisory practice designed ap-
propriately to achieve these goals? There are reasons to doubt this. Regulators and supervisors
are at the moment almost entirely focused on individual institutions. Assessing the risk of an
entire bankingsystemhowever requires an approach that goes beyond the individual institution
perspective.

One of the major reasons why the individual institutions approach is insufficient is the fact
that modern banking systems are characterized by a fairly complex network of mutual credit
exposures. These credit exposures result from liquidity management on the one hand and from
OTC derivative trading on the other hand. In such a system of mutual exposures the actual risk
borne by the banking system as a whole and the institutions embedded in it may easily be hidden
at the level of an individual bank. The problem of hidden exposure is perhaps most easily seen
in the case of counterparty risk. Judged at the level of an individual institution it might look
rather unspectacular. By the individual institution perspective it can however remain unnoticed
that a bank is part of a chain of mutual obligations in which credit risks are highly correlated.
Its actual risk exposure thus might indeed be quite substantial. Another example of hidden
exposure has been pointed out in the literature by Hellwig (1995). In Hellwig’s example the
network of mutual credit obligations makes substantial exposure of the system to interest rate
risk invisible at the level of an individual bank because the individual maturity transformation
looks short, whereas the maturity transformation of the system as a whole is rather extreme.
To uncover hidden exposure and to appropriately assess risk in the banking system, rather than
looking at individual institutions, risk assessment should therefore make an attempt to judge
the risk exposure of the system as a whole. A’system perspective’on banking supervision has
for instance been actively advocated by Hellwig (1997). Andrew Crockett (2000), the general
manager of the BIS, has even coined a new word -macroprudential- to express the general
philosophy of such an approach.1

The open issue then of course is: What exactly does it mean to take a ’system perspective’
or a macroprudential viewpoint, for the risk assessment of banks? In our paper we provide
an answer to this question. We develop a methodology to assess the risk of a banking system
taking into account the major macroeconomic risk factors simultaneously as well as the complex

1See also Borio (2002).
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network of interbank dealings. The method is designed in such a way that it can be applied to
data as they are usually collected at a central bank. So rather than asking what data we would
ideally like to have, we want to know how far we can get with data already available.

Our basic idea is to look at cross sections of individual bank balance sheet and supervisory
data from the perspective of a network model describing bilateral interbank relations in some
detail. The model allows us to assess the insolvency wrisk of banks for different scenarios of
macroeconomic shocks like interest rate shocks, exchange rate and stock market movements
as well as shocks related to the business cycle. Therefore the contribution of our paper is a
risk management model that thinks about the risk exposure of banks at the level of the banking
system rather than at the level of individual institutions. Our approach can thus be seen as an
attempt to assess ’systemic risk’.2

1.1 An Overview of the Model

The basic framework is a model of a banking system with a detailed description of the structure
of interbank exposures. The model explains the feasible payment flows between banks endoge-
nously from a given structure of interbank liabilities, net values of the banks arising from all
other bank activities and an assumption about the resolution of insolvency in different states of
the world. States of the world are described as follows: We expose the banks financial posi-
tions apart from interbank relations to interest rate, exchange rate, stock market and business
cycle shocks. For each state of the world, the network model uniquely determines endoge-
nously actual interbank payment flows. Taking the feedback between banks from mutual credit
exposures and mutual exposures to aggregate shocks explicitly into account we can calculate
default frequencies of individual banks across states. The endogenously determined vector of
feasible payments between banks also determines the recovery rates of banks with exposures
to an insolvent counterparty. We are able to distinguish bank defaults that arise directly as a
consequence of movements in the risk factors and defaults which arise indirectly because of
contagion. The model therefore yields a decomposition into fundamental and contagious de-
faults. Our approach is illustrated in Figure 1 which shows the various elements of our risk
assessment procedure.

The main data source we use for our model are bank balance sheet data and supervisory
data reported monthly to the Austrian Central Bank (Monatsausweis, MAUS). In particular
these data give us for each bank in the system an aggregate number of on balance sheet claims

2Note that though the termsystemic riskbelongs to the standard rhetoric of discussions about banking regulation
it does not have a precise definition (see Summer (2003) for a discussion). We invoke the term here because we
think that our approach captures some of the issues frequently discussed under this header, in particular the problem
of contagious default.
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Figure 1. The graph shows the basic structure of the model. Banks are exposed to shocks from credit risk
and market risk according to their respective exposures. Interbank credit risk is endogenously explained
by the network model.

and liabilities towards other banks in the system banks abroad and the central bank.3 From
this partial information weestimatethe matrix of bilateral exposures for the entire system. For
the estimation of bilateral exposures we can exploit information that is revealed by the sectoral
organization of the Austrian banking system.4 Scenarios are created by exposing the positions
on the balance sheet that are not part of the interbank business to interest rate, exchange rate,
stock market and loan loss shocks. In order to do so we undertake a historic simulation using
market data, except for the loan losses where we employ a credit risk model. In the scenario
part we use data from Datastream, the major loans statistics produced at the Austrian Central

3Note that these data cover only the on balance sheet part of interbank transactions and do not include off
balance sheet items.

4The sector organization has mainly historic roots and partitions the banks into joint stock banks, savings
banks, state mortgage banks, Raiffeisen Banks, Volksbanken, construction savings and loans associations and
special purpose banks. The system is explained in detail in Section 3.
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Bank (Großkreditevidenz, GKE) as well as statistics of insolvency rates in various industry
branches from the Austrian rating agency Kreditschutzverband von1870. For each scenario
the estimated matrix of bilateral exposures and the income positions determine via the network
model a unique vector of feasible interbank payments and thus a pattern of insolvency. It is the
analysis of these data that we rely on to assess the risk exposure of all banks at a system level.5

Using a cross section of data for September 2001 we get the following main results: The
Austrian banking system is very stable and default events that could be classified as a ”systemic
crisis” are unlikely. We find that the median default probability of an Austrian bank to be
below one percent. Perhaps the most interesting finding is that only a small fraction of bank
defaults can be interpreted ascontagious. The vast majority of defaults is a direct consequence
of macroeconomic shocks.6 Furthermore we find the median endogenous recovery rates to be
66%, we show that the Austrian banking system is quite stable to shocks from losses in foreign
counterparty exposure and we find no clear evidence that the interbank market either increases
correlations among banks or enables banks to diversify risk. Using our model as a simulation
tool, we show that market share in the interbank market alone is not a good predictor of the
relevance of a bank for the banking system in terms of contagion risk.

1.2 Related Research

To our best knowledge this is the first attempt in the literature to design a framework for the
assessment of the risk exposure of an entire banking system taking into account the detailed
micro information usually available in central banks.7 For the different parts of the model we
rely on some results in the literature. The network model we use as the basic building block is
due to Eisenberg and Noe (2001). These authors give an abstract analysis of a static clearing
problem. We rely on these results in the network part of our model. For our analysis we
extend this model to a simple uncertainty framework. The idea to recover bilateral interbank
exposures using bank balance sheet data has first been systematically pursued by Sheldon and

5Why do we treat the vector income positions apart from interbank dealings as state contingent whereas we
treat the matrix of bilateral exposures as uncontingent? First of all note that the actual interbank payments are in
factnot uncontingent because they are determined by the network model and thus interbank payments vary across
states of the world. Treating bilateral exposures as state contingent directly with respect to risk factors would mean
to have all of them in present values and then to look at consequences of changes in risk factors such as interest rate
risk. Such an analysis is not possible - or only at the cost of a set of strong and arbitrary assumptions - for the data
we have at the moment. We therefore treat bilateral interbank exposures by looking at given nominal liabilities and
claims as we can reconstruct them from the balance sheet data. As shown in Figure 1 we think of this as a model
where the income risk of non-interbank positions is driven by exogenous risk factors whereas interbank credit risk
is endogenously explained by the network model.

6This confirms some of the conclusions drawn in a paper by Kaufman (1994) about the empirical (ir)relevance
of contagious bank defaults.

7There have however been various theoretical attempts to conceptualize such a problem. These papers are Allen
and Gale (2000), Freixas, Parigi, and Rochet (2000), and Dasgupta (2000).
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Maurer (1998) for Swiss data on a sectorally aggregated level. They use an entropy optimization
procedure to estimate bilateral exposures from partial information. Upper and Worms (2002)
analyze bank balance sheet data for German banks. Applying modern techniques from applied
mathematics8 they are able to deal with a much larger problem than Sheldon and Maurer (1998)
and estimate bilateral exposures on a entirely disaggregated level.9 We use similar methods
for reconstructing bilateral exposures for the Austrian data. Using disaggregated data has the
advantage that much of bilateral exposures can be exactly recovered by exploiting structural
information about the banking system under consideration.10 The estimation procedure has
then to be applied only to a relatively small part of exposures for which structural information
does not give any guidelines. The credit risk model we use is a version of the CreditRisk+
model of Credit Suisse (1997). We have to adapt this framework to deal with asystemof loan
portfolios simultaneously rather than with the loan portfolio of a single bank.

There is a related literature that deals with similar questions for payment and banking sys-
tems. Humphery (1986) and Angelini, Maresca, and Russo (1996) deal with settlement failures
in payment systems. Furfine (2003) and Upper and Worms (2002) deal with banking systems.
What is common to all of these studies is that they are concerned with the contagion of de-
fault following the simulated failure of one or more counterparties in the system. Our study
in contrast undertakes a systematic analysis of risk factors and their impacts on bank income.
Bank failures and contagion are studied as a consequence of these economic shocks to the en-
tire banking system. Thus while the studies cited above are based on a thought experiment that
tries to work out the implications of the structure of interbank lending on the assumed failure of
particular institutions our analysis is built on a fully fledged model of the banking system’s risk
exposure. The consequences of this exposure are then studied systematically within the frame-
work of the network model. The main innovation of our model is therefore the combination of
a systematic scenario analysis for risk factors with an analysis of contagious default. We can of
course use our framework to undertake similar simulation exercises as the previous literature on
contagious default by letting some institution fail and study the consequences for other banks
in the system. Complementing our analysis by such an exercise is interesting because all of the
studies cited above get rather different results on the actual importance of contagion effects due
to simulated idiosyncratic failure of individual institutions.11

8These techniques are outlined in Blien and Graef (1997) as well as in a book by Fang, Rajasekra, and Tsao
(1997).

9Upper and Worms (2002) rely on a combination of exploiting structural information and entropy optimization
for the reconstruction of bilateral exposures.

10This structural information is of course dependent on the country specific features of the reporting systems.
While we can make use of the fact that many banks have to decompose their reports with respect to certain
counterparties (see section 4) Upper and Worms (2002) can use the fact that in Germany banks have to break down
their reports between sectors and within this information also with respect to maturities. Since many banks only
borrow or lend in the interbank market at specific maturities these authors can identify many bilateral positions.

11The study by Humphery (1986) found the contagion potential from settlement failures in the payment system
to be rather significant. Angelini, Maresca, and Russo (1996) studying settlement failures in the Italian payment
system find a low incidence of contagious defaults. Sheldon and Maurer (1998) conclude from their study that
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The paper is organized as follows: Section 2 describes the network model of the banking
system. Section 3 gives a detailed description of our data. Section 4 explains our estimation
procedure for the matrix of bilateral interbank exposures. Section 5 explains our approach to the
creation of scenarios. Section 6 contains our simulation results for a cross section of Austrian
banks with data from September 2001. Section 7 demonstrates how the framework can be used
for thought experiments and contrasts our empirical findings with other results in the literature.
The final section contains conclusions. Some of the technical and data details are explained in
an appendix.

2 A Network Model of the Interbank Market

The conceptual framework we use to describe the system of interbank credits has been intro-
duced to the literature by Eisenberg and Noe (2001). These authors study a centralized static
clearing mechanism for a financial system with exogenous income and a given structure of
bilateral nominal liabilities. We build on this model and extend it to include uncertainty.

Consider a finite setN = {1, ..., N} of nodes. Each nodei ∈ N is characterized by a given
incomeei and nominal liabilitieslij against other nodesj ∈ N in the system. The entire system
of nodes is thus described by anN ×N matrixL and a vectore ∈ RN . We denote this system
by the pair(L, e).12

We can interpret the pair(L, e) as a model of asystemof bank balance sheets with a detailed
description of interbank exposures: Each nodei ∈ N in the system corresponds to a bank.
The income positions resulting from each bank’s activities is decomposed into two parts: The
interbank positions, described byL, and the net wealth position resulting from other activities
of the bank.13

Let us illustrate this interpretation of the network model by an example: Consider a system
with three banks. The interbank liability structure is described by the matrix

failure propagation due to a simulated default of a single institution is low. Furfine (2003) finds low contagion
effects using exact bilateral exposures from Fedwire. Upper and Worms (2002) find potentially large contagion
effects once loss rates exceed a certain threshold, estimated by them at around45%.

12Note that the liabilities of one nodei ∈ N are the claims of some other nodej ∈ N . Thus rows are liabilities
of the nodes whereas columns are claims.

13Note that the network description is quite flexible and also allows for a richer interpretation. Some banks in
N could for instance describe the central bank or the world outside the banking system. One could also append to
the system a node that Eisenberg and Noe (2001) call the ”sink node”. It has anei of zero and no obligations to
other banks. Liabilities of banks to employees, to the tax authorities etc. can then be viewed as claims of this node
to the system.
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L =

 0 0 2
3 0 1
3 1 0

 (1)

In our example, bank3 has - for instance - liabilities of3 with bank1 and liabilities of1 with
bank2. It has of course no liabilities with itself. The total interbank liabilities for each bank in
the system is given by a vectord = (2, 4, 4). With actual balance sheet data the components
of the vectord correspond to the positiondue to banksfor bank1, 2 and3 respectively. If we
alternatively look at the column sum ofL we get the positiondue from banks. Assume that we
can summarize the net wealth of the banks that is generated from all other activities by a vector
e = (1, 1, 1). This vector corresponds to the difference of asset positions such as bonds, loans
and stock holdings and liability positions such as deposits and securitized liabilities.

To determinefeasiblepayments between banks we have to say something about situations
where a bank is not able to honor its interbank promises. To make liabilities and claims mutually
consistent a simple mechanism to resolve situations of insolvency is in place. This clearing
mechanism is basically a redistribution scheme. If the total net value of a bank - i.e. the income
received from other banks plus the income position of non interbank activities minus the bank’s
own interbank liabilities - becomes negative, the bank is insolvent. In this case the claims of
creditor banks are satisfied proportionally. This is a stylized and simplified description of a
bankruptcy procedure. In this procedure the following properties are taken into account: Banks
have limited liability and default is resolved by proportional sharing of the value of the debtor
bank among it’s creditor banks. Therefore the exogenous parameters(L, e) together with the
assumption about the resolution of insolvencyendogenouslydetermine theactual payments
between banks.

In Eisenberg and Noe (2001) these ideas are formalized as follows: Denote byd ∈ RN
+

14 the
vector of total obligations of banks towards the rest of the system i.e., we havedi =

∑
j∈N lij.

Proportional sharing of value in case of insolvency is described by defining a new matrixΠ ∈
[0, 1]N×N . This matrix is derived fromL by normalizing the entries by total obligations. We
write:

πij =

{ lij
di

if di > 0

0 otherwise
(2)

With these definitions we can describe a financial system with a clearing mechanism that
respects limited liability of banks and proportional sharing as a tuple(Π, e, d) ∈ [0, 1]N×N ×

14RN
+ := {x ∈ RN |xi ≥ 0, i = 1, ..., N}
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RN × RN
+ for which we explain endogenously a so calledclearing payment vectorp∗ ∈ RN

+ . It
denotes the total payments made by the banks under the clearing mechanism. We have:

Definition 1 A clearing payment vector for the system(Π, e, d) ∈ [0, 1]N×N × RN × RN
+ is a

vectorp∗ ∈ ×N
i=1[0, d

i] such that for alli ∈ N

p∗i = min[di, max(
N∑

j=1

πjip
∗
j + ei, 0)] (3)

Applied to our example the normalized liability matrix is given by

Π =

 0 0 1
3
4

0 1
4

3
4

1
4

0


For an arbitrary vector of actual paymentsp between banks the net values of banks can then

be written as
ΠT p + e− p

Under the clearing mechanism - given the payments of all counterparties in the interbank
market - a bank either honors all it’s promises and paysp∗i = di or it is insolvent and pays

p∗i = max(
N∑

j=1

πjip
∗
j + ei, 0) (4)

The clearing payment vector thus directly gives us two important insights. First: For a
given structure of liabilities and bank values(Π, e, d) it tells us which banks in the system are
insolvent. Second: It tells us the recovery rate for each defaulting bank in each state.

To find a clearing payment vector we have to find a solution to a system of inequalities.
Eisenberg and Noe (2001) prove that under mild regularity conditions a unique clearing pay-
ment vector for(Π, e, d) always exists. These results extend - with slight modifications - to our
framework as well.15

The clearing algorithm contains even more information that is interesting for the assessment
of credit risk in the interbank market and for issues of systemic stability. This can be seen by
an explanation of the method by which wecalculateclearing payment vectors. This method is
due to Eisenberg and Noe (2001). They call their procedure the ”fictitious default algorithm”.

15In Eisenberg and Noe (2001) the vectore is in RN
+ whereas in our case the vector is inRN .
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This term basically describes what is going on in the calculation. For a given(Π, e, d) the
procedure starts under the assumption that all banks fully honor their promises, i.e.p∗ = d.
If under this assumption all banks have positive value, the procedure stops. If there are banks
with a negative value, they are declared insolvent and the clearing mechanism calculates their
payment according to the clearing formula (4) and keeps the payments of the positive value
banks fixed. Now it can happen that banks that had a positive value in the first iteration have a
negative value in the second because they loose on their claims on the insolvent banks. Then
these banks have to be cleared and a new iteration starts. Eisenberg and Noe (2001) prove
that this procedure is well defined and converges after at mostN steps to the unique clearing
payment vectorp∗.16

This procedure thus generates interesting information in the light of systemic stability. A
bank that is insolvent in the first round of the fictitious default algorithm is fundamentally in-
solvent. Bank defaults in consecutive rounds can be considered as contagious defaults.17

An application of the fictitious default algorithm to our example leads to a clearing payment
vector ofp∗ = (2, 28

15
, 52

15
). It is easy to check that bank2 is fundamentally insolvent whereas

bank3 is “dragged into insolvency“ by the default of bank2.

To extend the model of the clearing system to a simple uncertainty framework we work
with a basic event tree. Assume that there are two datest = 0 andt = 1. Think of t = 0 as
the observation period, where(L, e0) is observed. Then economic shocks affect the income
vector e0. The shocks lead to a realization of one states in a finite setS of states of the
world att = 1. Each state is characterized by a particulares1. Think of t = 1 as a hypothetical
clearing date where all interbank claims are settled according to the clearing mechanism. By the
theorem of Eisenberg and Noe (2001) we know that such a clearing payment vector is uniquely
determined for each pair(L, es1). Thus from an ex-ante perspective we can assess expected

16Note that our setup implicitly contains a seniority structure of different debt claims of banks. By interpreting
ei as net income from all bank activities except the interbank business we assume that interbank debt claims are
junior to other claims, like depositors or bond holders. However interbank claims have absolute priority in the
sense that the owners of the bank get paid only after all debts have been paid. In reality the legal situation is
much more complicated and the seniority structure might very well differ from the simple procedure we employ
here. For our purpose it gives us a convenient simplification that makes a rigorous analysis of interbank defaults
tractable.

17At this point it is perhaps useful to point out that the clearing payment vector is a fixed point of the map
×N

i=1[0, di] → ×N
i=1[0, di], p 7→ ((ΠT p + e) ∨ 0) ∧ d whereas the dynamic interpretation is derived from the

iterative procedure by which the fixed point is actuallycalculated. We therefore hesitate to follow Eisenberg
and Noe (2001) by interpreting insolvencies at later rounds of the fictitious default algorithm as indicating higher
“systemic stability“ of a bank. Of course one can define such a measure. Since there are other ways to calculate
the clearing payment vector, the order of rounds in the fictitious default algorithm does not have a meaningful
economic interpretation. The fictitious default algorithm nevertheless allows for a meaningful decomposition
between defaults directly due to shocks or indirectly due to default of other banks in the system. No matter how
the clearing vector is calculated the interpretation of fundamental insolvency has a clear economic interpretation
and the classification of all other defaults as contagious does not depend on the particular calculation procedure,
i.e. the fictitious default algorithm.
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Figure 2. Graphical representation of the simple toy-model network of interbank liabilities.

default frequencies from interbank credits across states as well as the expected severity of losses
from these defaults given we have an idea about(L, es1) for all s ∈ S. We can furthermore
decompose insolvencies across states into fundamental and contagious defaults.

Going back to our example we could think of a situation with two states described by two
vectorse11 = (1, 1, 1) ande21 = (1, 3, 2). Given in the observation period we have seen the
matrixL, in the first state banks2 and3 default whereas in the second state no bank is insolvent.
The clearing payment vectors and the network structure for this example are illustrated in Figure
2.

An application of the network model for the assessment of credit risk from interbank posi-
tions therefore requires mainly two things. First, we have to determineL from the data. Second,
we have to come up with a plausible framework to create meaningful scenarios or states of the
world.

3 The Data

In the following we give a short description of our data. Our main sources are bank balance
sheet and supervisory data from the Monatsausweis (MAUS) database of the Austrian Central
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Bank (OeNB) and the database of the OeNB major loans register (Großkreditevidenz,GKE).
We use furthermore data on default frequencies in certain industry groups from the Austrian
rating agency Kreditschutzverband von 1870. Finally we use market data from Datastream.

3.1 The Bank Balance Sheet Data

Banks in Austria report balance sheet data to the central bank on a monthly basis18. On top
of balance sheet data MAUS contains a fairly extensive amount of other data that are relevant
for supervisory purposes. They include among others numbers on capital adequacy statistics on
times to maturity and foreign exchange exposures with respect to different currencies. We can
use this information to learn more about the structure of certain balance sheet positions.

In our analysis we use a cross section from the MAUS database for September 2001 which
we take as our observation period. We want to use these data to get an estimate of the matrix
L as well as to determine the vectore0. All items are broken down in Euro exposures and into
foreign exchange exposures.

A particular institutional feature of the Austrian banking system helps us with the estimation
of bilateral interbank exposures. It has a sectoral organization for historic reasons. Banks belong
to one of the seven sectors: joint stock banks, savings banks,state mortgage banks, Raiffeisen
banks, Volksbanken, housing construction savings and loan associations and special purpose
banks. This sectoral organization of banks left traces in the data requirements of OeNB. Banks
have to break down their MAUS reports on claims and liabilities with other banks according
to the different banking sectors, central bank and foreigners. This practice of reporting on bal-
ance interbank positions reveals some structure of theL matrix. The savings banks and the
Volksbanken sector are organized in a two tier structure with a sectoral head institution. The
Raiffeisen sector is organized by a three tier structure, with a head institution for every federal
state of Austria. The federal state head institutions have a central institution, Raiffeisenzentral-
bank (RZB) which is at the top of the Raiffeisen structure. Banks with a head institution have
to disclose their positions with the head institution. This gives us additional information on
L. From the viewpoint of banking activities the sectoral organization is today not particularly
relevant. The activities of the sectors differ only slightly and only a few banks are specialized
in specific lines of business. The908 independent banks in our sample are to the largest extent
universal banks.

Total assets in the Austrian banking sector in September 2001 were567, 071 Million Euro.
The sectoral shares are:22% joint stock banks,35% savings banks,6% state mortgage banks,
21% Raiffeisen banks,5% Volksbanken,3% housing construction savings and loan associations
and8% special purpose banks. The banking system is dominated by a few big institutions:57%

18This report called Monatsausweis (MAUS) is regulated in§74 Abs. 1 and 4 of the Austrian banking law,
Bankwesengesetz (BWG).
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Joint stock
banks

Savings
banks

State
mortgage

banks

Raiffeisen
banks

Volks-
banken

Construc-
tion

S&Ls

Special
purpose

banks
Number of banks 61 67 8 617 71 5 79
Fraction of liabilities in
own sector

74% 35% 10% 75% 73% 0% 7%

Exposure to central
institution as share of
total exposure

- 60% - 77% 71% - -

Exposure to central
institution as share of
sector exposure

- 79% - 88% 89% -

Joint stock banks 9291.8510 606.4400 77.4930 438.1340 123.3800 15.1310 1929.6130
Savings banks 9176.8560 6201.8740 208.2580 326.1450 55.2190 3.2040 1636.9970
State Mortgage b. 269.5640 61.2650 76.9350 110.2090 8.4670 4.9470 265.5170
Raiffeisen banks 761.8140 265.9590 121.1780 15166.3870 35.2130 692.4990 3313.8260
Volksbanken 467.2920 10.0400 58.9800 313.3170 2848.4250 21.4760 205.5010
Construction S&Ls 0.0000 22.7740 0.0000 222.2600 0.0000 0.0000 34.4030
Special purpose b. 2044.3760 1083.3340 131.7620 660.3960 93.4950 0.0020 278.1220

Table 1. Sectoral decomposition of interbank liabilities. The table shows the number of banks in each
sector, the average fraction of interbank liabilities towards banks in the own sector as share of total
exposure, the average fraction of interbank liabilities towards banks in the own sector as share of their
sector exposure as well as the average liability of sectorally organized banks with their head institution.
The first row in the lower block shows liabilities of joint stock banks against joint stock banks, of joint
stock banks against savings banks etc.. The next row is to be read in the same way. These numbers are
in Million Euro.

of total assets are concentrated with the10 biggest banks. The share of total interbank liabilities
in total assets of the banking system is33%.

Statistics for the data on domestic interbank exposures are displayed in Table 1, which
shows sectoral aggregates of the domestic on balance sheet exposures for the Austrian interbank
market. About two thirds of all Austrian banks belong to the Raiffeisen sector which consists
mainly of small, independent banks in rural areas. From the fraction of liabilities in the own
sector we can see that some sectors form a fairly closed system, where the average bank holds
about three quarters of the liabilities within the sector. Construction S&Ls have no liabilities to
banks in their sector. We can also see that banks in a sector with a head institution do the major
share of their interbank activities with their own head institution. This is in particular true for
many of the smaller banks. The special purpose banks are quite diversified in their liabilities.
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3.2 The Credit Exposure Data

We can get a rough breakdown for the banks’ loan portfolio to non-banks by making use of
the major loans register of OeNB (Großkreditevidenz, GKE). This database contains all loans
exceeding a volume of364, 000 Euro. For each bank we use the amount of loans to enterprises
from 35 sectors classified according to the NACE standard.19 It gives us the volume as well
as the number of credits to these different industry branches. Combining this information with
data from the Austrian Rating Agency Kreditschutzverband von 1870 (KSV) we can estimate
the riskiness of a loan in a certain industry. The KSV database gives us time series of default
rates for the different NACE branches. From this statistics we can produce an average default
frequency and its standard deviation for each NACE branch. These data serve as our input to
the credit risk model.20

For the part of loans we can not allocate to industry sectors we have no default statistics
and no numbers of loans. To construct an insolvency statistics for the residual sector we take
averages from the data that are available. To construct a number of loans figure for the residual
sector we assume the share of loan numbers in industry and in the residual sector is proportional
to the share of loan volume between these sectors. We have chosen this approach for a lack of
better alternatives. We should also note that the insolvency series is very short. The series are
available semi-annually beginning with January 1997 which gives us8 observations per sector.
Thus the estimate of mean default rates and their standard deviation we can get from these data
is noisy.21 We display average default frequencies and their standard deviation that we get from
these data in Table 10 in Appendix A.

3.3 Market Data

Some positions on the banks’ asset portfolios are subject to market risk. We collect market data
corresponding to the exposure categories over twelve years from September 1989 to September
2001 from Datastream. These data are used for the creation of scenarios. Specifically we
collect exchange rates of USD, JPY, GBP and CHF to the Austrian Schilling (Euro) to compute

19We use the classification according toÖNACE 1995. This is the Austrian version of NACE Rev. 1, a European
classification scheme, which has to be applied according to VO (EWG) Nr. 3037/ 90 for all member states. NACE
is an acronym for Nomenclature géńerale des activit́eséconomiques dans les communautés euroṕeennes.

20The matching procedure we apply suffers from some data inconsistencies. Though the data come in principle
from the same sources the reporting procedures are not rooted in exactly the same legal base. So there might be
discrepancies in the numbers. MAUS is legally based on the Austrian law on banking, Bankwesengesetz (BWG)
whereas the legal base for GKE is the BWG plus a special regulation for loans with volume above a certain
threshold (Großkreditmeldungsverordnung GKMVO).

21In particular the data don’t contain a business cycle. Again we have to live with this short series because this is
the most we can get at the moment. These estimates will become better in the future however as more observations
are collected.
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exchange rate risk. As we only have data on domestic and international equity exposure we
include the Austrian index ATX and the MSCI-world index in our analysis. To account for
interest rate risk, we compute zero bond prices for three month, one, five and ten years, from
collected zero rates for EUR, USD, JPY, GBP and CHF.22

4 Estimating Interbank Liabilities from Partial Information

If we want to apply the network model to our data we have the problem that they contain only
partial information about the interbank liability matrixL. The bank by bank record of assets
and liabilities with other banks gives us the column and rowsumsof the matrixL. Furthermore
we know some structural information. For instance we know that the diagonal ofL (and thus of
Π) must contain only zeros since banks do not have claims and liabilities against themselves.

The sectoral structure of the Austrian banking system gives us additional information we can
exploit for the reconstruction of theL matrix. The bank records contain claims and liabilities
against the different sectors. Hence we know the column and row sums of the submatrices
of the sectors. Two sectors have a two tier and one sector has a three tier structure. Banks in
these sectors break down their reports further according to the amount they hold with the central
institution. Due to the fact that there are many banks that hold all their claims and liabilities
within their sector or only against the respective central institution these pieces of information
determine already72% of all entries of the matrixL exactly. Therefore by exploiting the sectoral
information, we actually know a major part ofL from our data.

We would like toestimatethe remaining28% of the entries ofL by optimally exploiting
the information we have. Our ignorance about the unknown parts of the matrix should be
reflected in the fact that all these entries are treated uniformly in the reconstruction process.
The procedure should be furthermore adaptable to include any new information that might get
available in the process of data collection. In the following we use a procedure that formulates
the reconstruction of the unknown parts of theL matrix as anentropy optimization problem.23

22Sometimes a zero bond series is not available for the length of the period we need for our exercise. In these
cases we took swap rates.

23This procedure has been applied already to the problem of reconstructing unknown bilateral interbank expo-
sures from aggregate information by Upper and Worms (2002) and Sheldon and Maurer (1998). Entropy optimiza-
tion is applied in a wide range of practical problems. For a detailed description see Fang, Rajasekra, and Tsao
(1997) or Blien and Graef (1997). As we have explained above entropy optimization can be justified on informa-
tional grounds. There are counterarguments to this as well. One might criticize that entropy optimization is not
a very attractive procedure for the risk analysis of our paper because it makes exposures maximally diversified
among the unknown cells ofL and one would presumably be much more interested in extremer structures. On
the other hand our knowledge about ’critical’ liability structures is at the moment very poor and any assumption
would be even more arbitrary than the entropy procedure. We should however stress that these considerations are
not so important for our case since we are able to identify a very large set of entries inL exactly. Thus it is the
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What this procedure does can intuitively be explained as follows: It finds a matrix that
fulfills all the constraints we know of and treats all other parts of the matrix as balanced as
possible. This can be formulated as minimizing a suitable measure of distance between the
estimated matrix and a matrix that reflects our a priori knowledge on large parts of bilateral
exposures. It turns out that the so calledcross entropymeasure is a suitable concept for this task
(see Fang, Rajasekra, and Tsao (1997) or Blien and Graef (1997)).

Assume we have in totalK constraints that include all constraints on row and column sums
as well as on the value of particular entries. Let us write these constraints as

N∑
i=1

N∑
j=1

akijlij = bk (5)

for k = 1, ..., K andakij ∈ {0, 1}.

We want to find the matrixL that has the least discrepancy to some a priori matrixU with
respect to the (generalized) cross entropy measure

C(L, U) =
N∑

i=1

N∑
j=1

lij ln(
lij
uij

) (6)

among all the matrices fulfilling (5) with the convention thatlij = 0 wheneveruij = 0 and
0 ln(0

0
) is defined to be0.

Due to data inconsistencies the application of entropy optimization is not straightforward.
For instance the liabilities of all banks in sectork against all banks in sectorl do typically not
equal the claims of all banks in sectorl against all banks in sectork.24 We solve this problem
by using constructing a start matrix for the entropy maximization, which reflects all our a priory
knowledge. The procedure is described in detail in Appendix B

We see three main advantages of this method to deal with the incomplete information prob-
lem raised by our data. First the method is able to include all kinds of constraints we might find
out about the matrixL maybe from different sources. Second, as more information becomes
available the approximation can be improved. Third, there exist computational procedures that
are easy to implement and that can deal efficiently with very large problems (see Fang, Ra-
jasekra, and Tsao (1997) or Blien and Graef (1997)). Thus problems similar to ours can be
solved efficiently and quickly on an ordinary personal computer, even for very large banking
systems.

combination of structural knowledge plus entropy optimization which gives the estimation of bilateral exposures
some bite.

24We do not know the reasons for these discrepancies. Some of the inconsistencies seem to suggest that the
banks assign some of their counterparties to the wrong sectors.
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5 Creating Scenarios

Our model of the banking sector uses differentstates of the worldor scenarios to model uncer-
tainty. In each scenario banks face gains and losses due to market risk and credit risk. Some
banks may fail which possibly causes subsequent failures of other banks, as it is modeled in
our network clearing framework. In our approach the credit risk in the interbank network is
modeled endogenously while all other risks - like gains and losses from FX and interest rate
changes as well as from equity price changes losses from loans to non-banks - are reflected in
the positionei. The perspective taken in our analysis is to ask, what are the consequences of
different scenarios forei on the whole banking system.

We choose a standard risk management framework to model the shocks to banks. To simu-
late scenario losses that are due to exposures to market risk we conduct a historical simulation
and to capture losses from loans to non-banks we use a credit risk model.

Table 2 shows, which balance sheet items are included in our analysis and how the risk
exposure is modeled. Market risk (stock price changes, interest rate movements and FX rate
shifts) are captured by a historical simulation approach (HS) for all items except other assets
and other liabilities, which includes long term major equity stakes in not-listed companies, non
financial assets like property and IT-equipment and cash on the asset side and equity capital
and provisions on the liability side. Credit losses from non-banks are modeled via a credit risk
model. The credit risk from bonds is not included since most banks hold only government
bonds. The credit risk in the inter-bank market is determined endogenously.

5.1 Market Risk: Historical Simulation

We use a historical simulation approach as it is documented in the standard risk management
literature (Jorion (2000)) to assess the market risk of the banks in our system. This methodology
has the advantage that we do not have to specify a certain parametric distribution for our returns.
Instead we can use the empirical distribution of past observed returns and thus capture also
extreme changes in market risk factors. From the return series we draw random dates. By this
procedure we capture the joint distribution of the market risk factors and thus take correlation
structures between interest rates, stock markets and FX markets into account.

To estimate shocks on bank capital stemming from market risk, we include positions in
foreign currency, equity and interest rate sensitive instruments. For each bank we collect foreign
exchange exposures for USD, JPY, GBP and CHF only as no bank in our sample has open
positions of more than1% of total assets in any other currency. From the MAUS database we
get exposures to foreign and domestic stocks, which is equal to the market value of the net
position held in these categories. The exposure to interest rate risk can not be read directly from
the banks’ monthly reports. We have information on net positions in all currencies combined

18



Interest rate/ Credit risk FX risk
Assets stock price risk
short term government
bonds and receivables Yes (HS) No Yes (HS)
loans to other banks Yes (HS) endogenous by clearing Yes (HS)
loans to non banks Yes (HS) credit risk model Yes (HS)
bonds Yes (HS) no as mostly government Yes (HS)
stock holdings Yes (HS) No Yes (HS)
other assets No No No
Liabilities
liabilities other banks Yes (HS) endogenous by clearing Yes (HS)
liabilities non banks Yes (HS) No Yes (HS)
securitized liabilities Yes (HS) No Yes (HS)
other liabilities No No No

Table 2. The table shows how risk of the different balance sheet positions is covered in our scenarios.
HS is a shortcut for historic simulation.

for different maturity buckets (up to 3 month but not callable, 3 month to 1 year, 1 to 5 years,
more than 5 years). These given maturity bands allow only a quite coarse assessment of interest
rate risk.25 Nevertheless the available data allow us to estimate the impact of changes in the
term structure of interest rates. To get an interest rate exposure for each of the five currencies
EUR, USD, JPY, GBP and CHF we split the aggregate exposure according to the relative weight
of foreign currency assets in total assets. This procedure gives us a vector of26 exposures,4
FX, 2 equity, and20 interest rate, for each bank. Thus we get aN × 26 matrix of market risk
exposure.

We collect daily market prices over3, 219 trading days for the risk factors as described in
subsection 3.3. From the daily prices of the26 risk factors we compute daily returns. We rescale
these to monthly returns assuming twenty trading days and construct a26 × 3219 matrix R of
monthly returns.

25We would like to have a finer granularity in the buckets, because right now a wide range of maturities is
grouped together. We would prefer more buckets especially in the longer maturities. As the maturity buckets in
the banks’ exposure reports are quite broad, there will be instruments of different maturities in each bucket. As
we consider only the net position within each bucket for our risk analysis, we might have some undesired netting
effects that will result in an underestimation of market risk. Consider for example a five year loan that is financed
by one year deposits. As both assets fall into the same bucket, the net exposure is zero despite of the fact that there
is some obvious interest rate risk. We compensate for this effect by choosing as risk factors for each bucket a zero
bond with a maturity at the upper bound of the respective maturity band.
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For the historical simulation we draw10, 000 scenarios from the empirical distribution of
returns. To illustrate the procedure letRs be one such scenario, i.e. a column vector from the
matrix R. Then the profits and losses that arise from a change in the risk factors as specified
by the scenario are simply given by multiplying them with the respective exposures. Let the
exposures that are directly affected by the risk factors in the historical simulation be denoted
by a. The vectoraRs contains then the profits or losses each bank realizes under the scenario
s ∈ S. Repeating the procedure for all10, 000 scenarios, we get a distribution of profits and
losses due to market risk.

5.2 Credit Risk: Calculating Loan Loss Distributions

For the modeling of loan losses we can not apply a historical simulation as there are no published
time series data on loan defaults. We employ one of the standard modern credit risk models -
CreditRisk+ - to estimate a loan loss distribution for each bank in our sample.26 We rely on
this estimated loss distribution to create for each bank the loan losses across scenarios. While
CreditRisk+ is designed to deal with a single loan portfolio we have to deal with asystemof
portfolios since we have to consider all banks simultaneously. The adaptation of the model to
deal with such a system of loan portfolios turns out to be straightforward.

The basic inputs CreditRisk+ needs to calculate a loss distribution is a set of loan exposure
data, the average number of defaults in the loan portfolio of the bank and its standard deviation.
Aggregate shocks are captured by estimating a distribution for the average number of loan
defaults for each bank.27 This models business cycle effects on average industry defaults. The
idea is that these default frequencies increase in a recession and decrease in booms. Given
this common shock, defaults are assumed to be conditionally independent. We construct the
bank loan portfolios by decomposing the bank balance sheet information on loans to non banks
into volume and number of loans in different industry sectors according to the information
from the major loan register. The rest is summarized in a residual position as described in
Section 3. Using the KSV insolvency statistics for each of the35 industry branches and the
proxy insolvency statistics for the residual sector, we can assign an average default frequency
and a standard deviation of this frequency to the different industry sectors. The riskiness of a
loan in a particular industry is then assumed to be described by these parameters. Based on this
information we can calculate the average default frequency and it’s standard deviation for each
individual bank portfolio. From these data we then construct the distribution of the aggregate
shock (i.e. the average default frequency of the bank portfolio), for each bank in our sample.

26A recent overview on different standard approaches to model credit risk is Crouhy, Galai, and Mark (2000).
CreditRisk+ is a trademark of Credit Suisse Financial Products (CSFP). It is described in detail in CSFP Credit
Suisse (1997)

27In CreditRisk+ this distribution is specified as a gamma distribution. The parameters of the gamma distribution
can be determined by the average number of defaults in the loan portfolio and its standard deviation.
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Figure 3. Computation of Credit loss scenarios following an extended CreditRisk+ model. Based on
the composition of the individual bank’s loan portfolio we estimate the distribution of the mean default
rate for each bank (step 1). Reflecting the idea of a common economic shock we draw the same quantile
from each bank’s mean default rate distribution (step 2). Based on this draw, we can compute each bank’s
individual loan loss distribution (step 3). The scenario loan losses are then drawn independently for each
bank to reflect an idiosyncratic shock (step 4). 10,000 scenarios are drawn repeating steps 2 to 4.

With these data we are now ready to create loan loss scenarios. First we draw for each bank
a realization from each bank’s individual distribution of average default frequencies. To model
this as an economy wide shock, we draw the same quantile for all banks in the banking system.
Given the average default frequency, defaults are assumed to be conditionally independent. We
can then calculate a conditional loss distribution for each bank, from which we then draw loan
losses.28 Figure 3 illustrates the procedure for scenario generation in our extended CreditRisk+
framework.

28We apply standard variance reduction techniques in our Monte Carlo simulation. We go through the quantiles
of the distribution of average default frequencies at a step length of0.01. Thus, we draw hundred economy wide
shocks from each of which we draw 100 loan loss scenarios, yielding a total number of 10,000 scenarios.
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Minimum 10% Quantile Median 90%Quantile Maximum
Joint stock banks 0% 0% 0.02% 3.70% 69.00%
Savings banks 0% 0.01% 0.27% 2.80% 7.43%
State Mortgage banks 0% 0.01% 0.42% 2.16% 2.64%
Raiffeisen banks 0% 0.01% 0.97% 13.50% 72.57%
Volksbanken 0% 0.01% 0.33% 7.19% 84.75%
Construction S&Ls 0.09% 0.088% 6.05% 13.46% 13.46%
Special purpose banks 0% 0% 0% 0.69% 34.61%
Entire banking system 0% 0% 0.51% 10.68% 84.75%

Table 3. Default probabilities of individual banks, grouped by sectors and for the entire banking system.

5.3 Combining Market Risk, Credit Risk, and the Network Model

The credit losses across scenarios are combined with the results of the historic simulations to
create the total scenarios fores for each bank. By the network model the interbank payments
for each scenario are then endogenously explained by the model for any given realization ofes

(see Figure 1). Thus we get endogenously a distribution of clearing vectors, default frequencies,
recovery rates and a statistics on the decomposition into fundamental and contagious defaults.

6 Results

6.1 Default frequencies

From the network model we get a distribution of clearing vectorsp∗ and therefore also a dis-
tribution of insolvencies for each individual bank across states of the world. This is because
whenever a component inp∗ is smaller than the corresponding component ind the bank has
not been able to honor it’s interbank promises. We can thus generate a distribution of default
frequencies for individual sectors and for the banking system as a whole. The relative frequency
of default across states is then interpreted as adefault probability. The distribution of default
probabilities is described in Table 3. It shows minimum, maximum the 10 and 90 percent quan-
tiles as well as the median of individual bank default probabilities grouped by sectors and for
the entire banking system.

We can see from the table that some banks are extremely safe as default probabilities in the
10 percent quantile are very low and often even zero. Also the median default probability is
below 1 percent for every sector except the Construction S&Ls. Default probabilities increase
as we go to the 90% quantile but they stay fairly low. Very few banks however have a very high
probability of default. For a supervisor, running this model such banks could be identified from
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Minimum 10% Quantile Median 90%Quantile Maximum
Joint stock banks 0% 0% 51.00% 94.96% 99.70%
Savings banks 0% 11.00% 70.57% 90.15% 98.69%
State Mortgage banks 0.74% 2.63% 59.45% 93.99% 95.56%
Raiffeisen banks 0% 0.75% 65.42% 93.49% 99.22%
Volksbanken 0% 7.23% 73.80% 91.26% 96.82%
Construction S&Ls 0% 0% 0.37% 48.76% 48.76%
Special purpose banks 0% 0% 8.66% 97.70% 98.30%
Entire banking system 0% 0% 65.97% 93.49% 99.70%

Table 4. Individual bank recovery rates of interbank credits grouped by sectors and for the entire banking
system.

our calculations and looked at more closely to get a more precise idea, of what the problem
might be.

6.2 Severity of losses: Recovery rates

For the severity of a crisis of course default frequencies are not the only thing that counts.
We also want to judge the severity of losses. An advantage of the network model is that it
yields for each bankendogenousrecovery rates, i.e. the fraction of actual payments relative to
promised payments in the case of default.29 Of course these recovery rates must not be taken
literally because they are generated by the clearing mechanism of the model under very specific
assumptions. If in reality a bank would become insolvent and sent into bankruptcy, bankruptcy
costs or other sharing rules than assumed in this paper could affect recovery rates. However the
network model can give a good impression on the order of magnitudes that might be available
in such an event. We report expected recovery ratios in Table 4.

As we can see, the median recovery rate in the banking system is 66%. Thus for more than
half of the banks in the entire banking system the value of their interbank claims is not reduced
by more than a third in case of default of a counterparty. If we look at the sectoral grouping of
the median recovery rate we see substantial differences. While savings banks and Volksbanken
have median recovery rates above 70%, the median recovery rate for the Construction S&Ls is
very low.

29In terms of the network model, it is the ratiop
∗
i

di
∀i ∈ N with 0 ≤ p∗i ≤ di.
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6.3 Systemic stability: Fundamental versus Contagious Defaults

Let us now turn to the decomposition into fundamental and contagious defaults. This decompo-
sition is particularly interesting from the viewpoint of systemic stability. It is also interesting to
get an idea about contagion of bank defaults from a real dataset since the empirical importance
of domino effects in banking has been controversial in the literature.30 Bank defaults may be
driven by large exposures to market and credit risk or from an inadequate equity base. Bank
defaults may however also be initiated by contagion: as a consequence of a chain reaction of
other bank failures in the system. The fictitious default algorithm allows us to distinguish these
different cases.

Non-contagious bank defaults lead to insolvency in the first round of the fictitious default
algorithm. These defaults are a direct result from shocks to fundamental risk factors of the
banks’ businesses. As the iterations of the algorithm increase other banks may become insolvent
as aresultof bank failures elsewhere in the system. These cases may be classified as contagious
defaults. These risks are not visible by a regulatory setup that focuses on individual banks’
”soundness”. Table 5 summarizes the probabilities of fundamental and contagious defaults in
our data.

We list the probabilities of0 − 10 banks defaulting fundamentally and the probability of
banks defaulting contagiously as a consequence of this event. The next row shows similar in-
formation for the event that11 − 20 banks get insolvent and the probability that other banks
default contagiously as a consequence of this etc. What is remarkable in this table is that the
relative importance of contagious default events as compared to the importance of contagious
defaults is relatively low. In fact approximately94% of default events are directly due to move-
ments in risk factors whereas6% can be classified as contagious.

The number of default cases by its own does not provide a full picture of the effects of
insolvency. It is interesting to look also at the size of institutions that are affected. Describing
bank size by total assets, we see that the average bank affected by fundamental default holds
0.8% of the assets in the banking system. In the worst case of our scenarios we find that banks
holding38.9% of the assets in the banking system default fundamentally. Looking at contagious
defaults across all scenarios total assets of banks affected are on average0.05%, whereas in the
worst scenario banks with a share of36.9% in total assets are affected. In total we have the
numbers0.9% and 37%. Plotting a histogram of bank defaults by total assets confirms the
picture we get from this statistics. Smaller banks are more likely to fail than the larger banks as
we can see in Figure 4.

Our finding that the risk of contagion is relatively small is in line with findings in Furfine
(2003). Upper and Worms (2002), letting one bank fail at a time, find that, while the average
contagion effect following the simulated default of a single institution, is small, themaximum

30See in particular the detailed discussion in Kaufman (1994).

24



Fundamental Contagious Total
0-10 6.06% 0.02% 6.08%
11-20 24.62% 0.12% 24.74%
21-30 26.16% 0.22% 26.38%
31-40 18.11% 0.28% 18.39%
41-50 9.36% 0.40% 9.76%
51-60 4.50% 0.50% 5.00%
61-70 2.24% 0.27% 2.51%
71-80 1.31% 0.42% 1.73%
81-90 0.68% 0.48% 1.16%
91-100 0.38% 0.38% 0.76%
more 0.86% 2.63% 3.49%
Total 94.28% 5.72% 100.00%

Table 5. Probabilities of fundamental and contagious defaults. A fundamental default is due to the losses
arising from exposures to market risk and credit risk to the corporate sector, while a contagious default
is triggered by the default of another bank who cannot fulfill its promises in the interbank market.
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Figure 4. Histogram of bank defaults by total assets.
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contagion effect increases steeply once the loss ratio has exceeded a critical threshold of about
45% of total assets. Note that this result is probably strongly driven by the simulated failure of
big institutions on the one hand and the exogenous loss ratios on the other hand.

Finally it might be interesting to look whether the interbank market actually increases cor-
relations between banks or whether it allows banks to diversify risk which reduces correlation.
Remember that in our model, we describe the banking system by separately considering inter-
bank business and all other bank activities. In Figure 5 we look at the pairwise correlations
across scenarios of bank values generated by all activities apart from interbank business (the
vectore) and plot them against the pairwise correlations of bank values once we take the in-
terbank part (after clearing) into account. Interbank relations can in principle lead to lower or
higher correlations or they may have no effect. No effect would imply that all values were
clustered around the diagonal, a diversification effect of the interbank market would cause the
correlations to be below the diagonal. We can see that the interbank market changes the pair-
wise correlations of many bank values considerably, but there is no obvious trend. This picture
thus gives further evidence that the network of mutual credit obligations has indeed an effect on
the risk structure of the banking system.

7 Using the Model as an Experimentation Tool

While our model’s main focus is an integrated risk analysis for a banking system it can of
course also be used in the traditional way of the previous contagion literature discussed in
the beginning. This use basically consists of thought experiments that try to figure out the
consequences of certainhypothetical eventslike the idiosyncratic failure of a big institution.
In the following we want to demonstrate some such exercises with our model and the Austrian
data. This will also give us the opportunity to further discuss the relation of our study to previous
results on systemic risk and contagion of default.

In our first thought experiment we consider the possibility that bank insolvencies actually
destroy some fraction of total assets. Note that the analysis so far, ignored this possibility. The
clearing procedure distributed the entire value of an insolvent institution proportionally among
the creditor banks. In the context of our model, the assumption of zero losses makes sense
because the model just tries to assess technical insolvency of institutions that is implied by
the data and the risk analysis. It isnot a model that predicts bankruptcies. Still it might be
interesting to ask, what would be the consequences if the technical insolvencies actually turned
out to be true bank breakdowns that destroy asset values. In line with James (1991) who found
that realized losses in bank failures can be estimated at around10% of total assets we chose our
range of loss rates from0, 10%, 25% up to 40% of total assets as our estimate of bankruptcy
costs. The results are shown in Table 6.
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Figure 5. Correlation of bank values with (node values) and without interbank positions (e) across
different scenarios.

Assuming loss rates different from zero percent has little consequences for the ’typical’
scenario. In77% of the scenarios there are no contagious defaults irrespective of the assumed
bankruptcy costs. Yet for some scenarios the consequences can be fairly dramatic. The maxi-
mum number of contagious defaults increases sharply once we assume loss rates different from
zero. For instance at a loss rate of10% of total assets, the maximum number of contagious
defaults is413 (45% of all banks) compared to46 (5%) with a loss rate of0%. As we can see,
low bankruptcy costs are crucial to systemic stability of the banking system.

Another important issue is the question of how much funds the regulator needs to avoid
fundamental or contagious defaults in each and every scenario. Being slightly less ambitious
it could also be interesting to calculate the funds needed for insolvency avoidance in90, 95, 99
percent of the scenarios very much in the spirit of a value at risk model. Our framework can
be used for such estimations. As shown in Table 7, a complete avoidance strategy amounts
to about8.5 billion Euro, which corresponds to 1.5% of all the assets held by the banks in
the system. By only focusing on avoiding fundamental defaults in99% of the scenarios the
regulator can decrease this amount to about1.7 billion Euro (or 0.31% of all total assets). The
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Assumed loss rate 0% 10% 25% 40%
Scenarios without Contagious Default 96% 91% 87% 77%
Average Number of Contagious Defaults 0.13 1.36 14.06 21.2
Maximum Number of Contagious Defaults 46 413 624 629

Table 6. Consequences of different bankruptcy costs: The first row displays different assumed loss ratios
as a percentage of total assets in the case of default. In the second row we see the percentage of scenarios
without any contagious defaults. The next two rows show the average and the maximum number of
contagious defaults across scenarios for the different loss rate assumptions.

Quantiles 90% 95% 99% 100%
Fundamental Default 215 472 1732 8527
Contagious Default 0 0 6 753

Table 7. Costs of avoiding fundamental and contagious defaults: In the first row we give estimates for the
amount of funds required to avoid fundamental defaults in90, 95, 99 and100 percent of the scenarios.
The second row shows the amounts necessary to avert contagious defaults once fundamental defaults
have occurred. Costs are in million Euro.

complete avoidance of contagion - in contrast - has costs of753 million Euro (0.13%) which is
comparatively low.

Our analysis so far has assumed that foreign counterparties will always fulfill their obli-
gations completely. Especially banks which are the most active institutions in the domestic
interbank market have sometimes considerable foreign exposures. To study the consequences
of default of international counterparties we assume that5, 10, 25 and40% of foreign exposures
will be lost. We re-run our analysis assuming different loss rate and record the number of banks
that are affected by contagious default in each scenario. Table 8 reports the minimum and the
maximum number of banks affected by contagious default in one scenario as well as quantiles
across scenarios.

The banking system shows reasonable resilience to losses of5% and10%. However the
number of defaults grows dramatically with increasing foreign losses. A scenario plot is shown
in Figure 6. It displays for each scenario,1 to 10000 the number of contagious defaults under
the assumption that25% of foreign interbank claims will be lost.

In a similar way as the previous analysis, we can analyze the hypothetical default of signif-
icant institutions in the banking system. This approach has been taken for instance by Furfine
(2003). Following his experiments we calculate the consequences of default of significant insti-
tutions for loss rates of5% (Table 9, Panel A) and40% (Table 9, Panel B). We take the exposure
in the interbank market as a measure the significance of an institution. Table 9 shows that the
consequences to the banking system are moderate in the case where the selected banks are only
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Quantiles of Scenarios Min 25% 50% 75% Max
0% loss 0 0 0 0 46
5% loss 0 2 2 3 56
10% loss 2 4 5 6 78
25% loss 4 6 7 8 313
40% loss 7 13 15 17 472

Table 8. Effects of losses from foreign counterparties: Number of banks that are affected by contagious
default. Each row displays a different assumption on the loss rate on promised payments. The columns
are the various quantiles of the distribution across scenarios.

Panel A: assumed loss rate5% of promised payments.
Quantiles Min 25% 50% 75% Max
Most significant bank 0 0 0 0 72
Second most significant bank 0 0 0 0 75
10th most significant bank 0 0 1 2 91
2 most significant banks 0 0 0 1 78

Panel B: assumed loss rate40% of promised payments.
Min 25% 50% 75% Max

Most significant bank 1 6 6 7 607
Second most significant bank 0 3 5 8 641
10th most significant bank 6 54 65 73 581
2 most significant banks 6 15 17 20 649

Table 9. Number of contagious defaults following a breakdown of significant institutions, where sig-
nificance is measured as market share in the domestic interbank market. Quantiles across the 10,000
scenarios are shown.

able to honor95% of their promised payments (5% loss). In most scenarios no, or only one
bank defaults.

Not surprisingly for the case where they are able to fulfill only60% (loss rate40%) we get
quite a different picture. The median number of banks facing contagious default is between5
and65 and in the maximum contagion can affect even up to649 (71%) banks. This finding is
in line with results of Upper and Worms (2002) who find dramatic maximum contagion effects
once a certain threshold of loss ratios is exceeded. Qualitatively our numbers also confirm the
findings of Furfine (2003). Note that the assumption that a significant institution is able to
fulfill only 60% is rather extreme. The fact that the results of the5% case experiment are very
much in line with our findings for the case without exogenous losses provides evidence for the
robustness of our results. One of the most important findings from Table 9 is perhaps, that is
not easy for regulators to identify the system relevant banks, i.e. those banks that will cause the
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Figure 6. Number of banks affected by contagious default, across the 10,000 scenarios in the simulation
of shocks to the banks’ net worth under the assumption that25% of all claims on foreign financial
institutions will be lost.

most disruption in the banking system, when they fail. Activity in the interbank market is not
the right criterion to determine the system relevance of a bank. In the40% loss rate simulation,
we find that the medium number of contagious defaults is larger for the tenth most significant
bank than for the first two combined. Again, to identify banks that are a threat to financial
stability, supervisors will have to look at the problem from a system perspective and not at the
level of individual banks.

8 Conclusions

In this paper we have developed a new framework for bank risk assessment. The innovation
is that we judge risk at the level of the entire banking system rather than at the level of an
individual institution.
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Conceptually it is possible to take this perspective by a systematic analysis of the impact of
a set of macroeconomic risk factors on banks in combination with a network model of mutual
credit relations. Empirically the framework can be applied to real banking systems because it is
designed in such a such a way that it requires data input that is usually available in one form or
another at central banks. This is exactly the institution for which an assessment method like the
one suggested here is of crucial interest. Among the empirical results we derive for an Austrian
dataset perhaps the most interesting is that contagious default from interbank relations plays
only a minor role. It would be interesting to check the robustness of this empirical result with
other observation periods and with datasets from other countries. We hope to be able to do this
in our future research.

Since our method is a first step, there are certainly many issues that have to be further
discussed to get a firm judgment how much we can trust assessments generated with the help of
our model. We want to point out at this stage, what we see as the main advantages of our general
approach. First the system perspective can uncover exposures to aggregate risk that are invisible
for banking supervision relying on the assessment of single institutions only. It can furthermore
give some idea how to disentangle the risk that comes from fundamental shocks and the risks
that come from contagious bank failures. As we gain experience with the model for more cases
and maybe also for other banking systems this might create a possibility to qualify the actual
importance of contagion effects that have received so much attention in the theoretical debate.
Second we think that our framework can redirect the discussion about systemic risk in banking
from continuous refinements and extensions of capital adequacy regulation for individual banks
to the crucial issue of how much risk is actually borne by the banking system. In this discussion
the framework might be useful to get a clearer picture of actual risk exposure because it allows
for thought experiments. We can relatively easily askwhat if questions and with some further
work even develop the framework into a potentially useful stress testing model. Third the model
does not rely on a sophisticated theory of economic behavior. In fact the model is really a tool to
read certain data in a particular way. All it does is to make theconsequencesof a given liability
and asset structure in combination with realistic shock scenariosvisible in terms of implied
technical insolvencies of institutions. We think that in this context this feature is a definitive
advantage because it makes it easier to validate the model. Fourth the model is designed to
exploit existingdata sources. Of course these sources are not ideal because it would be better
if we knew more about actual bilateral exposures and about the important off balance sheet
positions. We hope however that our approach shows that we can start to think about financial
stability at the system level with existing data already. Thus we demonstrate that we do not
necessarily have to wait until reporting systems have been fundamentally reformed. Of course
our approach could perhaps initiate a discussion about such a reform of reporting systems. As
we learn more about the systemic approach to judge risk in the banking system we might get
new ideas about which are the really important pieces of information we need to know for an
analysis of financial stability.
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We hope that our ideas will turn out useful for regulators and central bankers by offering
a practicable way to read the data they have at their very doorsteps in the light of aggregate
risk exposure of the banking system. We therefore hope to have given a perspective of how a
’macroprudential’ approach to banking supervision could proceed. We also do hope, however,
that our paper turns out to be interesting for theoretical work in financial stability and banking
as well and that the questions it raises will contribute in a fruitful way to the debate about the
system approach to banking supervision and risk assessment.
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A Data

We use bank balance sheet data from the OeNB MAUS database. The detailed description
of these data are available in an extensive manual on the internet at the OeNB website. (See
http://www2.oenb.at/rel/melde4p.htm, item 4.5. ”Positionsnummern”. The data are a cross
section of 908 banks from September 2001. The details of the position number are described in
the OeNB document on the website. The description is only available in German. All numbers
are in million Euros up to three digits.

The major loan register of OeNB is also described in a manual available form the web at
http://www2.oenb.at/groevip.htm. The major loans register contains all credits exceeding a
volume of 363364 Euro. Thus some banks are not contained in this sample. Their exposure to
the different industry groups is counted as zero and any positive exposure they might have is
assigned to the difference position as described in the text.92% of the banks in our sample have
positions in the credit exposure statistics. All numbers are in Million Euros up to three digits.

The OeNACE industry categories are formed according to the international NACE norm.
The industry sectors are Agriculture and Fishing; Forestry; Mining and quarrying of energy
producing materials; Manufacture of food products, beverages and tobacco; Manufacture of
textiles and textile products; Manufacture of cloths; Manufacture of leather and leather prod-
ucts; Manufacture of wood and wood products; Manufacture of pulp, paper and paper products;
Publishing and printing; Manufacture of chemicals, chemical products and man-made fibers;
Manufacture of Rubber and synthetics and plastics; Manufacture of basic metals and fabricated
metal products; Manufacture of machinery and equipment n.e.c.; Manufacture of electrical and
optical equipment; Broadcasting; Manufacture of transport equipment; Manufacturing of toys
n.e.c.; Electricity, gas and water supply; Construction; Wholesale and repair of vehicles; Whole-
sale and retail trade; Hotels and restaurants; Transport, storage and communication; Services
for travel; Real estate, renting and business activities; Databases and Data Administration; Re-
search and Development; Enterprise specific services; Education; Health and social services;
Recycling; Sports and Entertainment; Syndicated loans; Other Services;

We have furthermore for all these industry groups the number of outstanding credits per
bank. This allows us to calculate average exposures.

From the KSV database we have for each industry group described above time series of
active firms and total number of insolvencies. The observations are on a half year base start-
ing from January 1997, reaching to July 2001. This gives us eight observations per sector.
From these observations we calculate average number of defaults and their standard deviation.
Combining these data with the number of credits in each sector, we can calculate the expected
number of default for each bank in each sector. We use furthermore averages of available data
to replace missing observations as well as the data for the residual position resulting of the
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difference between total loans per bank and the aggregate exposure from the credit exposure
statistics. Average Default frequencies and their standard deviation are displays in Table 10.
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Sector Name µ σ

Agriculture, Fishing, Forestry 0.023 0.015
Mining, quarrying of energy producing materials 0.019 0.01
Manufacture of food products, beverages and tobacco 0.026 0.004
Manufacture of textiles and textile products 0.04 0.01
Manufacture of cloths 0.05 0.01
Manufacture of leather and leather products 0.04 0.005
Manufacture of wood and wood products 0.02 0.002
Manufacture of pulp and paper 0.01 0.01
Publishing and printing 0.03 0.005
Petroleum processing; 0.02 0.01
Manufacture of chemicals and man-made fibers 0.02 0.01
Manufacture of Rubber and synthetics and plastics 0.03 0.01
Manufacture of glass 0.02 0.01
Manufacture of basic metals and fabricated metal products0.03 0.02
Manufacture of machinery and equipment 0.03 0.003
Manufacture of electrical and optical equipment 0.02 0.005
Manufacture of toys and furniture 0.02 0.003
Recycling 0.01 0.004
Electricity, gas and water supply 0.004 0.004
Construction 0.04 0.002
Transport, storage and communication; 0.023 0.004
Wholesale and retail trade 0.02 0.003
Wholesale and repair of vehicles 0.03 0.002
Hotels and restaurants; 0.05 0.006
Services for travel; 0.04 0.01
Broadcasting 0.03 0.01
Real estate 0.02 0.005
Renting and Business activities 0.03 0.008
Holding companies 0.02 0.001
Databases 0.02 0.006
Education 0.01 0.003
Health and Social Services 0.009 0.001
Other Services 0.03 0.002
Residual Sector 0.03 0.006

Table 10.Estimated average default frequenciesµ for GKE sectors and their standard deviationσ.
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B Inconsistent Constraints for the matrix L

The constraints for the estaimations of the matrixL are not always consistent. For instance the
liabilities of all banks in sectork against all banks in sectorl do typically not equal the claims
of all banks in sectorl against all banks in sectork. We deal with this problem by applying a
two step procedure.

In a first step we replace an a priori matrixU reflecting only possible links between banks
by an a priori matrixV that takes actual exposure levels into account. As there are seven sectors
we partitionV andU into 49 submatricesV kl andUkl which describe the liabilities of the banks
in sectork against the banks in sectorl and our a priori knowledge. Given the bank balance
sheet data we defineuij = 1 if bank i belonging to sectork might have liabilities against bank
j belonging to sectorl anduij = 0 otherwise. The (equality) constraints are that the liabilities
of banki against the sectorl equal the row sum of the submatrix and that the claims of bankj
against the sectork equal the column sum of the submatrix, i.e.∑

j∈l

vij = liabilities of bank i against sector l (7)

∑
i∈k

vij = claims of bank j against sector k (8)

For the matrices describing claims and liabilities within a sector (i.e.V kk) which has a central
institution we get further constraints. Suppose that bankj∗ is the central institution. Then

vij∗ = liabilities of bank i against central institution (9)

vj∗i = claims of bank i against central institution (10)

Though these constraints are inconsistent given our data, we use the information to get a
revised matrixV which reflects our a priori knowledge better than the initial matrixU . Contrary
to U which consists only of zeroes and ones, the entries inV are adjusted to the actual exposure
levels.31

In a second step we recombine the results of the49 approximationsV kl to get an entire
N × N improved a priori matrixV of interbank claims and liabilities. Now we replace the
original constraints by just requiring that the sum ofall (interbank) liabilities of each bank
equals the row sum ofL and the sum ofall claims of each bank equals the column sum ofL.

N∑
j=1

lij = liabilities of bank i against all other banks (11)

31Note that the algorithm that calculates the minimum entropy entries does not converge to a solution if data
are inconsistent. Thus to arrive at the approximationV we terminate after10 iterations immediately after all row
constraints are fulfilled.
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N∑
i=1

lij = claims of bank j against all other banks (12)

Again we face the problem that the sum of all liabilities does not equal the sum of all claims
but corresponds to only 96% of them. By scaling the claims of each bank by0.96 we enforce
consistency.32 Given these constraints and the prior matrixV we estimate the matrixL.

Finally we can use the information on claims and liabilities with the central bank and with
banks abroad. By adding two further nodes and by appending the rows and columns for these
nodes to theL matrix, we get a closed (consistent) system of the interbank network.

C Approximation of L

To approximateL we solve the problem

min
lij

C(L, U) =
N∑

i=1

N∑
j=1

lij ln (
lij
uij

)

N∑
i=1

N∑
j=1

akijlij ≤ bk for k = 1, ..., K andakij∈ {0, 1}

lij ≥ 0 for all i, j ∈ N

The Lagrangian for this problem is

L(L, λ, µ) =
N∑

i=1

N∑
j=1

lij ln (
lij
uij

)−
K∑

k=1

λk(bk−
N∑

i=1

N∑
j=1

akijlij)−
N∑

i=1

N∑
j=1

µijlij

For this problem the Kuhn-Tucker Conditions (see Luenberger (1969)) can be stated as:

ln (
lij
uij

) + 1+
K∑

k=1

λkakij−µij = 0

λk(bk−
N∑

i=1

N∑
j=1

akijlij) = 0 (13)

µijlij = 0

32The remaining 4% of the claims are added to the vectore. Hence they are assumed to be fulfilled exactly.
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A computationally efficient method to solve this problem is Bregman’s Balancing Proce-
dure, described in Fang, Rajasekra, and Tsao (1997) and also referred to as entropy projection
method in the literature (Blien and Graef (1997)). In our case we have only equality constraints
and thus the solution to (13) can be calculated by the RAS algorithm which is a special case of
the entropy projection method. In our case the constraints are given as

N∑
j=1

lij= br
i for all i and

N∑
i=1

lij= bc
j for all j

In this case an iterative procedure that calculates

lt+1
ij =

ltijb
c
j∑

r ltrj

andlt+1
ij =

ltijb
r
j∑

c ltrc

solves (13) for any prescribed level of accuracyε > 0. Convergence of the procedure is shown
in Fang, Rajasekra, and Tsao (1997).
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