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Abstract. We study the computational challenge faced by a interme-
diary who attempts to profit from trade with a small number of buyers
and sellers of some item. In the version of the problem that we study,
the number of buyers and sellers is constant, but their joint distribu-
tion of the item’s value may be complicated. We consider discretized
distributions, where the complexity parameter is the support size, or
number of different prices that may occur. We show that maximizing
the expected revenue is computationally tractable (via an LP) if we are
allowed to use randomized mechanisms. For the deterministic case, we
show how an optimal mechanism can be efficiently computed for the one-
seller/one-buyer case, but give a contrasting NP-completeness result for
the one-seller/two-buyer case.

1 Introduction

We consider a double auction scenario from the perspective of a market inter-
mediary, collecting bids from one or more sellers and buyers and determining
payments and allocations. Real-world instances of this are manifold, including
in electronic markets. Companies such as eBay or Amazon match sellers and
buyers, and charge a fee for each successful transaction. Our aim is to maximize
the intermediary’s profit in such settings.

There is an extensive literature on this challenge, some of which is discussed
below, but it mostly considers the case of many buyers and/or sellers with inde-
pendent priors. Our interest here is different, in that we assume only a constant
number of buyers and sellers (in the simplest version, just one of each), and the
complexity arises from their joint probability distribution of valuations for the
item. In the simplest version of this, where there is just one buyer and one seller,
the intermediary can profit from buying the item from the seller and selling at
a higher price to the buyer. We assume their valuations for the item come from
a known joint distribution, which is the input to the problem. We consider two
versions: the “no short selling” version, with the natural constraint that we can-
not sell more items than we buy; and the more restrictive “balanced inventory”
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version, where in addition we must sell all the items we buy. For multiple buyers
and sellers, we assume that the intermediary can buy and sell multiple items
(but that each buyer/seller has unit demand/supply).

1.1 Related Work

The problem of optimal mechanisms in a market intermediation setting was first
studied by Myerson and Satterthwaite [11]. In addition to an impossibility result
for ex-post efficiency in a bilateral trade setting without an intermediary, they
show optimal intermediation mechanisms for both social welfare as well as the
intermediary’s revenue in the case of one buyer and one seller, whose valuations
are independent. Their revenue-maximization result is similar to Myerson’s sem-
inal single auction result [10] in that it, too, uses virtual valuation functions, for
both buyer and seller. Welfare maximization for multiple buyers and sellers has
been further studied for instance by McAfee [9] or more recently by [1,4,5].

Our own interest is chiefly in the complexity of computing optimal (revenue-
maximizing) or near-optimal mechanisms in the market intermediation setting.
Prior work in this area has focused on the case where sellers’ and buyers’ valua-
tions are independent. Deng et al. [2] show optimal and near-optimal mechanisms
that can be computed in polynomial time for several variations of this setting,
including continuous or discrete distributions and arbitrary or unlimited supply
and demand. Niazadeh et al. [12] as well as Loertscher and Niedermayer [6–8]
study a class of mechanisms called respectively fee-setting mechanisms or affine
fee schedules in the independent setting. These are shown by Niazadeh et al. [12]
to be able to extract a constant factor of the optimum revenue in the worst case,
under certain assumptions on the buyer’s and seller’s distribution.

Here we are interested in potentially correlated distribution over buyers’ and
sellers’ valuations. The complexity of this has been studied for (non-double) auc-
tions. Papadimitriou and Pierrakos [13] show that for two buyers, an optimal
mechanism (for a discrete joint distribution) can be found in polynomial time via
a reduction to finding a maximum-weight independent set on a bipartite graph.
For continuous distributions they give a FPTAS. For the case of three buyers,
in contrast, they show that it is NP-hard to approximate the optimal auction
to within a certain constant fraction. Dobzinski et al. [3] show a polynomial-
time algorithm for the two-buyer auction through derandomization and give
polynomial-time approximation mechanisms for the many-buyers correlated sin-
gle auction problem, building on previous work by Ronen [14].

2 Preliminaries

2.1 Definitions, Notation

We consider m buyers indexed by j, and k sellers indexed by i (where m, k are
constants), each offering (respectively seeking) a single unit of an indivisible good.
For fixedm, k, we use “m× k” as shorthand for them buyers, k sellers case. They
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cannot tradewith each other directly, and can only tradewith the intermediary.We
assume each seller i has some valuation si and each buyer j has some valuation bj
for an item, and that these are drawn from a given joint probability distribution ψ.
We focus on discrete distributions. For simplicity, we assume that the support ofψ
is a grid of size nk+m, with each player having possible valuations {i : 1 ≤ i ≤ n}
(as shown in Fig. 1). The distribution ψ is assumed to be represented as a matrix
of the probabilities on each of the grid points.

In this paper we focus on individually rational and incentive compatible
mechanisms. Let b and s denote the vector of buyers’ and sellers’ bids received
by the mechanism, and let b−j and s−i be (respectively) the bids of buyers other
than j, and sellers other than i. Analogous to auctions, there are two equivalent
ways in which we can define a deterministic, incentive compatible mechanism in
this setting. Firstly, we can focus on allocations. For each seller/buyer we define
a set Si/Bj (⊆ supp(ψ)) of bid vectors in which we buy an item from seller i/sell
an item to buyer j. Incentive compatibility means monotonicity of allocations,
meaning for each seller i, if (s, b) ∈ Si, and s′

i < si, then (s′
i, s−i, b) ∈ Si. In

words, if given everyone else’s bids s−i, b, seller i’s item would be bough by the
intermediary if i bid si, then it would also be bought for any lower bid s′

i. For
short we will say that Si is “downward-closed” in the direction of si. Similarly
for each buyer j, Bj needs to be upward-closed in the direction of bj .

Equivalently, we may think of a mechanism in terms of critical bids. Myerson
tells us that the unique payments that make a monotone allocation rule (as just
defined via the regions Si and Bj) are precisely the critical bids. That is, the
lowest (highest) bid for which a buyer (seller) would still be allocated the item
(the sale of their item) if everyone else’s bids remained fixed. We write σi(b, s−i)
(respectively, βj(b−j , s)) for these critical bids. (For simplicity sometimes just
βj(b, s) and σi(b, s).) If si ≤ σi(b, s−i) we buy an item from seller i (paying
σi(b, s−i)), and similarly if bj ≥ βj(b−j , s) we sell an item to buyer j (charging
βj(b−j , s)). We write βj(b−j , s) = n+ 1 to indicate that a mechanism does not
sell to buyer j at all for this combination of others’ bids, independently of j’s
bid. Similarly σi(b, s−i) = 0 to indicate not buying from seller i.

It is easy to see that these two yield equivalent definitions. Clearly Si is simply
the region “above” σi in the direction of si, (the graph of) which in turn is the
boundary of Si. Similarly Bj is the region below βj in direction bj . This is a slight
generalization of the conceptually simpler picture in auctions. Here we have for
each bidder a region Bj where they win the item, and a critical bid function
βj that gives their payment. If there is a single item to be sold, no two of the
Bj may overlap. This constraint too generalizes to the market intermediation
setting. Consider Fig. 2 in contrast with Fig. 1 to illustrate the difference. As
mentioned above, we consider two variants. In the “no short-selling” setting,
we must buy at least as many items from sellers as we sell to buyers; in the
“balanced inventory” variant we must buy exactly as many as we sell. Formally
in terms of critical bids: (Again these can be expressed equivalently in terms of
Si and Bj .)
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No Short-Selling:
∀(b, s), |{j : bj ≥ βj(b, s)}| ≤ |{i : si ≤ σi(b, s)}| (1a)

Balanced Inventory:
∀(b, s), |{j : bj ≥ βj(b, s)}| = |{i : si ≤ σi(b, s)}| (1b)

2.2 The Geometry of Deterministic 1 × 1 Market Intermediation

If there is only a single buyer and a single seller, the constraints simplify signifi-
cantly, most easily expressed in terms of now simply S and B. In the balanced-
inventory case, constraint 1b simplifies to B = S. That is, a mechanism in this
setting, with only one buyer and seller each, is determined only by a single
region of bid-combinations that yield a successful transaction. In the no-short-
selling case, constraint 1a simplifies to B ⊆ S. That is, S can potentially extend
beyond B. However, we can say more, assuming optimality of the mechanism.
Recall that by truthfulness, S is down-closed in the seller’s direction and B is
up-closed in the buyer’s direction. If a mechanism is optimal, S must exactly
be the down-closure (still in the seller’s direction) of B. Firstly, it is easy to see
that the down-closure of B must be contained in S: B is contained in S, and S
is down-closed. Secondly, if S extended beyond the down-closure of B, we could
strictly improve our revenue by removing this protruding part of S. (On the
other hand, we may not elect to remove the part of S − B that lies below any

b

s

1 2 3 · · · n
1

2

3

...

b =
s

B

S

Fig. 1. Example mechanism in the 1×1
case. Note that S contains B, to avoid
short-selling. (In a balanced-inventory
auction, B and S should coincide.) B
and S lie below the diagonal b = s:
any point above the diagonal is one
where the buyer’s bid is less than the
seller’s. The auction shown is subopti-
mal: in most of the S region, the item is
being bought without being sold. Note
that we draw the outline of the regions
slightly away from the points on the
prior support for easier readability.

b1

b2

1 2 3 · · · n
1

2

3

...

B1

B2

Fig. 2. Compare this to a two-bidder
auction. Here B1 and B2 indicate
where we sell to each of the two buyers.
In the two-bidder auction B1 and B2

must be disjoint, as we cannot sell the
item twice. In the market intermedia-
tion setting, B must be contained in S.
Note also that in this setting both B1

and B2 are upward-closed in the direc-
tion of the respective buyer’s bid.
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Fig. 3. Removing the indicated area
from S as in Fig. 1, the expected
revenue of the mechanism cannot
decrease. Below red line: Remaining
region S, right of black line: Region B.
For the remaining part of S that is not
also in B, we still buy but not sell the
item. This can be optimal, e.g. if there
is very high probability weight on the
two points indicated. Crucially, if at a
point (b, s) ∈ S − B an optimal mech-
anism buys but not sells, then there
must exist a point (b, s′) ∈ S ∩ B with
s′ > s where it buys and sells. Truth-
fulness then dictates that it also needs
to buy at (b, s). (Color figure online)
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σ(β( )) σ(β( ) + 1)

σ(β( ) − 1)

m

Cost of buying from seller

due to choice of β( ).

Revenue of selling to buyer

due to choice of β( ).

Fig. 4. For fixed mℓ and
β(1), · · · ,β(ℓ − 1), the choice of a
particular β(ℓ) influences the expected
revenue in two ways: On the one hand,
the revenue from selling to the buyer at
all points to the right of β(ℓ) in row ℓ.
On the other hand, the cost of buying
from the seller for all points below
σ(β(ℓ)) = ℓ in rows β(ℓ) ≤ b < mℓ.

point in B due to truthfulness, i.e. down-closedness of S.) Figs. 1 and 3 illustrate
this. Note the contrast with a standard 2-bidder auction, where the shape of the
region in which we sell to one buyer does not fully determine the region in which
we sell to the other. In a way, in the 1 × 1 market intermediation setting, we
have fewer degrees of freedom to consider than in a two-buyer auction setting.

3 The Deterministic One Seller, One Buyer Case

For the case of one seller and one buyer, we show how to compute an optimal
deterministic solution using a dynamic programming approach. In the full version
of this paper we show how to achieve this via modifications to known 2-bidder
auctions in this setting, but the runtime guarantee of that approach, while still
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polynomial, is substantially worse. We represent a mechanism using values β =
(β(1), ...,β(n)) for β(s) ∈ {1, . . . , n+ 1}, where β(s) signifies the leftmost point
in row s that is a member of B. If β(s) = 1 then the entire row s is in B. We set
β(s) = n + 1 to signify that none of the points in row s are in B. We begin by
noting that the contribution to the expected revenue that arises from the choice
of one particular β(s) does not depend on all the other β−s simultaneously.
Consider the expected revenue R for a given B, which is given by:

E[R(β)] =
n∑

s=1

β(s)
∑

b≥β(s)

ψbs −
n∑

b=1

σ(b)
∑

s≤σ(b)

ψbs (2)

That is, the first sum gives the expected profit from selling at points to the right
of each (β(s), s), while the second sum gives the cost of buying points that are
below each (b,σ(b)). The contribution of a particular choice for one single β(s) to
the first of these sums is easily seen to be simply the profit of selling the points in
row s to the right of and including β(s). The impact of a particular β(s) on the
second of the sums is slightly more intricate. There are two ways in which the
choice of β(s) impacts the cost of buying. Firstly, we may have to buy the item
at some points in row s, where we would not buy the item otherwise. Consider
the minimum of β(s+ 1), ...,β(n), say β(t). We know that in row t, we buy and
sell at points (β(t), t),...,(n, t). So by truthfulness, we must also buy at points
(β(t), s),...,(n, s). This is regardless of our choice of β(s). For points to the left of
(β(t), s), whether we buy the item or not does depend on β(s). Secondly, in all
those columns in which we buy due to β(s), also affect the rows below s. We may
increase the buying price from a lower value to s at those points, and (in the no
short-selling case) we may have to buy the item (due to truthfulness) at points
at which we would not otherwise buy it. The magnitude of this effect depends
on all the β(1), ...,β(s − 1). This suggests a bottom-up dynamic programming
approach, which we develop in this section.

3.1 Algorithm for the No Short-Selling Case

We next describe our dynamic programming algorithm first for the no short-
selling setting. The idea is as follows: because the optimal choice of β(1), ...,β(ℓ)
depends only on the minimum of the β(ℓ+1), ...,β(n), we can iteratively compute
all the potential optimal values for row 1 given values of min{β(2), ...,β(n)}; then
all optimal values of β(1),β(2) given all possible values of min{β(3), ...,β(n)}.
We do not need to consider all n2 combinations of β(2) and β(1). Since given
β(2) and min{β(3), ...,β(n)}, we can immediately look up the best β(1) using
the information computed in the first step. We then proceed iteratively up the
rows until we have computed to optimal values for β.

Let us start by defining R(n,β(ℓ),mℓ) to be the expected revenue of the
best deterministic mechanism that takes points (β(ℓ), ℓ) and rightward in row
ℓ, no points in rows ℓ + 1 and above, and does not have to pay for points in
columns mℓ to n. We set R(0, ., .) = 0. The idea is that we want to capture the
best possible revenue extractable from rows 1 to ℓ for a particular choice of β(ℓ),
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disregarding the cost of buying in columns mℓ to n. We can take R(n,β(ℓ), n+1)
to denote the optimal revenue among mechanisms that have to pay for all rows.
More precisely,

R(ℓ,β(ℓ),mℓ) = max
β(1),...,β(ℓ−1)

ℓ∑

s=1

β(s)
∑

b≥β(s)

ψbs −
mℓ−1∑

b=1

σ(b)
∑

s≤σ(b)

ψbs (3)

It is easy to see that maxβ(n) R(n,β(n), n+ 1) gives the revenue of the optimal
auction. Indeed, by definition this is the maximum expected revenue extractable
from all rows, if we have to pay in all columns. We can then show how to
recursively compute the values of R, laying the groundwork for our dynamic
programming algorithm.

Theorem 1 (Recursion for the no short-selling case). The R(ℓ,β(ℓ),mℓ)
as defined above satisfy the following recursion:

R(ℓ,β(ℓ),mℓ) = max
β(ℓ−1)

R
(
ℓ − 1,β(ℓ − 1),min{β(ℓ),mℓ}

)
+

β(ℓ)
∑

b≥β(ℓ)

ψbℓ − ℓ
∑

β(ℓ)≤b<mℓ

∑

s≤ℓ

ψbs (4)

Proof. We can check this by splitting up the explicit formula for R(ℓ,β(ℓ),mℓ)
into terms for rows below ℓ and row ℓ, and columns to the left of min(β(ℓ),mℓ)
and those between the two.

R(ℓ,β(ℓ),mℓ) =
ℓ−1∑

s=1

β(s)
∑

b≥β(s)

ψbs + β(ℓ)
∑

b≥β(ℓ)

ψbℓ−

min(β(ℓ),mℓ)−1∑

b=1

σ(b)
∑

s≤σ(b)

ψbs −
mℓ−1∑

b=β(ℓ)

σ(b)
∑

s≤σ(b)

ψbs

Observe that for b ≥ β(ℓ), σ(b) will be equal to ℓ (in the (ℓ,β(ℓ))-auction),
so the last term in the above sum is precisely ℓ

∑mℓ−1
b=β(ℓ)

∑
s≤ℓ ψbs. Similarly,

min(β(ℓ),mℓ) is precisely the mℓ−1 we used in the recursion, and therefore the
first and third term are precisely R(ℓ−1,β(ℓ − 1),mℓ−1). Putting these together,
we get that:

R(ℓ,β(ℓ),mℓ) = R(ℓ − 1,β(ℓ − 1),mℓ−1) + β(ℓ)
∑

b≥β(ℓ)

ψbℓ − ℓ
mℓ−1∑

b=β(ℓ)

∑

s≤ℓ

ψbs (5)

i.e. precisely our claimed recursion. (The max follows from optimality of the
auction.) The second term on the right hand side is the revenue from selling at
points due to the choice of β(ℓ), while the third term accounts for the cost of
buying at points due to this choice. Figure 4 illustrates these two terms. Note
that if ℓ = 1 then the first term vanishes since we defined R(0, ., .) = 0, and we
are left with the explicit formula for R(1, ., .).
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We can therefore compute the R(ℓ,β(ℓ),mℓ) recursively, as claimed. This
suggests the following algorithm, listed below as Algorithm 1. This can easily
be augmented to keep track of the values used for the β(s), and to return the
optimal β together with its expected revenue. Therefore, we can compute the
optimal region B and thereby the optimal mechanism in the no short-selling
setting in time O(n4).1

Algorithm 1. Optimal revenue in the no short-selling setting
1: for ℓ = 1, ..., n do
2: for β(ℓ) = 1, .., n do
3: for mℓ = 1, ..., n+ 1 do
4: if ℓ = 1 then
5: R(1,β(1),m1) ← β(1)

∑
b≥β(1) ψb1 −

∑
β(1)≤b<m1

ψb1

6: else
7: Compute R(ℓ,β(ℓ),mℓ) using the recursion in theorem 1.

return maxβ(n) R(n,β(n), n+ 1).

We can easily modify this algorithm to return the optimal mechanism that
satisfies the balanced inventory property. We show the details in the full version
of this paper. This modified algorithm runs in time O(n3).

4 NP-hardness for the Deterministic Multiple Buyers or
Sellers Case

For three or more buyers, it follows from Papadimitriou and Pierrakos [13] that
computing the optimal mechanism is NP-hard. We show that this is also true
for the 2 × 1 case (i.e. two buyers, one seller) in the no-short-selling setting
by reducing from Maximum Independent Set. The idea here is to place high
probability weight on high-revenue points along a diagonal in the s = 1 plane
for each vertex of a given instance of Independent Set. We then use appropriately
placed high-probability points for each of the edges to “force” a higher buying
price for (at least) one of any two points corresponding to adjacent vertices. We
can do this in a way that ensures that in the optimal mechanism the number
of vertex points with a low buying price is maximized and corresponds to the
maximum independent set.

Theorem 2 (NP-hardness). It is NP-hard to compute the optimal mechanism
in the 1 seller, 2 buyers setting with no short selling.

1 Careful analysis of the algorithm presented shows that the last summand in the
recursion for R() has (mℓ − β(ℓ)) · ℓ summands. It is easy to see however that we
need not recompute the inner sum from scratch in each iteration. We can thus easily
make the computation of the recursion run in linear time, giving the overall running
time stated.
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Proof. In the following we construct a prior distribution in (b1, b2, s)-space. We
will “choose” points, and place equal probability mass 1

|V |+|E| on all of these
chosen points. In the analysis we will omit these weights to simplify the algebra.
We place probability 0 on all other points in the prior support. We use K1 and
K2 as constants whose values we define at the end of the proof.

The Construction. Given a graph (V,E) with |V | = n, pick any order of
vertices and begin by placing probability weight 1

|V |+|E| on point (K1 + ⌊n
2 ⌋ −

i,K1 − ⌊n
2 ⌋ + i, 1) for each vertex 0 ≤ i < n. Next, enumerate the edges ej ,

0 ≤ j < |E|. We will write each edge as ej = (ej1, ej2), where ej1 < ej2 in the
order of vertices just picked. For each edge put probability weight 1

|V |+|E| on
point (K1+⌊n

2 ⌋−ej2,K1−⌊n
2 ⌋+ej1,K2+j). That is, we put probability weight

for each edge on a point that has the same b1-coordinate as the vertex point for
its lower-numbered vertex and the same b2-coordinate as its higher vertex. We
choose these edge points with a different s-coordinate each, and all of them with
a higher s-coordinate than the vertex points. It is clear that if the mechanism
wants to buy and sell at an edge point (K1 + ⌊n

2 ⌋ − ej2,K1 − ⌊n
2 ⌋+ ej1,K2 + j),

it will also need to sell (and therefore buy by truthfulness) at one of the points
(K1+⌊n

2 ⌋−ej2,K1−⌊n
2 ⌋+ej2,K2+j) or (K1+⌊n

2 ⌋−ej1,K1−⌊n
2 ⌋+ej1,K2+j),

when it sells to buyer 1 or buyer 2, respectively. But by truthfulness this entails
a raised purchase price of K2 + j at the corresponding vertex points directly
below ((K1+ ⌊n

2 ⌋− ej2,K1 −⌊n
2 ⌋+ ej2, 1) or (K1+ ⌊n

2 ⌋− ej1,K1 −⌊n
2 ⌋+ ej1, 1))

where it had otherwise been 1. Figure 5 illustrates this construction.

Reducing from Maximum Independent Set. Now, in order to ensure that
the optimal mechanism raises the purchasing price at all vertex points except
those that are in an independent set of maximum size, we need to pick constants
K1,K2 in a way that ensures that:

1. The optimal mechanism always buys and sells at all the edge points.
2. The optimal mechanism raises the purchasing price at as few vertex points

as possible.

From condition 1: The worst possible selling price at any edge point is given by
K1 − ⌊n

2 ⌋, and the highest possible purchase price is K2 + |E| ≤ K2 + n2, for
a revenue that is at least K1 − ⌊n

2 ⌋ − K2 − n2. On the other hand, buying and
selling at an edge point could necessitate a higher purchasing price at a vertex
point, raising it by an amount that is bounded above by K2 + n2 as well. The
profit obtained from the edge point must outweigh this. So in order to ensure
that the optimal mechanisms buys and sells at all edge points, we need to ensure:

K1 − ⌊n
2

⌋ − 2K2 − 2n2 > 0

From condition 2: We need to ensure that if for an edge point (K1 + ⌊n
2 ⌋ −

ej2,K1 − ⌊n
2 ⌋ + ej1),K2 + j), only one of the two corresponding vertex points
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already has a purchase price of at least K2 due to another edge, but the other
is still 1, the optimal mechanism will always prefer to sell to the buyer whose
corresponding vertex point already has a high price. In other words, we need
to ensure that the potential difference in revenue from selling to one buyer over
the other is outweighed by the required raise in the purchase price by (at least)
K2 − 1. But the highest difference in selling price is bounded by n, and so we
required that K2 > n+ 1.

Combining the two we get our desired result: Set K2 = 2n and K1 = 4n2

in the above construction for a given instance of Maximum Independent Set.
Since the optimal mechanism will buy and sell at all the edge points, it is clear
that at most one vertex point corresponding to two adjacent vertices can have a
purchase price of 1. On the other hand, in the optimal mechanism the number
of vertex points with a raised purchase price will be minimized. Therefore, the
vertex points with purchase price 1 in the optimal mechanism correspond to the
vertices of the maximum independent set in the graph.

b1

b2

s

e1

e3
e2

Vertex points in layer s = 1.

Edge points in layers s = K2 + i.

Raised purchase price.

B2 in layer s = K2 + 1.

B1 in layer s = K2 + 2.

B2 in layer s = K2 + 3.

S raised above vertex points.

(S not explicitly shown elsewhere.)

(b1 + b2 = K1)-diagonal (s = 1)

Fig. 5. The construction for the reduction from Maximum Independent Set.

5 Truthful-in-Expectation Mechanisms

While in the preceding section we have shown that we cannot compute an opti-
mal deterministic mechanism for the general case, we can however compute the
optimal truthful-in-expectation mechanism for a fixed number of buyers and
sellers. In single-item auctions a randomized mechanism is easily described by
allocation probabilities xi(v) and expected payments pi(v) for all players for each
possible bid vector. In the market intermediation setting with multiple buyers
and sellers this is not obviously the case. For instance, there are many ways in
which to make allocation probabilities of 1

2 for each of two buyers and two sellers
into a randomization over valid outcomes. The mechanism could flip a coin and
buy from seller 1 and sell to buyer 1 on heads, seller 2 and buyer 2 on tails.
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It could not, however, independently flip four coins if we want to fulfill condition
(1a) respectively (1b) ex-post. In the following we will consider the balanced
inventory case. Our arguments easily extend to the no short-selling case. We
first show that for our purposes, it is indeed sufficient to consider only the mar-
ginal allocation probabilities xi, yj and expected payments pi, qj . First, observe
that any two randomized mechanisms that have the same marginal probabili-
ties and expected payments will lead to identical expected utilities for players
and expected revenue. It remains to show that any sensible vector of marginal
allocation probabilities can be made into a probability distribution over valid
outcomes (i.e. allocations which buy exactly as many items as they sell).

Theorem 3. Let x, y be k-dimensional vectors of probabilities, i.e. 0 ≤ xi, yi ≤
1, with

∑
i xi =

∑
i yi. Then there exists a joint probability distribution over

2 k-dimensional 0/1 vectors {(a, b) ∈ {0, 1}2k|
∑

i ai =
∑

i bi} which satisfies
Pr(ai = 1) = xi and Pr(bi = 1) = yi.

Proof. Let H2k = [0, 1]2k be the 2k-dimensional hypercube, and H∗
2k = {0, 1}2k

its vertices. Let D2k = {(x, y) ∈ H2k|
∑

xi =
∑

yi} be the “generalized diag-
onal” of the hypercube. Let D∗

2k = {(x, y) ∈ {0, 1}2k|
∑

xi =
∑

yi} be the
vertices of H2k with as many x-coordinates set to 1 as y-coordinates. That is,
this is the set of valid (deterministic) allocation vectors for k buyers and sellers.
Then our claim is equivalent to saying that D2k is (in) the convex hull of D∗

2k.
By the Krein-Milman theorem a convex set S is exactly the convex hull of its
extreme points. An extreme point s ∈ S is any point in S which can not be writ-
ten as a convex combination of points in S \ s. Clearly D2k is convex. It remains
to show that the extreme points of D2k are precisely D∗

2k. Clearly D∗
2k ⊆ D2k.

So let (x,y) ∈ D2k \D∗
2k be a point in D2k that does not have all elements equal

to 0 or 1. We show that (x,y) is not an extreme point of D2k.
If there is exactly one xi with 0 < xi < 1, then there must be at least one

yj with 0 < yj < 1. (Otherwise
∑

xi /∈ N, but
∑

yj ∈ N, which contradicts the
assumption that

∑
xi =

∑
yj .) Then for 0 < ϵ < min{xi, 1 − xi, yj , 1 − yj}, we

have that (xi+ϵ, yj+ϵ,x−i,y−j) ∈ D2k, and also (xi−ϵ, yj −ϵ,x−i,y−j) ∈ D2k.
Clearly (x,y) is a convex combination of these two. If there is at least two distinct
0 < xi, xℓ < 1, i ̸= ℓ, then for 0 < ϵ < min{xi, 1 − xi, xℓ, 1 − xℓ}, we have that
(xi+ϵ, xℓ−ϵ,x−iℓ,y) ∈ D2k, and also (xi−ϵ, xℓ+ϵ,x−iℓ,y) ∈ D2k. Again, clearly
(x,y) is a convex combination of these two. Similarly, if there is no 0 < xi < 1
there is at least two such yj , yℓ. So D2k is the convex hull of D∗

2k. This shows
our claim.

From this it follows immediately that we need only concern ourselves with
the marginal allocation probabilities in computing an optimal randomized mech-
anism. Therefore we can write this as a LP following the approach of Dobzinski
et al. [3] for auctions. We defer the proof of this theorem to the full version.

Theorem 4 (The optimal randomized mechanism as an LP). For a fixed
number of buyers and sellers, we can compute the optimal truthful-in-expectation
mechanism using a linear program that is polynomial in the size of the prior.
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6 Discussion and Further Work

One question raised by our results is that of the relation between single seller,
single buyer market intermediation and two-bidder auctions. As mentioned, and
discussed in the full version the graph algorithm of Papadimitriou and Pierrakos
[13] can be used to solve the no short-selling 1 × 1 market intermediation case,
and the derandomization in Dobzinski et al. [3] applies immediately to both this
and the 1×1 balanced inventory setting. These give running times of O(n6) and
O(n7) in contrast to a running time of O(n4), respectively O(n3) in the balanced
inventory case, for our approach in the market intermediation setting. It is not
clear immediately that the 2-bidder auction design problem could in turn be
solved using a modified version of this algorithm, given the additional complexity
of two interdependent regions for each seller. We suspect that there might indeed
be a gap between the complexity of these two problems. Furthermore, we believe
that an optimal 2-bidder reverse auction can be computed using our dynamic
program for the balanced inventory case. Thus a gap between auctions and
market intermediation would imply an asymmetry between auctions and reverse
auctions. An immediate follow-up question is if we can give good approximations
in polynomial time. In the full version of this paper we show that no good
multiplicative guarantees are possible using prior-independent mechanisms.
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