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Abstract

The Calculus of Constructions (CC) ([Coquand 1985]) is a typed lambda

calculus for higher order intuitionistic logic: proofs of the higher order

logic are interpreted as lambda terms and formulas as types. It is also the

union of Girard's system F

!

([Girard 1972]), a higher order typed lambda

calculus, and a �rst order dependent typed lambda calculus in the style

of de Bruijn's Automath ([de Bruijn 1980]) or Martin-L�of's intuitionistic

theory of types ([Martin-L�of 1984]). Using the impredicative coding of

data types in F

!

, the Calculus of Constructions thus becomes a higher

order language for the typing of functional programs. We shall introduce

and try to explain CC by exploiting especially the �rst point of view, by

introducing a typed lambda calculus that faithfully represent higher order

predicate logic (so for this system the Curry-Howard `formulas-as-types

isomorphism' is really an isomorphism.) Then we discuss some proposi-

tions that are provable in CC but not in the higher order logic, showing

that the formulas-as-types embedding of higher order predicate logic into

CC is not an isomorphism. It is our intention that this chapter can be

read without any specialist knowledge of higher order logic or higher order

typed lambda calculi.

1 Introduction

The so called Curry-Howard formulas-as-types embedding provides a formaliza-

tion of the Brouwer-Heyting-Kolmogorov understanding of proofs as construc-

tions. (See [Troelstra and Van Dalen 1988].) The �rst detailed description is

in [Howard 1980], where also the terminology `formulas-as-types' is �rst used.

There it is shown how, in �rst order logic, types can be associated with for-

mulas and lambda terms with proofs in such a way that there is a one-to-one

correspondence between types and formulas and terms and proofs and further

that cut-elimination in the logic corresponds to reduction in the term calcu-

lus. In view of the last point it would be correct to associate also Tait with
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the formulas-as-types notion, as his ([Tait 1965])`discovery of the close corre-

spondence between cut elimination and reduction of �-terms provided half of

the motivation' for [Howard 1980]. Also De Bruijn is often associated to the

formulas-as-types notion, because the Automath project which was founded by

De Bruijn, was the �rst to rigorously interpret mathematical structures and

propositions as types and objects and proofs as �-terms. So, from a wider

perspective it is certainly justi�able to speak of the Curry-Howard-de Bruijn

embedding (also because the earliest developments in Automath took place in-

dependent of the work of Howard.) Having said this we want to point out

that there are essential di�erences between the two approaches. For one, be-

cause in the Automath systems the logic is coded into the system there is in

general no reduction relation in the term calculus that corresponds to cut-

elimination. Automath systems are intended to serve as a logical framework

in which the user can work with any formal systems he or she desires. Ap-

plication, �-abstraction and conversion serve as tools for handling the basic

mathematical manipulations like function application, function de�nition and

substitution. Although the Calculus of Constructions can serve perfectly well

as an Automath-like logical framework, from the literature about the system

([Coquand 1985], [Coquand and Huet 1988]) it clearly shows that the inventors

aim at the formulas-as-types embedding in the �rst sense. In this paper we shall

therefore look at the Curry-Howard formulas-as-types embedding of higher or-

der predicate logic into CC. The embedding is not complete: CC proves more

propositions than higher order predicate logic. This may seem quite harmful

and for some purposes it is. However, we shall see that CC does not prove every-

thing and is a conservative extension of higher order propositional logic. (These

are more or less standard results by now, but we shall devote some attention

to them as this text is meant to be introductory.) Further we shall discuss a

recent result by Berardi([Berardi 199+]), showing that CC is still an adequate

system for higher order reasoning about inductive data types, which is one of

the main practical applications of the system. To understand this result, we

have to devote some attention to data types and speci�cations in CC, a subject

extensively studied in e.g. [Paulin 1989]. Finally we discuss some variants and

extensions of the system.

2 Higher Order Predicate Logic as a typed lambda

calculus

In the literature there are several systems of higher order predicate logic (e.g.

[Church 1940], [Takeuti 1975], [Sch�utte 1977] and [Lambek and Scott 1986]),

most of them aiming at the formalisation of higher order arithmetic. We shall

not try to give an overview of all the di�erent options, but introduce our own

formalism (which of course heavily relies on the mentioned works) and pinpoint

at some of the places where we essentially leave the standard paths. As usual

we start by de�ning the domains that the logic is about in terms of the sim-

ple theory of types: There are countably many base types, one of which is a

special that we denote here by 
, to be understood as the type of proposi-
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tions. The terms of the logic are the terms of the simply typed lambda calculus

built from variables and some typed constants, among which are �: 
!
 and

8

�

: (�!
)!
 (for every type �.) So the (essentially many-sorted) language

doesn't start from a �xed similarity type, as is usual for �rst order logic, but

any similarity type can be built in by using the base types and the constants.

(For example for the natural numbers by starting from the base type N and

the constants z : N and s : N!N , or for countable ordinals by adding the base

type O and z

0

: O, s

0

: O!O and l : (N!O)!O.)

We shall now make the language and the derivation rules of our system of higher

order intuitionistic predicate logic precise. We call the system HOPL.

De�nition 2.1 The language of HOPL is de�ned as follows.

1. The set of domains, D is de�ned by

D ::= B j
 jD!D;

where B is the set of (names of) basic domains (in the syntax just a

countable set of expressions.)

2. For every � 2 D, the set of terms of type �, TERM

�

is inductively de�ned

as follows. (As usual we write t : � to denote that t is a term of type �.)

(a) for each � 2 D, the variables x

�

1

; x

�

2

; : : : are in TERM

�

,

(b) for each � 2 D, 8

�

: (�!
)!
,

(c) �: 
!
,

(d) if M : �!� and N : �, then MN : � ,

(e) if M : � and x

�

is a variable, then �x

�

:M : �!� .

3. The set of terms of HOPL, TERM, is de�ned by TERM := [

�2D

TERM

�

.

4. The set of formulas of HOPL, FORM, is de�ned by FORM := TERM




.

We adapt the well-known notions of free and bound variable, substitution, �-

reduction and �-conversion to the terms of this system. If there is no ambiguity,

we omit the subscript under the 8. The terms � ' and 8

�

(�x

�

:') are written

as ' �  , respectively 8x

�

:'.

The derivation rules of HOPL are given in a natural deduction style.

De�nition 2.2 The notion of provability, � ` ', for � a �nite set of formulas

(terms of type FORM) and ' a formula, is de�ned inductively as follows.
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(axiom)

� ` '

if ' 2 �

(� -introduction)

� [ ' `  

� ` ' �  

(� -elimination)

� ` ' � ` ' �  

� `  

(8-introduction)

� ` Px

�

� ` 8P

if x

�

=2 FV(�)

(8-elimination)

� ` 8P

� ` Pt

if t : �

(conversion)

� ` '

� `  

if ' =

�

 

Another option (and maybe what one would expect) for the 8 rules is the

following.

(8-introduction)

� ` '

� ` 8x

�

:'

if x

�

=2 FV(�)

(8-elimination)

� ` 8x

�

:'

� ` '[t=x

�

]

if t : �

However, this is not convenient, because then in general 6` 8(�x

�

:Px

�

) � 8P

and 6` 8P � 8(�x

�

:Px

�

). With our �-introduction and �-elimination rule of

De�nition 2.2, we even have them as derived rules:

� ` 8P

� ` 8(�x

�

:Px

�

)

and

� ` 8

�

P

� ` 8(�x

�

:Px

�

)

Note that also (8-elimination

0

) and (8-introduction

0

) are derived rules.

A well-known fact about this logic is that the connectives &;_;? and 9 are

de�nable in terms of � and 8. (For ';  : 
,

'& := 8x




:(' �  � x) � x;

' _  := 8x




:(' � x) � ( � x) � x;

? := 8x




:x;

9P := 8(�z




:8(�x

�

:Px � z) � z);

and the latter is the same as 8z




:(8x

�

:Px � z) � z. It's not di�cult to check

that the intuitionistic elimination and introduction rules for these connectives

are sound. (The elimination rules are even derived and if we would have for-

mulated our syntax with a weakening rule and as axiom just

(axiom

0

)

' ` '
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then the introduction rules would all be derived too.) Further we shall use the

abbreviation ' �  for (' �  )&( � ').

Equality between terms of a �xed type � is de�nable by saying that two

terms are equal if they share the same properties. This equality is usually

called Leibniz equality and is de�ned by

t =

�

t

0

:� 8P

�!


(Pt � Pt

0

); for t; t

0

: �:

It's a standard exercise to show that this equality is symmetric.

Let's now say something about the relations between HOPL and the de�ni-

tions of higher order predicate logic in [Church 1940], [Takeuti 1975], [Sch�utte 1977]

and [Lambek and Scott 1986]. We try to restrict to the essential di�erences and

not go into issues of notation. Most of them start from two basic domains (usu-

ally called types), i and o, letting �

1

� � � � � �

n

!o be a type if �

1

; � � � ; �

n

are

types, with o representing the type of formulas. (In [Takeuti 1975] the type

o doesn't have an explicit name, [Lambek and Scott 1986] also have the `sin-

gleton type' 1 as base type and a more �ne grained syntax for types, allowing

�

1

� � � � � �

n

and �!o (denoted by P�) for �

1

; � � � ; �

n

; � types.) Only Church

allows all arrow types, where the type (i!i)!(i!i), denoted by i

0

is used as

the type of natural numbers and the types (�!o)!� are types for choice op-

erators �

(�!o)!�

. The way we introduce the 8

�

(as constants of the language

of type (�!
)!
) is like in [Church 1940]. This is also the only version that

formalises classical logic. It should be remarked here that Lambek and Scott do

suggest the extension of the domains to include all arrow domains as a `seem-

ingly stronger version' of the theory. Only `seemingly' because the extension is

conservative, which can be formulated in our framework by the statement that

HOPL is conservative over the version of the system with

D ::= B j
 jD!� � �!D!
:

The conservativity can be shown syntactically by de�ning a mapping that sends

terms of the extended system to terms of the restricted system such that deriv-

ability is preserved and the mapping is the identity on the restricted system.

The derivation rules are given in various ways (sequent calculus, natural

deduction or with inference rules and axioms.) Our formulation is closest to

[Lambek and Scott 1986]. Most of the systems have in addition to the deriva-

tion rules a list of axioms to include (among other things) arithmetic, exten-

sionality and comprehension. Our system is very raw in the sense that most

of these properties (except for comprehension) are not built in, but have to be

added via the context. For example extensionality for functions and predicates:

EXT

1

:= 8f

�!�

8g

�!�

(8x

�

fx =

�

gx) � f =

�!�

g;

EXT

2

:= 8P

�!


8Q

�!


(8x

�

Px � Qx) � P =

�!


Q:

(Note that extensionality for predicates of higher arity follows from EXT

2

by

EXT

1

.) Comprehension states that, for ' a proposition with free variable x of

type �, there is a predicate P of type �!
 such that

8x

�

(Px � '):
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In our system the rule of comprehension is valid by taking for the P above just

�x

�

:' and applying the rule (conversion). This is very similar to [Takeuti 1975],

[Sch�utte 1977] and [Church 1940]. (In the latter this is not explicitly noted as

a feature of the system.) In [Lambek and Scott 1986] comprehension has to be

explicitly included as an axiom because, unlike the other systems, predicates

and functions can not be formed by (�-)abstraction. They form predicates

as subsets (notation fx 2 Aj'g for ' a proposition possibly containing x)

and the proposition stating that a term satis�es a predicate is denoted by set-

membership (t 2 fx 2 Aj'g, so 2 denotes both `of type' and `element of'.)

The de�nition of HOPL above is convenient for describing subsystems of

higher order predicate: First order predicate logic is obtained by restricting

the set of domains to D ::= B jB!
 jB!D and the set of constants of the

form 8

�

to the ones for which � 2 B. (It is then also usance not to allow the

construction of new functions or predicates using �-abstraction. However, this

is a conservative extension and the construction of predicates by �-abstraction

is necessary for our formulation of the 8.) As another example, higher order

propositional logic is obtained by removing in the de�nition of D the set of

basic domains B.

Because the formalism for describing the sublogics of HOPL is quite uni-

form it provides a good framework for discussing conservativity questions. For

example the conservativity of HOPL over higher order proposition logic is quite

easily shown by de�ning a mapping on the terms of HOPL that forgets every-

thing about the basic domains. The mapping preserves provability and is the

identity on the terms of the subsystem of higher order proposition logic.

We shall now describe a typed lambda calculus that faithfully represents

HOPL following the Curry-Howard isomorphism of formulas-as-types (and proofs-

as-�-terms.) It should be obvious from the de�nition of the system that there

is a bijective mapping between the two systems. We shall not go into a detailed

description of this bijection, but only give an example.

De�nition 2.3 1. The set of types of �HOPL, Type, is described by the

following abstract syntax.

Type ::= Prop jVar

ty

jType!Type;

with Var

ty

a countable set of type-variables.

2. The set of typable terms is a subset of the set of pseudoterms, T, which

is generated by the following abstract syntax.

T ::= Var

te

jTT j�x:Type:T jT � T j 8Var

te

:Type:T;

with Var

te

a countable set of term-variables. A term is of a certain type

only under assumption of speci�c types for the free variables that occur in

the term. That the term t is of type A if x

i

is of type A

i

for 1 � i � n, is

denoted by the judgement

x

1

:A

1

; x

2

:A

2

; : : : ; x

n

:A

n

` t : A:
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Here x

1

; : : : ; x

n

are di�erent term-variables and A

1

; : : : ; A

n

are types. The

rules for deriving these typing judgements are the following.

(variable)

� ` x : A

if x:A in �

(�-abstraction)

�; x:A ` t : B

� ` �x:A:t : A!B

(application)

� ` q : A!B � ` t : A

� ` qt : B

(�)

� ` ' : Prop � `  : Prop

� ` ' �  : Prop

(8)

�; x:A ` ' : Prop

� ` 8x:A:' : Prop

3. The set of proofs is a subset of the set of pseudoproofs, P, generated by

the following abstract syntax.

P ::= Var

pr

jPP jPT j�x:Type:P j�x:T:P;

where Var

pr

is the set of proof-variables. The rules for generating state-

ments of the form

x

1

:A

1

; : : : ; x

n

:A

n

; p

1

:'

1

; : : : ; p

k

:'

k

`M : A;

where the ~x and

~

A are as in 2, p

1

; : : :p

k

are di�erent proof-variables and

x

1

:A

1

; : : : ; x

n

:A

n

` '

i

: Prop (for 1 � i � k), are the following.

(axiom)

�;� ` p : '

if p:' in �

(� -introduction)

�;�; p:' `M :  

�;� ` �p:':M : ' �  

(� -elimination)

�;� `M : ' �  �;� ` N : '

�;� `MN :  

(8-introduction)

�; x:A; � `M : '

�;� ` �x:A:M : 8x:A:'

if x =2 FV(�);

(8-elimination)

�;� `M : 8x:A:' � ` t : A

�;� `Mt : '[t=x]

(conversion)

�;� `M : ' � `  : Prop

�;� `M :  

if ' =

�

 :

It is not di�cult to see that, apart from the di�erences in the treatment of

constants, HOPL and �HOPL are essentially the same. (In the latter system
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there are no constants, but because the types for which one can have constants

in HOPL are the same as the types for which one can have variables, the variables

can play the role of constants in the syntax.) To a deduction of '

1

; : : : ; '

n

`  in

HOPL, we can associate a derivation of �; p

1

:'

1

; : : : ; p

n

:'

n

`M : ' in �HOPL,

where M is a faithful coding of the deduction in HOPL and � assigns types to

all the free term-variables in the deduction that are not bound by a 8 at any

later stage. (To be precise: Variables are not really `bound by a 8' in HOPL; we

use this terminology to say that the variable has been removed from the proof

by an application of the rule (8-introduction), as de�ned in 2.2.) Similarly we

can associate to every derivation of a judgement �; p

1

:'

1

; : : : ; p

n

:'

n

` M : '

in �HOPL a derivation of '

1

; : : : ; '

n

` ' in HOPL. If we don't allow term-

constants in HOPL these mappings from HOPL to �HOPL and vice versa can

be made such that the composition of the two is the identity (up to the removal

from � of those variables that do not play a role.) To stress how the context �

is constructed from the deduction we treat two examples.

Examples 2.4 1. Let � = f8x:A:(Px � Q); 8x:A:Pxg, with P and Q vari-

ables. From the deduction

� ` 8x:A:(Px � Q)

� ` Px � Q

� ` 8x:A:Px

� ` Px

� ` Q

we obtain the judgement

P :A!Prop; Q:Prop; x:A; p

1

:8x:A:(Px � Q); p

2

:8x:A:Px ` p

1

x(p

2

x) : Q:

Notice that the declaration of x is essential here for the construction of

the proof. (�HOPL explicitly takes care of the so called free logic, where

domains are allowed to be empty.)

2. Let � = f8x:A:(Px � Qx); 8x:A:Pxg, with P and Q variables. From the

deduction

� ` 8x:A:(Px � Q)

� ` Px � Q

� ` 8x:A:Px

� ` Px

� ` Q

� ` 8x:A:Qx

we obtain the judgement

P :A!Prop; Q:Prop; p

1

:8x:A:(Px � Q); p

2

:8x:A:Px ` �x:A:p

1

x(p

2

x) : 8x:A:Q:

Now it is not needed for the construction of the proof to declare x. By our

restriction to the declaration of only those variables that are not bound by

a 8, the (super
uous) declaration of x is not done.
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To restrict the huge number of rules and to be able to better treat the

formulas-as-types embedding from higher order predicate logic to CC, we give

another type-theoretic syntax for HOPL in the shape of a so called Pure Type

System. Pure Type Systems (PTS 's) provide a general discription of a large

class of typed lambda calculi and makes it possible to derive a lot of meta

theoretic properties in a generic way. We shall not go into details about meta

theory nor do we give a list of examples of systems in the form of a PTS

but refer to [Barendregt 199+] and [Geuvers and Nederhof 1991]. Here we just

repeat the de�nition and the main meta-theoretic properties.

De�nition 2.5 For S a set, A � S �S and R � S �S �S, �(S;A;R) is the

typed lambda calculus with the following deduction rules.

(sort) ` s

1

: s

2

if (s

1

; s

2

) 2 A

(var)

� ` A : s

�; x:A ` x : A

(weak)

� ` A : s � `M : C

�; x:A `M : C

(�)

� ` A : s

1

�; x:A ` B : s

2

� ` �x:A:B : s

3

if (s

1

; s

2

; s

3

) 2 R

(�)

�; x:A `M : B � ` �x:A:B : s

� ` �x:A:M : �x:A:B

(app)

� `M : �x:A:B � ` N : A

� `MN : B[N=x]

(conv

�

)

� `M : A � ` B : s

� `M : B

A =

�

B

In the rules (var) and (weak) it is always assumed that the newly declared

variable is fresh, that is, it has not yet been declared in �. If s

2

� s

3

in a

triple (s

1

; s

2

; s

3

) 2 R, we write (s

1

; s

2

) 2 R. The equality in the conversion

rule (conv

�

) is the �-equality on the set of pseudoterms T, de�ned by

T ::= S jV j (�V:T:T) j (�V:T:T) jTT:

We see that there is no distinction between types and terms in the sense that

the types are formed �rst and then the terms are formed using the types. The

derivation rules above select the typable terms from the pseudoterms, a pseu-

doterm A being typable if there is a context � and a pseudoterm B such that

� ` A : B or � ` B : A is derivable. The set of typable terms of �(S;A;R)is

denoted by TERM(�(S;A;R)).

A practical purpose for the use of the PTS framework is that many prop-

erties can be proved once and for all for the whole class of PTSs. We list the

most important ones. (Proofs can be found in [Geuvers and Nederhof 1991]
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or [Barendregt 199+]. In most cases the proofs are not essentially di�erent

from the proof for the Calculus of Constructions.) First, the reduction rela-

tion �!�!

�

is Church-Rosser on T. (That is, if M �!�!

�

M

1

and M �!�!

�

M

2

then M

1

�!�!

�

N and M

2

�!�!

�

N for some N 2 T. (The proof is the same

as the Church-Rosser proof of �-reduction on the untyped lambda terms in

e.g. [Barendregt 1984].) One of the basic properties is the Substitution prop-

erty , stating that if �

1

; x:A;�

2

` M : B and �

1

` N : A then �

1

;�

2

[N=x] `

M [N=x] : B[N=x]. Another important property is that Subject Reduction holds

for �. (That is, if � `M : A and M �!�!

�

M

0

then � `M

0

: A.) This property

is sometimes called the Closure property, e.g. by the Automath community.

A property which holds for all the typed lambda calculi in this paper (but

not for all PTSs) is Uniqueness of Types : If � ` M : A, � ` M : A

0

, then

A =

�

A

0

. Uniqueness of types holds only for functional or singly sorted PTSs,

which means that the relations A � S � S and R � (S � S) � S of the Pure

Type System are functions. The last property we want to mention here is the

Permutation property which says that if � ` M : A, then �

0

` M : A for any

�

0

which is a sound permutation of the declarations in �. (x

1

:A

1

; : : : ; x

n

:A

n

is

sound if FV(A

i

) � fx

1

; : : : ; x

i�1

g for all i � n.) This property is not a standard

one in the literature but it follows immediately from the Strengthening property ,

stating that if �

1

; x:C;�

2

`M : A with x =2 FV(�

2

;M;A), then �

1

;�

2

`M : A.

The PTS framework yields a nice tool for describing a certain class of map-

pings between type systems, the so called PTS-morphisms. In general amapping

from �(S;A;R) to �(S

0

;A

0

;R

0

) is a function that assigns pseudojudgements of

�(S

0

;A

0

;R

0

) to judgements of �(S;A;R), a pseudojudgement being a sequent

x

1

:A

1

; : : : ; x

n

:A

n

` M : B with A

1

; : : : ; A

n

;M;B pseudoterms. We de�ne a

morphism from the PTS �(S;A;R) to the PTS �(S

0

;A

0

;R

0

) as a mapping f

from S to S

0

that preserves axioms and rules (i.e. s

1

:s

2

2 S ) f(s

1

):f(s

2

) 2 S

0

and (s

1

; s

2

; s

3

) 2 R ) (f(s

1

); f(s

2

); f(s

3

)) 2 R

0

.) A PTS-morphism from

�(S;A;R) to �(S

0

;A

0

;R

0

) immediately extends to a mapping f from the pseu-

doterms of �(S;A;R) to the pseudoterms of �(S

0

;A

0

;R

0

) and hence to a map-

ping between the PTSs by induction on the structure of terms. This mapping

preserves substitution and �-equality and also derivability, i.e.

� `M : A) f(�) ` f(M) : f(A):

There are certainly many other interesting mappings between Pure Type Sys-

tems and we don't want to give the PTS-morphisms any priority. However they

have some practical interest because they are easy do describe and share a lot

of desirable properties. And of course the Pure Type Systems with the PTS

morphisms form a category with products, coproducts and as terminal object

the system with Type : Type, often referred to as ��:

S = Type;

A = Type : Type;

R = (Type;Type):

The system �HOPL can now be poured in the form of a PTS as follows.

10



De�nition 2.6 The typed lambda calculus �HOPL is the PTS with

S = Prop;Type;Type

0

;

A = Prop : Type;Type : Type

0

;

R = (Type;Type);

(Prop;Prop); (Type;Prop)

The meaning of the components of the system should be clear from the

system �HOPL. The sort Type

0

is just there to be able to introduce variables

of type Type, the basic domains of the logic. There is a heavy overloading

of symbols: �x:A:B stands for logical implication (�) if A and B are both

propositions (of type Prop), it stands for universal quanti�cation (8

A

) if A is a

type and B a proposition (A:Type; B:Prop) and it stands for the domain A!B

if both A and B are types (of type Type.) Further it is not immediately obvious

that we can still see the higher order predicate logic as being built up in three

stages. (First the domains, then the terms and �nally the proofs.) It could well

be the case that a term expression contains a proof expression or that a domain

expression depends on a term. That this is not so is stated in the following

proposition.

Proposition 2.7 We work in �HOPL. If � `M : A then �

D

;�

T

;�

P

`M : A

with

� �

D

;�

T

;�

P

is a sound permutation of �,

� �

D

only contains declarations of the form x : Type,

� �

T

only contains declarations of the form x : A with �

D

` A : Type,

� �

P

only contains declarations of the form x : ' with �

D

;�

T

` ' : Prop,

� if A � Type , then �

D

`M : A,

� if � ` A : Type, then �

D

;�

T

`M : A.

The Proposition states (among other things) that the domains (terms of

type Type) are just built up from domain-variables using �, so no object- or

proof-variables occur as subterms, so the domains are as in �HOPL. Further

it states that the terms of the object-language are formed from the object-

variables by �-abstraction and application and (for terms of type Prop) by �,

so they don't contain proof-variables: �x:': (';  : Prop) denotes ' �  , the

logical implication.

Examples 2.8 1. The �rst example of 2.4 becomes the following judgement

in �HOPL.

A:Type; P :A!Prop; Q:Prop; x:A;

p

1

:�x:A:(Px!Q); p

2

:�x:A:Px ` p

1

x(p

2

x) : Q:

11



2. Peano arithmetic can be done in the following context

�

PA

= N :Type; 0:N; S:N!N;

cl:�x:Prop:x_ :x;

z

1

:�x:N:(Sx =

N

Sy)!(x =

N

y);

z

2

:S0 6=

N

0;

z

3

:�P :N!Prop:P0!(�y:N:Py!P (Sy))!(�y:N:Py):

One can prove (for readability we omit all type information)

�

PA

` z

3

Qz

2

(�y:�p:�a:p(z

1

(Sy)a) : �x:N:(Sx 6= x):

3. For A:Type, a set of subsets of A is a predicate F :(A!Prop)!Prop. The

intersection and union of all subsets of F can now be described in �HOPL

by \

F

= �x:A:(�P :A!Prop:FP!Px) and [

F

= �x:A:(9P :A!Prop:FP&Px),

where 9 is de�ned in terms of �, just asc it was de�ned in terms of 8 ear-

lier.

Remark 2.9 In the following we shall sometimes write 8 where in fact we

should write �. This is to stress the (informal) semantics of the � that we aim

at at that speci�c point in the text.

A disadvantage of our way of presenting higher order predicate logic as

�HOPL is that we can not �nd e.g. second order predicate logic as a subsystem

by an easy restriction on the rules. For the syntactic rules there is no distinction

between the basic domains and the domain Prop. Further it doesn't allow

a straightforward syntactical description of the formulas-as-types embedding

of higher order predicate logic into CC. We therefore look at the following

de�nition of higher order predicate logic, due to [Berardi 1988] (and de�ned for

the purpose of describing the Curry-Howard embedding.)

De�nition 2.10 The system �PRED! is the following Pure Type System

S = Prop; Set;Type

p

;Type

s

;

A = Prop : Type

p

Set : Type

s

;

R = (Set; Set); (Set;Type

p

); (Type

p

; Set); (Type

p

;Type

p

);

= (Prop;Prop); (Set;Prop); (Type

p

;Prop):

The sort Prop is to be understood as the universe of propositions, the uni-

verses Set and Type

p

together form the universe of domains (domains of the

form A

1

!� � �!A

n

!� with � a variable are of type Set, domains of the form

A

1

!� � �!A

n

!
 are of type Type

p

(n � 0).) The sort Type

s

allows the intro-

duction of variables of type Set.

As a subsystem of �PRED! we easily �nd higher order predicate logic with-

out functional domains by removing the rules (Set; Set) and (Type

p

; Set), but

also second order predicate logic by in addition removing the rule (Type

p

;Type

p

).

Before going further we state that �PRED! is really the same as �HOPL.

12



Proposition 2.11 There are derivability-preserving mappings G from �PRED!

to �HOPL and F from �HOPL to �PRED! such that F �G = Id and G�F = Id.

Proof Take for G : �PRED! ! �HOPL the PTS morphism

G(Prop) = Prop;

G(Set) = Type;

G(Type

p

) = Type;

G(Type

s

) = Type

0

:

and for F : �HOPL! �PRED! �rst de�ne the mapping F from TERM(�HOPL)n

fType

0

g to TERM(�PRED!) by

F (x) = x; (x a variable);

F (Prop) = Prop;

F (Type) = Set;

and further by induction on the structure of the terms. G, being a PTS mor-

phism, preserves derivations. F preserves substitution and �-equality and F

extends to contexts straightforwardly by de�ning

F (x

1

:A

1

; : : : ; x

n

:A

n

) := x

1

:F (A

1

); : : : ; x

n

:F (A

n

):

(The sort Type

0

does not appear in a context of �HOPL.) Now we extend F to

derivable judgements of �HOPL by de�ning

F (� `M : A) = F (�) ` F (M) : F (A); if A 6= Type;Type

0

;

F (� `M : Type) = F (�) ` F (M) : Set; if M �M

1

!� � �!�; (� a variable);

F (� `M : Type) = F (�) ` F (M) : Type

p

; if M �M

1

!� � �!Prop;

F (� ` Type : Type

0

) = F (�) ` Set : Type

s

:

By easy induction one proves that F preserves derivations. Also F (G(� `M :

A)) = � `M : A and G(F (� `M : A)) = � `M : A.

3 The Calculus of Constructions

We may observe that the inductive data types have already become part of the

systems �HOPL and �PRED! on the logical level via the coding of data types

as propositions in the polymorphic lambda calculus. There the proposition

�� : Prop:�!(�!�)!� denotes the data type of natural numbers and the

equivalence classes (equivalence under cut-elimination = �-conversion) of closed

terms represent the numbers. This encoding can be done here because �HOPL

contains Girard's F

!

(�HOPL without Type

0

is just F

!

.)

Before introducing CC, let's �rst outline this impredicative coding of data

types in polymorphic lambda calculus. We feel this is necessary for a good un-

derstanding of the system. Details of the encoding can be found in [B�ohm and Berarducci 1985]
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and [Girard et al. 1989]. First we de�ne the polymorphic lambda calculus (Gi-

rard's system F) as the Pure Type System with

S = Prop;Type;

A = Prop : Type;

R = (Prop;Prop); (Type;Prop):

This is a polymorphic language for the typing of functional programs. There

are no basic data types, but most of what we need can be de�ned. We treat

three examples.

Examples 3.1 1. The natural numbers in F are de�ned by the type Nat :=

�� : Prop:�!(�!�)!� and we �nd zero and succesor by taking the

constructors

Z := ��:Prop:�x:�:�f :�!�:x;

S := �n:Nat:��:Prop:�x:�:�f :�!�:f(n�xf):

Now it is easy to de�ne functions by iteration on Nat, by taking for c:�

and g:�!�, Itcg := �x:Nat:x�cg : Nat!�. It is also possible to de�ne

functions by primitive recursion, but this is a bit more involved and also

ine�cient.

2. For � a type, the type of list over � is de�ned by the type List(�) :=

��:Prop:�!(�!�!�)!�) and we �nd the constructors

Nil := ��:Prop:�x:�:�f :�!�!�:x;

Cons := �t:��l:List(�):��:Prop:�x:�:�f :�!�!�:ft(l�xf):

Again functions (like `head' and `tail') can be de�ned by iteration and

primitive recursion over lists.

3. Also coinductive data types, which can be understood as greatest �xed

points in a domain, can be de�ned in system F. (The inductive data types

correspond to smallest �xed points.) As an example we treat the type of

streams (in�nite lists) of natural numbers. Str := 9�:(�!Nat)&(�!�)&�.

For convenience we write hf; g; xi : (�!Nat)&(�!�)&� for f :�!Nat,

g:�!� and x:�, with projections �

1

; �

2

and �

3

. Then we have destructors

Head:Str!Nat and Tail:Str!Str de�ned by Head := �s:Str:sNat(��z:(�

1

z)(�

3

z)

and Tail := �s:Str:sStr(��z:��k:k�(�

1

z)(�

2

z)(�

2

z(�

3

z)): It is possible to

de�ne functions from a type � to Str by coiteration and corecursion.

We see that the impredicative data types that are de�nable on the level of

the propositions have a lot of structure already. (Girard has shown that on

the type Nat one can represent all recursive functions that are provably total

in higher order arithmetic.) It could therefore be fruitful to use them for the

domains and to skip the variables of type Type

0

. This means that both the

logical formulas and the data types are of type Prop. Then, because we want

14



to do predicate logic, we have to introduce the possibility of de�ning predi-

cates on these new domains (which are in fact propositions) by adding the rule

(Prop;Type) to R. (The type A!Prop then represents the type of predicates

on A and we can declare variables of type A!Prop in the context.) This is

the Calculus of Constructions, sometimes referred to as the Pure Calculus of

Constructions to distinguish it from its extensions and variations.

De�nition 3.2 The Calculus of Constructions is the Pure Type System with

S = Prop;Type;

A = Prop : Type;

R = (Prop;Prop); (Prop;Type); (Type;Type); (Type;Prop):

Using our understanding of higher order predicate logic, the sort Prop is the

universe of both propositions and domains in which a whole range of (closed)

data types is present.

Another way to see things is to understand Prop just as the universe of

propositions (refraining from understanding the propositions as domains), in

which case a type like '!Prop (' : Prop) can be understood as the type of

predicates on proofs of '. This allows one to do predicate logic over the proofs

of propositions. For practical purposes this latter approach doesn't seem to be

so fruitful. For example one can not distinguish between proofs that are cut-free

and proofs that are not. This is because lambda terms that are �-equal (proofs

that are equal via cut-elimination) are identi�ed: If Pt is provable and t =

�

t

0

,

then also Pt

0

is provable. If one is looking for these kind of applications, it

is much more promising to use the `coding' of a logic in a relatively weak

framework like Automath or LF. There is however also the possibility to restrict

the conversion rule of CC, such that only some convertible propositions are

identi�ed. (A system like this is described in [Coquand and Huet 1988].)

It should be clear that in any of the two approaches the distinction between

domains, objects and proofs is blurred: propositions may contain proofs and

there is no a priori distinction between domains and propositions. On the other

hand it does take the formulas-as-types approach very seriously in the sense

that formulas are not only treated in the same way as the types (domains)

but just as if they were types, putting them in the same universe. Because

of this mixing of formulas and domains, the Curry-Howard embedding from

higher order predicate logic into CC (as described informally above) will not be

complete. The embedding from higher order propositional logic into CC (i.e. if

one refrains from understanding the propositions as domains) is complete. To

see what is going on here we shall make the Curry-Howard embedding precise

by describing it via the system �PRED!.

Before going into the syntactical formalisation of the formulas-as-types em-

bedding, we want to treat some examples to get the 
avour. In these examples,

the impredicative coding of data types will be used as described in 3.1. First we

want to discuss induction over the terms of type Nat and see to which extent

Nat represents the free algebra of natural numbers. Then we treat two formulas

that represent speci�cations of programs. This touches upon one of the most
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interesting aspects of CC: To use it as a higher order constructive logic in which

one can represent speci�cations as formulas (about data types.) From a proof of

the formula the constructive content can then be extracted as a program (more

precisely a lambda term typable in F

!

.) A lot of work on this subject has been

done in [Paulin 1989]; we shall say a little bit more about this in Section 5.

Example 3.3 We know (this can be proved by Theorem 3.5) that in CC each

closed term of type Nat is �-equal to a term of the form ��:Prop:�x:�:�f :�!�:f(: : : (fx) : : :).

That is, modulo �-equality, the closed terms of type Nat are precisely the ones

formed by S out of Z. This induction property can be expressed in CC, but is

not provable in side it. To be precise, de�ne

Ind

Nat

:= 8P :Nat!Prop:PZ!(8x:Nat:Px!P (Sx))!(8x:Nat:Px);

then Ind

Nat

is not provable. If we assume Ind

Nat

, we still can't prove that

the type Nat is the free structure generated by Z and S. To establish this we

have to add the premises Z 6=

Nat

SZ and 8x; y:Nat:(Sx = Sy)!(x = y): None

of these two propositions is provable in CC. In higher order predicate logic

(working in the natural numbers-signature hN;Z; Si) these three assumptions

are independent, so we would have to add all three of them to obtain the free

algebra of natural numbers. In CC this is not so: The assumptions Ind

Nat

and

Z 6=

Nat

SZ su�ce to prove the freeness of Nat. (This is so because one can

de�ne P :Nat!Nat with Ind

Nat

` 8x:Nat:P (Sx) =

Nat

x in CC.)

Examples 3.4 1. Abbreviate List(Nat) to List. The proposition stating that

for every �nite list of numbers there is a number that majorizes all its

elements can be expressed by

8l:List:9n:Nat:8m:Nat:`m 2 l! m � n

0

;

where m 2 l represents

8P :List!Prop:(8k:List:P (Consmk))! 8k:List8r:Nat:(Pk!P (Consrk))! Pl

and m � n represents

8R:Nat!Nat!Prop:(8x:Nat:Rxx)!(8x; y:Nat:Rxy!Rx(Sy))!Rmn:

A proof of this proposition constructs for every list l a number n and a

proof of the fact that n majorizes l. From it one can extract a program of

type List!Nat that satis�es this speci�cation.

2. Abbreviate Str(Nat) to Str. The proposition that every (in�nite) stream

that is majorizable has a maximal element can be expressed by

8s:Str:(9n:Nat:8m:Nat:m 2 s! m � n)!(9n:Nat:`n is maximum of s';

where m 2 s now represents

9p:Nat:Head(pStrTails) = m;
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and `n is maximum of s' represents

(n 2 s)&(8m:Nat:m 2 s! m � n:

From a proof of this formula one would like to extract a term of type

Str!Nat that computes the maximum of a stream, if it exists. In general

this may however not be possible because the construction of the maxi-

mum of s will depend on the proof of the premise that s is majorizable.

Part of the construction lies in the proof of this premise (and not just

in the construction of the majorant of s but also in the proof that it is

the majorant.) As there is no notion of unde�nedness in CC (all terms

are normalising), the construction in the proof always gives a number as

answer, even if there is no majorant of the stream s.

We want to state some of the most important meta-properties of CC. In the

examples we already came accross the normalization property.

Theorem 3.5 CC is strongly normalizing. (All �-reduction sequences starting

from an M 2 TERM(CC) are �nite.)

A �rst proof of this theorem can be found in [Coquand 1985], but the proof

contained a bug as remarked by Jutting, who then gave a proof of normalization

for CC. (That is, every M 2 TERM(CC) reduces to a term in normal form.)

Coquand repaired his own proof in a preliminary version of [Coquand 1990].

All proofs use a higher order variant of the `candidat de r�educibilit�e' method as

developped by Girard for proving strong normalisation for his system F and F

!

.

(See [Girard et al. 1989] for the proof for system F.) The idea is to de�ne a kind

of realisability model in which propositions are interpreted as sets of lambda

terms (the realisers). A detailed explanation of the method can be found in

[Gallier 1990]. It is also possible to obtain the strong normalisation for CC

more or less directly from the strong normalisation property of F

!

, as is shown

in [Geuvers and Nederhof 1991]. The importance of the (strong) normalisation

property lies in the fact that it gives a handle on the number of proofs of a

proposition. (One can for example show that every closed term of type Nat

is �-equal to a numeral (i.e. a term of the form S(: : :S(Z) : : :).) Further, by

using normalization one can prove the decidability of typing.

Theorem 3.6 Given a context � and a pseudoterm M , it is decidable whether

there exists a term A with � ` M : A. If such a term A exists, it can be

computed e�ectively.

Some hints towards a proof can be found in [Coquand and Huet 1988] and

more details in [Coquand 1985] and especially in [Martin-L�of 1971]. See also

[Harper and Pollack 1991] for an exposition on the decidability of typing for

an extended version of CC, which also describes an algorithm for computing a

type.
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4 The formulas-as-types embedding from higher or-

der predicate logic into CC

The Curry-Howard embedding from higher order predicate logic into CC makes

an essential distinction between basic and functional domains on the one hand

(including the de�nable data types) and higher order domains like A!
 on the

other. The �rst are interpreted as propositions (the basic domains as variables

of type Prop, the functional domains as implicational formulas and the de�nable

data types via the embedding of data types in system F ) and the higher order

domains are interpreted as types, e.g. A!Prop : Type.

Using the system �PRED! we can now describe the Curry-Howard formulas-

as-types embedding of higher order predicate logic into CC as a PTS mor-

phism. In fact this is the whole reason for introducing �PRED! here. In

fact there are di�erent ways of interpreting HOPL in CC, but the one we

describe here is what the inventor(s) of CC aim at (see [Coquand 1985] and

[Coquand and Huet 1988]), and which is sometimes called the `canonical em-

bedding' of higher order predicate logic into CC. In our setting this canonicity

is partly forced upon by the syntax, therefore it is worthwile to also understand

the embedding from a more semantical point of view.

It is well-known by now that the embedding is not complete, i.e. there are

propositions that are not provable in HOPL that become provable when mapped

into CC. We shall treat some examples of those formulas. This incompleteness

result is sometimes referred to as the `non-conservativity of CC over HOPL',

but this terminology is a bit ambiguous because `(non-)conservativity' actually

only applies if one system is a real subsystem of the other. Therefore we shall

use the more correct terminology of `(in)completeness of the embedding' here.

De�nition 4.1 The formulas-as-types embedding from �PRED! to CC is the

PTS morphism H with

H(Prop) = Prop;

H(Set) = Prop;

H(Type

p

) = Type;

H(Type

s

) = Type:

Let's �rst remark that there are terms of type Prop, typable in CC in a

context that comes from �PRED!, that do not have an intuitive meaning in

higher order predicate logic, for example �:Prop; P :�!Prop; x:� ` Px!� :

Prop. (Is Px!� a domain or a proposition in �PRED!?)

As pointed out, one can also refrain from understanding CC as a system of

predicate logic and view CC as a higher order propositional logic with proposi-

tions about (proofs of) propositions. Let's also make that embedding precise.

De�nition 4.2 The typed lambda calculus corresponding to higher order propo-

sitional logic �PROP! is the PTS with

S = Prop;Type;
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A = Prop : Type;

R = (Prop;Prop); (Type;Prop); (Type;Type):

The PTSmorphisms from �PROP! into CC and from �PROP! into �PRED!

are easily de�ned; the �rst is just the identity and the second maps Type to

Type

p

.

Now all kind of rather exotic propositions can be understood as meta-

propositions about higher order propositional logic. For example

�:Prop; P :�!Prop; x:� ` Px!� : Prop

can be seen as the statement that for � a proposition and x a proof of �, if P

holds for x, then � holds. We can go to arbitrary high levels of meta-reasoning,

for example

�:Prop; P :�!Prop; x:�;Q:Px!Prop; y:Px ` Px!Qy : Prop

but also

P :��:Prop:�!Prop; ':Prop; x:'; y:P'x ` P (P'x)y:Prop:

Of course the typed lambda calculus �PROP! is just Girard's calculus F!,

the extension of system F with higher order type constructors. Viewing it in

this way (as a calculus that assigns types to programs), we see a very powerful

language for typing functional programs that includes many basic data types.

As Girard has shown, we can type all recursive functions on the natural numbers

that are provably total in higher order arithmetic. ([Girard 1972]) This is also

the power of the formulas-as-types formalism: it relates constructive proofs to

functional programs in the sense that from a constructive proof of a formula

that represents a certain speci�cation we can derive the construction in the

proof as a program that satis�es the speci�cation. A lot of work has been done

in this �eld by Paulin. (See [Paulin 1989].) In 5 we shall give an example to

get an idea of the strength of the formalism.

4.1 Consistency of CC

As the described embedding from �PRED! into CC is not complete (CC proves

more propositions than �PRED!), one may wonder whether there are proposi-

tions that CC can not prove, or to put the question di�erently, is CC consistent?

That this is the case can be shown quite easily by giving a two-point model

for CC. (Originally due to [Coquand 1990].) The type Prop is interpreted as

f;; f;gg (or f0; 1g in ZF language) and if `M : A, the interpretation ofM is in

the set A. This model is called the `proof-irrelevance' model in [Coquand 1990]

because in the model all proofs of a proposition are mapped to 0; the model

doesn't distinguish between proofs. So the model also implies that in CC one

can not prove a 6=

A

a

0

(for ` a; a

0

: A) in the empty context. The interpretation

will be such that the proposition ?(:� ��:Prop:�) is interpreted by 0, so there

can be no term M with ` M : ? and so CC doesn't prove ?. As this is an
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introductory text we shall make the model construction a bit more precise here,

in the meantime obtaining the result that CC is conservative over �PROP!.

(A result �rst proved by Paulin (see [Paulin 1989]) and independently due to

Berardi ([Berardi 1988]).)

De�nition 4.3 De�ne the mapping [�] : TERM(CC) ! TERM(�PROP!) as

follows.

[Type] = Type;

[Prop] = Prop;

[x] = x; for x a variable;

[�x:A:B] = [B] if A:Prop; B:Type;

= �x:[A]:[B] else;

[�x:A:M ] = [M ] if A:Prop;M :B:Type; (for some B);

= �x:[A]:[B] else;

[PM ] = [P ] if M :A:Prop; P :B:Type; (for some A;B);

= [P ][M ] else;

Remark 4.4 One may wonder whether the side conditions `A:Prop B:Type'

can lead to ambiguities, making the de�nition incomplete. (It could be the case

that PM is typable in both � and �

0

with � `M :A:Prop and �

0

`M :B:Type.)

In fact, there are such ambiguities, for example in xy, the type of y can be of

type Prop (e.g. in � = �:Prop; y:�; x:�!Prop) but also of type Type (e.g. in

� = y:Prop; x:Prop!Prop.) However, these ambiguities can easily be solved if

we would have built up the syntax a little bit more carefully, namely by deviding

the set of variables V into disjoint sets V

s

for every s 2 S. In the (weak) and

(var) rule we then put the restriction that the new variable that is added to the

context (the x in `x : A') should be in V

s

(if � ` A : s.)

The advantage of these small modi�cations is that we can distinguish proposi-

tions from types `on the nose' and similarly distinguish inhabitants of proposi-

tions from inhabitants of types. To be precise, we have the following property.(s; s

0

2

fProp;Typeg.)

� ` A : s;�

0

` A : s

0

) s � s

0

;

� `M : A : s;�

0

`M : B : s

0

) s � s

0

:

This property is valid for a whole class of Pure Type Systems (provided we have

made the sketched alterations to the syntax), which covers all PTSs that are

used in this paper. (See [Geuvers and Nederhof 1991] for more details.)

The mapping [�] straightforwardly extends to contexts. The following can

be proved by an easy induction on derivations. (`

CC

denotes derivability in

CC, `

�PROP!

denotes derivability in �PROP!.)

Proposition 4.5 [Paulin 1989, Berardi 1988]

� `

CC

M : A) [�] `

�PROP!

[M ] : [A]
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Corollary 4.6 [Paulin 1989, Berardi 1988]) CC is conservative over �PROP!

Proof The only thing to check is that for M 2 TERM(�PROP!), [M ] �M .

The consistency of CC now follows from the consistency of higher order

propositional logic (and in fact a detailed veri�cation that �PROP! proves

the same propositions as higher order propositional logic.) We sketch here a

short proof of the consistency of �PROP! by constructing the promised two

point model, which is (by Proposition 4.5) also a model of CC. (It is not so

easy to construct the model immediately for CC, a problem that is solved in

[Coquand 1990] by describing the model for a variant of CC that we shall discuss

in 6.3. Here we use the mapping [�] from CC to �PROP! for this purpose.)

Before constructing the model we want to state some properties of �PROP!

that will be used. First, the set of types of �PROP! (those terms A for which

� ` A : Type for some �) can be described by K, where

K ::= Prop jK!K:

Second, no proposition-variables are subterms of propositions or constructors,

that is

� `M : A : Type) �

0

`M : A : Type;

where �

0

consists just of those declarations x:B in � for which � ` B : Type.

These two properties imply that we can build the interpretation in three

stages by �rst giving a meaning to the types, then to the propositions and

constructors and then to the proofs. It will be convenient to seperate the

variables, as was discussed in Remark 4.4, into two sets, V

Prop

for proof-

variables and V

Type

for constructor-variables. The �rst will be denoted by

Latin characters, the latter by Greek characters. In general, an interpretation

of terms of �PROP! uses a valuation � of constructor-variables and a valuation

� of proof-variables. In our simple model all free proof-variables will have the

value 0, so we only need �. For convenience we think of contexts of �PROP! as

being split up in a �

1

, containing the declarations of constructor variables, and

a �

2

, containing the declarations of proof-variables. The valuation � satis�es

�

1

(notation � j= �

1

) if for all � : A 2 �

1

, �(�) is in the interpretation of A.

(A : Type, so A doesn't contain any free variables.) The valuation � satis�es

� (notation � j= �) if � satis�es �

1

and for all x:A 2 �

2

, the interpretation of

A under � is not empty. (A : Prop, so A can only contain free constructor-

variables.)

De�nition 4.7 For � `M :A we de�ne the interpretation function [[�]] : TERM(�PROP!)!

Sets as follows.

1. For types, [[Prop]] = 2 and [[k

1

!k

2

]] = [[k

1

]]! [[k

2

]] (for k

1

, k

2

2 K), where

the latter arrow denotes set-theoretic function space.

2. For constructors, let � be a valuation of constructor-variables such that

� j= �

1

,

[[�]]

�

= �(�);
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[[�x:A:B]]

�

= 1 if 8a 2 [[A]][[[B]]

�(x:=a)

= 1];

= 0 else, (for A : Type; B : Prop),

[[A!B]]

�

= [[A]]

�

! [[B]]

�

; (for A;B : Prop),

[[PQ]]

�

= [[P ]]

�

[[Q]]

�

;

[[��:A:P ]]

�

= ��a 2 [[A]]

�

:[[P ]]

�(x:=a)

:

3. All proofs are interpreted as 0.

Here, ��a 2 U:V (a) denotes a set-theoretic function. Further we identify all

singleton sets (like e.g. [[A]]

�

! [[A]]

�

) with 1 and we use the fact that no proof-

variables occur in propositions.

By induction on derivations one can prove the following property.

Proposition 4.8 If � ` M : A, then for all valuations � with � j= �, [[M ]]

�

2

[[A]]

�

.

It is good to realise here that for example for � = x:?(� ��:Prop:�), there

is no � with � j= �, so in this case the conclusion of the proposition is trivially

satis�ed.

Corollary 4.9 �PROP!, and hence CC, is consistent.

Proof For all valuations �, [[?]]

�

= 0. All valuations satisfy the empty context,

so if `M : ?, then 0 2 0, quod non.

4.2 Incompleteness of the formulas-as-types embedding

As already pointed out, the formulas-as-types embedding from higher order

predicate logic in CC is not complete. In this section we want to discuss some

examples of propositions that are not provable in the logic but become inhabited

when mapped into CC. At the same time one obtains a better understanding

of the logical merits of CC. First we show that if one allows empty domains in

the logic, the incompleteness is quite easy.

Remark 4.10 In CC, the existential quanti�er has a �rst projection, sim-

ilar to Martin-L�of 's understanding of the existential quanti�er as a strong

�-type. (See e.g. [Martin-L�of 1984].) To be precise, there is a projection

function p : (9x:A:')!A, for A;':Prop in CC: Remember that 9x:A:' �

��:Prop:(�x:A:'!�)!� and take p :� �z:(9x:A:'):zA(�x:A:�y:':x). So,

if 9x:A:' is provable one immediately obtains a closed term of type A by apply-

ing p. In general there is no second projection, so the 9 is not a strong �. (If,

for example, 9x:A:' is assumed in the context, say by z:9x:A:', '[pz=x] is not

provable.)

Lemma 4.11 In �HOPL, for x =2 FV('),

P :A!Prop; ':Prop 6` (9x:A:Px) � (8x:A:') � ');

but in CC there is a term M with

A:Prop; P :A!Prop; ':Prop `M : (9x:A:Px)!(A!')!'):
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Proof Because the �HOPL-context doesn't contain a declaration of a variable

to A, we can't construct a term of type A, so we have no proof. In CC, take

M � �z:(9x:A:Px):�y:(A!'):y(px), with p as in Remark 4.10.

Also without using empty domains the embedding is not complete, as was

�rst independently shown by [Berardi 1989] and [Geuvers 1989]. We treat both

counterexamples, starting with the latter as it is very short (but syntactic.)

Both proofs give a counterexample already for the completeness of the embed-

ding of third order predicate logic in so called third order dependent typed

lambda calculus. (In this terminology, CC is higher order dependent typed

lambda calculus and the system �P2 of [Barendregt 1992] is second order de-

pendent typed lambda calculus.) The counterexample with empty domains

above already works for second order dependent typed lambda calculus; it is

not known whether one can �nd a counterexample without allowing empty

domains.

Proposition 4.12 The formulas-as-types embedding of higher order predicate

logic into CC is not complete.

Proof [Geuvers 1989] We use the fact that if x =2 FV('), then 8x:A:' and

A � ' can not be distinguished in CC. Take

� := A:Set; a:A;':Prop; �:Prop!Prop; z:P (8x:A:');

and we try to �nd a proof t of 9�:Prop:P (�!'). As no extensionality has been

assumed in the context, such t can't be found. (Supposing there is such t, one

easily shows that it can't be in normal form.) However, in CC one can take the

domain A for � because domains and propositions are not distinguished. More

precisely, in �

0

= A:Prop; a:A;':Prop; �:Prop!Prop; z:P (�x:A:'),

�

0

` �
:Prop:�h:(��:Prop:P (
!')!�):hAz : 9�:Prop:P (�!'):

Proof [Berardi 1989] De�ne

EXT := 8�; �:Prop:(�$�)! (� =

Prop

�);

where �$� denotes (�!�)&(�!�) and =

Prop

denotes the Leibniz equality

on Prop, � =

Prop

� :� 8P :Prop!Prop:P�!P�. This `EXT' is the extension-

ality axiom for propositions; note that it is a consequence of EXT

2

as de�ned on

page 5. In CC this axiom has some unexpected consequences, because for non-

empty domains A one has A $ A!A and so, by EXT, all generic properties

that hold for A, hold for A!A and vice versa. This can be used to construct

in CC a proof p with

A:Prop; a:A; z:EXT ` p : A is a �-model;

where

A is a �-model := 9�:(A!A)!A:9App:A!A!A:

App � � =

Prop

Id

A!A

&

� �App =

Prop

Id

A

:
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This implies (among other things) that every term of type A!A has a �xed

point. Of course, in higher order predicate logic, from EXT it doesn't follow

that every function on a non-empty domain has a �xed point.

If we look for example at a context for Heyting arithmetic,

�

HA

:= N :Prop; 0:N; S:N!N;

z

1

:8x:N:(Sx =

N

Sy)!(x =

N

y);

z

2

:S0 6=

N

0;

z

3

:8P :N!Prop:P0!(8y:N:Py!P (Sy))!(8y:N:Py);

then there is a term t with

�

HA

; z:EXT ` t : ?:

4.3 Consistency of contexts in CC

One may wonder whether EXT := 8�; �:Prop:(�$�) ! (� =

Prop

�); is con-

sistent in CC. That this is the case can be seen by using the proof-irrelevance

model of De�nition 4.7. The interpretation of EXT in the model is 1, so if

EXT were inconsistent, CC itself would be inconsistent, quod non. The same

argument applies to show that CC with classical logic is consistent. De�ne

CL := 8� : Prop:�_ :�;

where :� denotes �!?. Then [[CL]] = 1, so CL is consistent. A more interest-

ing example is the Axiom of Choice. Let

AC := 8P :A!B!Prop:(8x:A:9y:B:Pxy)! (9f :A!B:8x:A:Px(fx)):

Applying the mapping of De�nition 4.3 we obtain [AC] = 8P :Prop:(A!B&P ) !

(A!B)&(A!P ). Now [AC] is provable in �PROP!, so AC is not inconsistent

in CC (by the consistency of �PROP!.)

We may notice that in all these cases the proof of consistency of an assump-

tion is done by giving a model in which the assumption is satis�ed; for EXT

and CL the proof-irrelevance model and for AC the system �PROP!. In some

(quite trivial) cases it is even possible to use CC itself as model: If the context

� consists only of declarations x : A with A : Type or A =

�

zt

1

: : : t

p

with z

a variable, then � is consistent. Contexts of this kind are called strongly con-

sistent in [Seldin 1990]. To verify the consistency we let � = x

1

:A

1

; : : : ; x

n

:A

n

be a strongly consistent context and suppose that � ` M : ? for some M .

Now we consecutively substitute all free variables that are declared in � by

a closed term, such that all the assumed propositions become >(= 8�:�!�),

as follows: If x

i

: A

i

2 � with � ` A

i

: Type, then A

i

=

�

�~y:

~

B:Prop, (with

FV(

~

B) � fx

1

; : : : ; x

i�1

g) and we substitute x

i

by �~y:

~

B

�

:>, where the B

�

are

the terms in which the substitution for x

1

; : : : ; x

i�1

has already been done. If

x : zt

1

: : : t

p

(: Prop) with z a variable, we substitute x by ��:Prop:�x:�:x,

which is of type >. If we denote this substitution by

�

, we can conclude from

� ` M : ? and the Substitution property (page 10) that ` M

�

: ?. So � is

consistent by the consistency of CC.
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The techniques described above to show that a context is consistent are not

su�cient to handle the more interesting examples. For mere proof theoretic

reasons it will for example not be possible to show the consistency of �

HA

(de-

�ned in the second proof of Proposition 4.12) with these techniques, because

this would give us a �rst order consistency proof of higher order arithmetic.

These kind of contexts have to be handled by a normalization argument; as-

suming the inconsistency of �

HA

, show that a proof of ? in �

HA

can not be

in normal form, and so there is no such proof. In [Seldin 1990] one can �nd a

detailed proof of the consistency of a context that represents Peano Arithmetic

in a system that is a slight extension of CC. Coquand shows in [Coquand 1990]

by a normalization argument that the context

Inf = A:Prop; a:A; f :A!A;R:A!A!Prop

z

1

:8x:A:(Rxx)!?; z

2

:8x; y; z:A:Rxy!Ryz!Rxz; z

3

:8x:A:Rx(fx)

is consistent. When contexts become larger, a consistency proof by the nor-

malization argument can of course get very involved. Semantics is then a very

helpful tool for showing that contexts are consistent and in general to show

the non-derivability of a formula from a speci�c set of assumptions. Of course

one has to use more interesting models then the one of 4.7 to establish this. In

[Streicher 1991] there are some examples of this technique using the realisability

semantics.

Knowing that a certain context is consistent is of course not enough to

be able to use it safely for doing proofs. Due to the incompleteness of the

formulas-as-types embedding, a well-understood context that is beyond sus-

picion in higher order predicate logic, may have unexpected side-e�ects when

embedded in CC. Further, CC has a greater expressibility then higher order

predicate logic so we may also put in the context axioms which do have a

meaning but can not be expressed in the logic, for example an axiom that

makes a statement about all domains. An example of this is the axiom of

de�nite descriptions as described in [Pottinger 1989],

DD := 8�:Prop:8P :�!Prop:8z:(9!x:�:Px):P (��Pz);

where

9!x:�:Px := (9x:�:Px)&(8x; y:�:Px!Py!(x =

�

y))

and � is a term of type 8�:Prop:8P :�!Prop:(9!x:�:Px)!�. (One can take

some �xed closed term for � but also declare it as variable in the context.)

We assume the intended meaning of DD in HOPL to be clear. Together with

classical logic, the axiom of de�nite descriptions has an unexpected side-e�ect

in CC.

Proposition 4.13 [Pottinger 1989] `Classical logic' and `de�nite descriptions'

yield proof irrelevance in CC

We have already encountered the semantical notion of proof irrelevance in

the discussion of the model in 4.7. It can also be expressed in purely syntactical
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terms as the phenomenon that for all propositions ', all proofs of ' are Leibniz-

equal. It is then formalised in CC by the proposition

PI := 8�:Prop:8x; y:�:(x =

�

y):

Of course, PI holds in the proof-irrelevance model of 4.7 (the interpretation of

PI is 1), so PI doesn't imply inconsistency. However, if we intend to use CC

for predicate logic it is clearly undesirable: if � proves PI, then any assumption

a 6= a

0

makes � inconsistent. We see that PI, which is a very useful principle

for proofs, is a very odd principle when applied to domain-objects. Because of

the treatment of domains and propositions at the same level, principles about

(proofs of) propositions have unwanted applications to the domains.

The proof of Proposition 4.13 in [Pottinger 1989] uses an adapted form of a

proof by Coquand ([Coquand 1990]), showing that CC with classical logic and

a derivation rule for a strong version of disjoint sum yields proof irrelevance.

Let's also state this result, but not by adding a derivation rule but by adding an

axiom, which really amounts to the same as the rule used in [Coquand 1990].

(Using the result by Reynolds that polymorphism is not set-theoretic, Berardi

has proved that in CC, classical logic with a stronger form of de�nite descrip-

tions (replacing the 9! by 9) implies PI. See [LEGO-examples] for details.)

Proposition 4.14 [Coquand 1990] `Classical logic' with `disjunction property

for classical proofs' implies proof irrelevance in CC.

Here we mean by `disjunction property for classical proofs', that for c : CL

in the context and ' : Prop, c' is in the smallest set of proofs of ' _ :'

that contains all proofs that are obtained by _-introduction from a proof of

' or a proof of :'. Put in syntactical terms this says that, for i and j the

injections from A to A _ B, respectively from B to A _ B, the proposition

8P :(A _ B)!Prop:(8x:A:P (ix))!(8x:B:P (jx))!P (c') holds. So proof irrel-

evance follows from the context

cl:CL; z:8�:Prop:(�+ :�)(cl�);

where forA;B:Prop, A+B := �y:A_B:8P :(A_B)!Prop:(8x:A:P (ix))!(8x:B:P (jx))!Py.

In presence of CL also the reverse can be proved, so we can construct a proof

p with

cl:CL ` p : PI $ (8�:Prop:(�+ :�)(cl�)):

The implication from right to left is the most interesting. The proof (in

[Coquand 1990]) uses the fact that if in � one can construct A : Prop, E :

A!Prop, � : Prop!A and a proof of 8�:Prop:�$ E(��), then � proves ?.

5 Formulas about data-types in CC

Having seen the incompleteness of the formulas-as-types embedding of higher

order predicate logic in CC, we shall now see that the distance between CC and

HOPL is not so large when it comes to propositions about inductive data types.
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This follows from a recent result by Berardi, which we shall discuss it here only

for what concerns the implications for the formulas-as-types embedding. For

details and proofs we refer to [Berardi 199+]. The point is that for purposes

of deriving programs from proofs, it doesn't seem to make sense to declare a

theory in the context. Instead one uses the de�nable impredicative data types

and inductive predicates on them, as is done in the examples of 3.4. This is not

the place to discuss in detail the topic of extracting programs from proofs in

CC, for which we refer to [Paulin 1989], but to get some 
avor we do want to

treat the �rst example of 3.4. Roughly, the program extracted from the proof

is the F

omega

-term obtained by the mapping [�], as de�ned in De�nition 4.3.

Let's consider the �rst example of 3.4. Suppose t is a proof of

8l:List:9n:Nat:8m:Nat:`m 2 l! m � n

0

in the context a:Ind

Nat

. Then in F

!

we have a:8P :Prop:P!(Nat!P!P )!(Nat!P ) `

[t] : List!(Nat�Nat!True

1

!True

2

); where True

1

and True

2

are some trivially

provable propositions. Now [t] still contains computationally irrelevant informa-

tion; the real program to be extracted should be something like �x:Nat:�

1

([t]

�

x) :

List!Nat; where

�

substitutes some closed term for a in [t]. Of course it is not

irrelevant what we substitute for a, but the general picture should be clear:

From the proof of the speci�cation one can obtain the program that stais�es

the speci�cation. In [Paulin 1989] it is also shown how to extract from the

proof the logical content which is a proof that the extracted program satis�es

the speci�cation. Some parts of the proof have computational content while

others don't. Therefore, to mechanize the extraction proces, in [Paulin 1989]

the type Prop is divided in Prop, Data and Spec, the �rst consisting of the

propositions with purely logical content, the second consisting of the proposi-

tions with purely computaional content and the third consisting of propositions

containing both logical and computaional content.

In view of the discussion of the example above it is an interesting ques-

tion whether CC proves more propositions about inductive data types then

higher order predicate logic does. It is clear that we have to be more pre-

cise if we want to have a negative answer, because in general the answer will

be positive. (E.g. in CC we can still prove EXT ! 9x:Nat:Sx =

Nat

x

(see the second proof of Proposition 4.12) and Ind

Nat

&(Z 6=

Nat

SZ) !

8x; y:Nat:(Sx =

Nat

Sy)!(x =

Nat

y) (see Example 3.3.)) First we have to

consider only the strongest version of inductive data types, called paramet-

ric data types in [Berardi 199+]. A parametric data type is in set-theoretic

terms the smallest set X closed under some �xed operators (functions of type

A

1

!A

2

! : : :!A

n

!X , where n � 0 and each A

i

is X or an already de�ned

parametric data type.) If D is a parametric data type this implies that the

induction and uniqueness properties for D are satis�ed. In algebraic terms,

a parametric data type is just a free (or initial) algebra. Further we have

to restrict ourselves to a speci�c class of propositions, what Berardi calls the

propositions on functional types . The functional types are the ones obtained by

putting arrows between the types; further there are the so called logical types,

which is the class of (higher order) predicate types on functional types. The
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propositions on functional types are the propositions obtained from the basic

propositions by the usual logical connectives �;_&;:; 8

L

and 9

L

, where L is

a logical type. The basic propositions are those propositions obtained by ap-

plying an inductive predicate to the right number of terms (of the right type),

so this class is already quite big. (Inductive predicates are minimal subsets

among those closed under some �xed monotone constructors; they can be de-

�ned in higher order predicate logic by the higher order quanti�cation over all

such predicates. For example �� Nat � Nat and 2� Nat � List of the Ex-

amples in 3.4 are inductive predicates.) In [Berardi 199+] all this is de�ned in

set-theoretic terms and then translated into CC. As is done there, we shall not

denote this translation explicitly (but there are no ambiguities about this.)

The main result of [Berardi 199+] is now saying that for ' a proposition in

the set Pos, if � `M :' in CC for some termM , and � is satis�ed in the model

PER, then ' is provable in Set theory. Here PER is some model based on the

interpretation of propositions of CC as partial equivalence realtions on � (the

set of untyped lambda terms.) The model-construction is in [Berardi 199+];

we will not go into it here but state the important facts that for all parametric

data type D, the interpretation of Ind

D

in PER is not empty, which means that

z:Ind

D

is satis�ed. The set of propositions Pos consists of those propositions on

functional types that are built up from the basic propositions using �;_;&;:

and 8x:D; 9x:D (forD a parametric data type) with the restriction that a 8x:D

that is not bound may only occur in a positive place. (The 8x:Nat for example,

is bound if it appears as 8x:Nat:(� (x; n)! : : :).)

One of the obvious examples where the result applies is the �rst of 3.4.

Berardi shows that also the statement of Girard's theorem, saying that all

typable terms in system F are strongly normalizable. It is of the form

8t:Te:8A:Ty:8c:Co:9n:Nat:8t

0

:Te:8m:Nat:Redd(t; t

0

; m) � m � n;

where the type of pseudoterms Te, the type of types Ty and the type of contexts

Co are parametric data types and Redd� Te�Te�Nat is an inductive predicate

with Redd(t; t

0

; m) if t reduces to t

0

in m steps. We see that the restrictions on

the form of the propositions is not very serious; a speci�cation will usually be

of the form 8x:D:9y:D

0

:P (x; y) with P (x; y) 2 Pos. Further the result is very

general, as there are no restrictions at all on the shape of � or M . So � may

even contain assumptions that can not be expressed in set-theoretical terms:

As long as the assumptions are satis�ed in PER, the conclusion is valid.

It would be interesting to see whether the result discussed above can be

rephrased syntactically by extending �PRED! with inductive data types and

describing a formulas-as-types embedding from the extended higher order pred-

icate logic to CC. This extension of �PRED! can be de�ned by adding a scheme

for inductive types (by allowing a kind of least �xed point construction for pos-

itive type constructors), but also by extending �PRED! with polymorphic do-

mains. As we know how to de�ne inductive data types in polymorphic lambda

calculus and the formulas-as-types embedding from �PRED! to CC immedi-

ately extends to �PRED! with polymorphic domains, we want to say a bit

more about the latter possibility. Let �PRED!

p

be the following Pure Type
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System.

S = Prop; Set;Type

p

;Type

s

;

A = Prop : Type

p

Set : Type

s

;

R = (Set; Set); (Type

s

; Set); (Type

p

; Set)

= (Set;Type

p

); (Type

p

;Type

p

);

= (Prop;Prop); (Set;Prop); (Type

p

;Prop):

(So this is �PRED! with (Type

s

; Set): a higher order predicate logic built on

the polymorphic lambda calculus in stead of the simple theory of types. In view

of the description of parametric data types in the beginning of this section it is

natural to leave the rule (Type

p

; Set) out of the system to eliminate things like

��:Set:(�!Prop)!� : Set. This is an option that we want to leave open.)

The formulas-as-types embedding from �PRED!

p

into CC is now induced

by the formulas-as-types embedding from �PRED! into CC of De�nition 4.1,

so it is the PTS-morphism H with

H(Prop) = Prop;

H(Set) = Prop;

H(Type

p

) = Type;

H(Type

s

) = Type:

This immediately shows that �PRED!

p

is consistent. (In fact the mapping

H shows that all extensions of �PRED! with rules of the form (s; s

0

), s; s

0

2

fProp; Set;Type

p

;Type

s

g, are consistent.) The embedding H is not complete;

the same counterexamples as for �PRED! do the job. However, if we restrict

ourselves to propositions in the set Pos, we may still be able to prove that if

z

1

:Ind

D

1

; : : : ; z

n

:Ind

D

n

; a:Ind

Nat

; b:Z 6=

Nat

SZ ` M : ' in CC, then there is

a proof P in �PRED!

p

with z

1

:Ind

D

1

; : : : ; z

n

:Ind

D

n

; a:Ind

Nat

; b:Z 6=

Nat

SZ `

P : ', where D

1

; : : : ; D

n

are the parametric data types that occur in '. (We

omit the mapping H for reasons of readability.) In view of the proof of the orig-

inal result in [Berardi 199+], we have a strong feeling that this adapted com-

pleteness of the formulas-as-types embedding from �PRED!

p

into CC holds.

However, it is not as general as the original result; one would like to allow more

assumptions then just those stating the parametricity of the data types. Still

we think that the matter is interesting for further investigations, because it may

give a more syntactical handle as to which propositions about data types are

provable in CC.

Let's end this section with a few remarks on the system �PRED!

p

. As it is

a higher order predicate logic built on `polymorphic domains', it may be more

readily understood then CC, where things are more interwoven. A straight-

forward semantics is given by an arbitrary model for the polymorphic lambda

calculus (to interpret the Set-part) with a higher order predicate logic on top of

it (giving the Prop-part the Tarskian semantics). It may then be more natural

to do without the rule (Type

p

; Set). An arbitrary model for the polymorphic

lambda calculus has alot of speci�c structure and this may raise the question
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whether the extension �PRED!

p

is conservative over �PRED!. We don't have

a de�nite answer to this, but we do have reasons to believe that the extension

is not conservative. The idea comes from an argument by Berardi, suggesting

a possible method to show that the formulas-as-types embedding from second

order predicate logic into second order dependent typed lambda calculus (�P2

in [Barendregt 1992]) is not complete. (The proofs of incompleteness for Propo-

sition 4.12 also work to show the incompleteness of the formulas-as-types em-

bedding from nth order predicate logic into nth order dependent typed lambda

calculus, but only for for n > 2.) We look at the context

� := A:Set; a; a

0

:A; z:a 6=

A

a

0

:

This context has a �nite model (without going into details about models for

higher order predicate logic, it will be clear that if we take for A the two element

set, for A!A the set-theoretic function space, for A!Prop the set of subsets of

A and so forth, this yields a model.) If we now look at a model for this context

in �PRED!

p

, we see that there are a lot of (new) closed domains (types of

type Set) which will have an interpretation in the model. For example the

domain Nat := ��:Set:�!(�!�)!�. In the proof-irrelevance model of CC,

Nat could consistently be interpreted by a one element set (because Z 6= SZ

isn't provable in CC in the empty context). However, here the interpretation

of Nat has to be an in�nite set, which makes it impossible for � to have a �nite

model in �PRED!

p

. The point is that from a 6= a

0

one can prove Z 6=

Nat

SZ and hence S

n

(Z) 6=

Nat

S

n+1

(Z) (for n a natural number), viz. Suppose

Z =

Nat

SZ, then ZAa(�x:A:a

0

) =

A

SZAa(�x:A:a

0

) so a =

A

a

0

, quod non.

We want to stress here that we don't know how to use this fact (syntactically

or semantically) to show the non-conservativity; it may still be possible that,

although � has essentially only in�nite models in �PRED!

p

, it still doesn't

prove more �PRED!-propositions then those provable in �PRED! from �.

6 Some extensions of the Calculus of Constructions

There are many ways in which CC has been extended, to capture a stronger

notions of type, to capture an extended logic, for reasons of operational or

denotational semantics or for implementational reasons. We also brie
y discuss

two extensions of higher order predicate logic that are of interest mainly because

they are inconsistent. We feel this expopsition of CC would be incomplete if

we wouldn't discuss some of these extensions or variations. The order in which

we treat them is arbitrary.

6.1 Inconsistent extensions of higher order predicate logic

In the previous section we have extended higher order predicate logic with poly-

morphic domains by extending the system �PRED! with the rule (Type

s

; Set)

(which is consistent.) We may wonder whether we can do the same with

�HOPL by extending it with the rule (Type

0

;Type). We call this system �U

�

,

in analogy with [Girard 1972], where the same system formulated as a logic is
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called U

�

. There it is also shown that the system �U , which is �U

�

extended

with the rule (Type

s

;Prop) (quanti�cation over the collection of all domains), is

inconsistent, which was the original statement referred to as `Girard's paradox'.

(For details about the paradox see [Coquand 1986].) It is not so di�cult to see

that the extension of �HOPL with only the rule (Type

s

;Prop) is consistent,

but only in [CC-documentation] it is shown by Coquand that the system �U

�

is

inconsistent, which was left as an open question in [Girard 1972]. The proof by

Coquand is done by internalising Reynolds result about the non-existence of a

set-theoretic model for the polymorphic lambda calculus. At �rst sight one may

think that the inconsistency arises from the formalization of an easy cardinality

argument like: ��:Type:�!� is the collection of all functions from a `small'

set A to itself (in set-theoretic terms �

A2Type

(A!A).) This can not itself be

a `small' set as the cardinality of �

A2Type

(A!A) is larger then Type itself.

Such an (intuitive) argument will not work, for one thing because it would also

imply the inconsistency of �PRED!

p

of the previous section, but more impor-

tantly because the interpretation of ��:Type:�!� is the set of functions from

a type to itself that do not make any speci�c assumption on the shape of the

type, which is much closer to the intersection of all function spaces from a type

A to itself then the union.

6.2 Some extensions and variations for practical purposes

For an implementation of CC to use it as an interactive system for proof veri-

�cation it is of course necessary to add some new mechanisms to the calculus.

One point is how to represent variables (bound or free) in such a way that one

doesn't have to take care of �-conversion. This may be solved by representing

variables with De Bruijn indices ([de Bruijn 1980]). An extended exposition

about this technique for the case of CC is in [Coquand and Huet 1988].

Another practical issue is how to introduce de�nitions: To release the burden

of writing the same �-term several times and for reasons of readability one wants

to abbreviate terms by a smaller expression that can replace it. In the syntax

this can be done by introducing some extra rules for introducing variables as

abbreviations as follows (we follow [Pollack 1989].)

(defvar)

� `M : A

�; x =M ` x : A

if x doesn't occur free in �

(def)

�; x =M ` N : B

�; hx =Mi ` hx =Mi : hx =MiB

with the extra reduction rules

hx =MiN �!

�

N; if x =2 (FV(N));

hx =Mi(N(x)) �!

�

hx =Mi(N(M)):

Here N(x) denotes a term N with one speci�ed free occurrence of x. The

idea will be clear: hx = MiN represents the term N in which for every free

occurrence of x one should read M . So de�nitions can be on the global level in
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the context, but also purely local inside terms. From the informal reading of

terms with de�nitions and the reduction rules we immediately get the criterion

for typability of a term, relating the system to the original version of CC. To do

this it is convenient to also describe a more general reduction rule on sequents:

�

1

; x =M;�

2

` N : B �!

�

�

1

;�

2

[M=x] ` N [M=x] : B[M=x];

if � �!�!

�

�

0

; N �!�!

�

N

0

; B �!�!

�

B

0

(at least one of them nonempty) then

� ` N : B �!

�

�

0

` N

0

: B

0

:

Now if � `M : A is derivable in CC with de�nitions, then the � normal form

of � ` M : A exists and is derivable in CC. This shows the conservativity of

the extension with de�nitions.

6.3 CC with equality, �-reduction or T-operator

For semantical reasons it is often inconvenient to describe a typed lambda

calculus by starting from pseudoterms and especially to use the equality on the

set of pseudoterms in the rules (as is done in the conversion rule.) The reason

is that pseudoterms have no real meaning (even for the syntax) and so they are

not intended to denote anything in the model. Therefore a more `semantical'

description of CC would have, in addition to the typing judgement, a (typed)

equality judgement of the form � ` M = M

0

: A. The reasons for using the

set of pseudoterms T in the syntax are of meta-theoretical nature: For T one

can prove the Church-Rosser property quite easily (it is completely similar to

the proof for the untyped lambda calculus), which implies the Church-Rosser

property for a `semantical' version of the system and at the same time proves

that the two versions are equivalent. To get the picture clear we discuss the

variant of CC with equality judgement and state the important properties. (The

syntax is very close to the one given in [Scedrov 1990], where also a semantics

for this system is discussed.)

De�nition 6.1 The system CC

=

is a typed lambda calculus with a typing judge-

ment and an equality judgement. The typing rules are (axiom), (weakening),

(variable), (�-rule), (�-rule), and (application) as for CC. (To denote that we

are in CC

=

in stead of CC we write `

=

in the rules.) The conversion rule of

CC

=

is

(conv

�

')

� `

=

M : A � `

=

A = B : Prop=Type

� `

=

M : B

The judgement � `

=

A = B : s is generated by
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(�)

� `

=

�x:A:M : �x:C:D � `

=

N : C

� `

=

(�x:A:M)N =M [N=x] : D[N=x]

(eq-axiom)

� `

=

M : A

� `

=

M =M : A

(sym)

� `

=

M = N : A

� `

=

N =M : A

(trans)

� `

=

M = N : A � `

=

N = Q : A

� `

=

M = Q : A

(�-eq)

� `

=

A = A

0

: s �; x:A `

=

B = B

0

: s

0

� `

=

�x:A:B = �x:A

0

:B

0

: s

0

for s; s

0

2 fProp;Typeg

(�-eq)

� `

=

A = A

0

: s �; x:A `

=

M =M

0

: B � `

=

�x:A:B : Prop=Type

� `

=

�x:A:M = �x:A

0

:M

0

: �x:A:B

(app-eq)

� `

=

M =M

0

: �x:A:B � `

=

N = N

0

: A

� `

=

MN =M

0

N

0

: B[N=x]

(conv-eq)

� `

=

M =M

0

: A � `

=

A = B : Prop=Type

� `

=

M =M

0

: B

In this version of the system the conversion rule can only be applied to two

equal types if they are equal via a path through the typable terms. In the

original PTS version the types only have to be equal as pseudoterms. The two

versions are equivalent: If M;M

0

2 TERM with M =

�

M

0

, then there is a

path between them through TERM. (A proof uses CR for �-reduction on T and

Subject Reduction.) This equivalence is expressed by the following theorem.

Theorem 6.2

� `M : A

� `M

0

: A

M =

�

M

9

>

=

>

;

, � `

=

M =M

0

: A:

As a corollary to the theorem one �nds the Church-Rosser property for the

system CC

=

: If � `

=

M = M

0

: A, then there is an N with � `

=

N : A and

M �!�!

�

N , M

0

�!�!

�

N . The Church-Rosser property can be stated more

`semantically' by introducing a judgement for typed reduction, � `

=

M �!�!

N : A. The required equivalences follow easily from the Subject Reduction

property.

We want to point out here that the equivalence implies that the system with

equality on the pseudoterms is `sound': There would really be something wrong

if � ` M;M

0

: A and M =

�

M as pseudoterms, without there being a path

from M to M

0

through the collection of terms of type A in �.
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A second extension which comes in quite naturally is the one with �-

conversion. In almost all of the models the � rule (�x:A:Mx =M if x =2 FV(M))

holds, so it is quite natural to consider the extension of the system with �. For

the sematical version of the syntax (CC

=

as de�ned in 6.1) this amounts to

adding the following rule.

(�)

�; x:A `

=

Mx : B

� `

=

�x:A:Mx =Mx : �x:A:B

if x =2 FV(M)

For our version of the system the extension with � means replacing the (conv

�

)

rule by the (conv

��

) rule de�ned as follows.

(conv

��

)

� `M : A � ` B : Prop=Type

� `M : B

if A =

��

B(in T)

To show the decidability of equality and the equivalence of the two systems it

is now convenient to represent �-equality via a reduction rule

�x:A:Mx �!

�

M (if x =2 FV(M)):

Then the decidability of equality follows from normalization of ��-reduction

on typable terms and the Church-Rosser property. The equivalence of the

two versions follows from the Church-Rosser property for typable terms in

CC with (conv

��

). However, with ��-reduction the Church-Rosser property

on the pseudoterms T is invalid. (The well-known counterexample is due to

[Nederpelt 1973]: For A 6=

��

B and x =2 FV(M), �x:A:(�y:B:My)x can be

reduced by a � step and an � step to two terms that have no common reduct.)

This complicates matters quite a lot because some meta theorems depend on

the Church-Rosser property (normalization proofs usually require it.) Further

it' not clear now how to prove the equivalence between the two versions of the

system, which makes the syntactical system a bit suspect. (The most we may

still hope for is that the Church-Rosser property holds for the set of typable

terms of a �xed type in a �xed context; this su�ces to prove the equivalence as

in Theorem 6.2.) A discussion of and a solution to the problem of Church-Rosser

(of ��-reduction) for CC with ��-conversion can be found in [Salvesen1991] and

[Geuvers 1992], the �rst proving the property for the semantical version of CC

and the second proving Church-Rosser for the syntactical version of CC (and

hence the equivalence of the two versions.) Both proofs rely on the assump-

tion that ��-reduction is normalizing and in both cases the proof is given for

a large collection of Pure Type Systems. Strong normalization of ��-reduction

for CC with ��-conversion can be proved by adapting the proof for the �-case

in [Geuvers and Nederhof 1991].

In [Coquand 1990] and in [Streicher 1988] the syntax is built up more explic-

itly using a T -operator. This is done for semantical reasons (the latter therefore

discusses even more explicit versions of the calculus), to be better able to de-

scribe the interpretation of the syntax in the model. The idea is to view Prop

as a special base type and to put all the typing on the type level. The T comes

in to lift propositions (terms of type Prop) to the type of its proofs, T ('). To

be more precise the system has only one sort, Type, the known rules (weak),

(var), (�) (for types), (�), (app) and (conv) and as the extra rules
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(lift)

� ` A : Prop

� ` T (A) : Type

(8)

� ` A : Type �; x:A ` B : Prop

� ` 8x:A:B : Prop

(�)

� ` A : Type �; x:A `M : T (B) �; x:A ` B : Prop

� ` �x:A:M : T (8x:A:B)

(App)

� `M : T (8x:A:B) � ` N : A

� ` App(M;N) : T (B[N=x])

with additional � rules for redexes of the form App(�x:A:M;N). It is not dif-

�cult to de�ne a mapping from the explicit syntax to the one we have been

using here so far, that preserves the derivation rules. Similarly, a derivation in

our version of CC can easily be translated to a derivation in the explicit system

such that the mapping back yields the derivation we started with.

6.4 Further extensions

There are many other extensions and variations for CC in the literature that

we want to discuss in some short detail. (Most of them are treated extensively

in other texts.) First there is the system ECC of [Luo 1989], which is an ex-

tension of CC with strong Sigma types, universes and universe inclusion. The

Sigma types are a kind of generalised sum types, �x:A:B representing the type

of pairs ha; bi with b:B[a=x]; there are projections �

1

: (�x:A:B)!A and �

2

:

�z:(�x:A:B):B[�

1

z=x]. (These projections distinguish the `strong' Sigma types

from weaker versions with di�erent elimination rules.) The Sigma types are

well-known to be useful for describing theories (see [Coquand 1990] for a discus-

sion), especially in combination with universes (ECC has sorts (universes) Type

i

for all natural numbers i with the axiom Type

i

: Type

i+1

(the Type of CC is just

Type

0

) and further an inclusion rule for these universes: if � ` A : Type

i

then

� ` A : Type

i+1

and similar for Prop and Type

0

.) The theory of groups for ex-

ample, can be denoted by �A:Type

0

:�f :A!A!A:�e:A:�i:A!A:groupax(A; f; e; i),

where groupax(A; e; f; i) is the group axiom for carrier A, group operation

f , neutral element e, and inverse operation i. The `theory of groups' is of

type Type

1

. It can't be of type Type

0

, because this would lead to inconsis-

tency of the system. Similarly one can't allow an impredicative �-type like

��:Prop:' : Prop. This means it is not possible, as can be done in the

�rst order case, to represent the higher order existential quanti�cation by a

�-type. See [Coquand 1986] for a discussion on inconsistent extensions of CC,

and [Harper and Pollack 1991] for a description of CC

!

, CC extended with uni-

verses and universe inclusion.

As a �nal extension of CC we want to point at the possibility of adding in-

ductive types to the system. This can be useful because, although the system is

very powerful from an extensional point of view (all recursive functions that are
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provably total in higher order arithmetic can be represented on the polymorphic

Church numerals), the system doesn't have such good intensional properties.

For example, the recursion over data types has to be coded in terms of iteration.

This does not only complicate matters quite a bit, but has as a consequence that

the recursion equations only hold `locally' and not `globally'. That is, for the

type of natural numbers, Nat, one can de�ne a function Reccg for c : Nat and

g : Nat!Nat!Nat such that Reccg(n+ 1) = gn(Reccg(n)) and Reccg(0) = c

(where n is the nth Church numeral), but not Reccg(Sx) = gx(Reccg(x)) for

x a variable. Another consequence of this coding is that the algorithms that

represent the recursive functions have a very bad evaluation behaviour. For

example the �-term that represents the predecessor computes n from n + 1 in

anumber of steps of order n.

For these reasons there are several suggestions for extending CC with in-

ductive types which yield for the natural numbers a recursor like the one in

G�odels T. The problem of the ine�ciency of recursion over data types already

appears in system F and therefore a the suggested extensions to system F

can immediately be adapted to CC. (For example the ones in [Mendler 1987] or

[Parigot 1992].) An essentially di�erent approach is taken in [Coquand and Mohring 1990],

where inductive types as well as inductive predicates can be constructed by a

scheme and the scheme not only allows to de�ne functions by recursion, but

also to do proofs by induction. The latter system is implemented as `Coq'. (See

[Dowek e.a. 1991].)
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