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In this paper, we examine the cross-efficiency concept in data envelopment analysis (DEA). Cross efficiency links one
decision-making unit’s (DMU) performance with others and has the appeal that scores arise from peer evaluation. However,
a number of the current cross-efficiency approaches are flawed because they use scores that are arbitrary in that they depend
on a particular set of optimal DEA weights generated by the computer code in use at the time. One set of optimal DEA
weights (possibly out of many alternate optima) may improve the cross efficiency of some DMUs, but at the expense of
others. While models have been developed that incorporate secondary goals aimed at being more selective in the choice of
optimal multipliers, the alternate optima issue remains. In cases where there is competition among DMUs, this situation
may be seen as undesirable and unfair. To address this issue, this paper generalizes the original DEA cross-efficiency
concept to game cross efficiency. Specifically, each DMU is viewed as a player that seeks to maximize its own efficiency,
under the condition that the cross efficiency of each of the other DMUs does not deteriorate. The average game cross-
efficiency score is obtained when the DMU’s own maximized efficiency scores are averaged. To implement the DEA game
cross-efficiency model, an algorithm for deriving the best (game cross-efficiency) scores is presented. We show that the
optimal game cross-efficiency scores constitute a Nash equilibrium point.
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1. Introduction
Data envelopment analysis (DEA) has been proven an
effective tool for performance evaluation and benchmark-
ing. In the original DEA model of Charnes, Cooper, and
Rhodes (CCR) (1978), the efficiency of each member of
a set of n decision making units (DMUs), relative to its
peers, is defined as the ratio of that member’s weighted
sum of outputs to weighted sum of inputs. Linear program-
ming is used to determine a set of weights that is optimal
in the sense that it results in the best efficiency score for
the particular DMU under evaluation. The cross-efficiency
score of a DMU is obtained by computing that DMU’s set
of n scores (using the n sets of optimal weights), and then
averaging those scores. Thus, the main idea of cross effi-
ciency is to use DEA in a peer evaluation, rather than a
pure self-evaluation mode. This approach was originated by
Sexton et al. (1986), and was further investigated by Doyle
and Green (1994), and others. Cross efficiency provides
an efficiency ordering among all the DMUs to differenti-
ate between good and poor performers. It can eliminate the

need for incorporation of additional weight restrictions into
DEA, thereby avoiding unrealistic DEA weighting schemes
(see Anderson et al. 2002). As pointed out by Doyle and
Green (1994), cross efficiency is a democratic process with
less of the arbitrariness of additional weight restrictions, as
opposed to authoritarianism (externally imposed weights)
or out and out egoism (self-appraisal). One can find many
uses of cross efficiency, for example, R&D project selection
(Oral et al. 1991), preference voting (Green et al. 1996),
and others.
As noted in Doyle and Green (1994), the nonuniqueness

of the DEA optimal weights possibly reduces the useful-
ness of cross efficiency. Specifically, cross-efficiency scores
obtained from the original DEA are generally not unique.
Thus, depending on which of the alternate optimal solu-
tions to the DEA linear programs is used, it may be pos-
sible to improve a DMU’s (cross-efficiency) performance
rating, but generally only by worsening the ratings of oth-
ers. Various secondary goals have been proposed for cross-
efficiency calculation, such as those presented in Doyle
and Green (1994). They developed aggressive (benevolent)
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model formulations to identify optimal weights that not
only maximize the efficiency of a particular DMU under
evaluation, but also minimize (maximize) the average effi-
ciency of other DMUs.
In many DEA applications, some form of direct or indi-

rect competition may exist among the DMUs under study.
Certainly, in any setting where DMUs compete for scarce
funds, competition is present by definition. R&D project
proposals submitted by different departments in an organi-
zation can be viewed as DMUs, and subjected to a DEA
analysis. These proposals are clearly competing for avail-
able funds. Candidates in a preferential election setting
can be looked upon as DMUs, and competition is obvi-
ously present. An academic applying for research grants is
in competition with other academics. Participants in orga-
nized sporting events such as the Olympic games constitute
competitive DMUs. Arguably, the many DEA analyses of
banks and of bank branches, reported in the literature, are
all examples of indirect if not direct competition. Specifi-
cally, management of a large bank, in appraising the effi-
ciency status of the branches under its direction, will be
paying close attention to the worst performers with the
possible intention of closing some of those, or amalgamat-
ing/merging units. These same observations apply to orga-
nizations such as hospitals and schools that operate in tight
financial situations. Such organizations can be seen as com-
peting for state or provincial funds, and a fair appraisal
system is essential. Some of these examples will be dis-
cussed in more detail later.
When DMUs are viewed as players in a game, cross-

efficiency scores may be viewed as payoffs, and each DMU
may choose to take a noncooperative game stance to the
extent that it will attempt to maximize its (worst possi-
ble) payoff. If one adopts this game-theoretic approach, it
may be argued that the existing approaches to cross eval-
uation suffer shortcomings in regard to these common sit-
uations. This paper is aimed at rectifying this important
shortcoming. Section 2 briefly reviews the original cross-
efficiency concept in DEA, and introduces a generalized
concept, namely, game cross efficiency, and its correspond-
ing DEA model. In §3, an algorithm is developed for deriv-
ing “best” game cross-efficiency scores, and is shown to be
convergent. In §4, it is proven that the best game cross effi-
ciency is a Nash equilibrium point. Section 5 revisits the
preference voting issue discussed in Green et al. (1996). It
is shown that the rank-reversal problem encountered there
does not occur when our approach is used. We also pro-
vide an illustrative application involving the selection of
R&D projects as discussed in Oral et al. (1991). Conclud-
ing remarks are given in §6.

2. DEA Game Cross Efficiency
Adopting the conventional nomenclature of DEA, assume
that there are n DMUs that are to be evaluated in terms
of m inputs and s outputs. We denote the ith input and

r th output for DMUj (j = 1�2� � � � � n	 as xij (i= 1� � � � �m)
and yrj (r = 1� � � � � s), respectively. The efficiency rating for
any given DMUd can be computed using the CCR model
(in LP format):

Max
s∑
r=1
ryrd = �d

s.t.
m∑
i=1
�ixij −

s∑
r=1
ryrj � 0� j = 1�2� � � � � n�

m∑
i=1
�ixid = 1�

�i � 0� i= 1�2� � � � �m�

r � 0� r = 1�2� � � � � s�

(1)

For each DMUd (d = 1� � � � � n) under evaluation, we
obtain a set of optimal weights (multipliers) �∗

1d� � � � ��
∗
md,

∗
1d� � � � �

∗
sd. Using this set, the d-cross efficiency for any

DMUj (j = 1� � � � � n) is then calculated as

Edj =
∑s
r=1

∗
rdyrj∑m

i=1�
∗
idxij

� d� j = 1�2� � � � � n� (2)

For DMUj (j = 1� � � � � n), the average of all Edj (d =
1� � � � � n), namely,

�Ej =
1
n

n∑
d=1
Edj� (3)

can be used as a new efficiency measure for DMUj , and
will be referred to as the cross-efficiency score for DMUj .
Note that optimal weights obtained from model (1) may

not be unique. As a result, the d-cross-efficiency Edj can
be arbitrarily generated, depending on the optimal solution
arising from the particular software in use (Despotis 2002).
As mentioned above, to resolve this ambiguity, Doyle and
Green (1994) introduced the aggressive and benevolent
formulations of cross-efficiency calculation. Second-order
models such as the benevolent model of Doyle and Green
(1994) improve on the efficiency scores further by choosing
an optimal bundle for DMUd (from several possible alter-
nates) that renders some function of the efficiency scores
of the remaining n− 1 DMUs (such as their average), as
large as possible. Specifically, given a DMUd, one version
of their model seeks to find a multiplier bundle that maxi-
mizes the average of the efficiency ratios of the other n−1
DMUs with the constraint that the ratio for DMUd stays at
or above its predetermined optimal level.
In this paper, we view DMUs from the perspective of a

noncooperative game. As discussed above, in many DEA
settings, DMUs can be looked upon as being in competi-
tion with one another, and as such each may argue that its
multiplier bundle should be chosen with a view to how that
bundle impacts the implied performance of the other DMUs
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(should that bundle be used to evaluate each of those oth-
ers). Conventional DEA, as per model (1), does this in a
narrow sense by restricting the choice of bundles to those
that keep the efficiency scores of all DMUs at or below
unity. Cross efficiency goes a step further, providing for a
measure of efficiency of a DMUd in terms of not only the
best multiplier bundle for d, as derived from model (1), but
as well in terms of the best bundles for all the other DMUs
as well.
In the model described here, we adopt what might be

regarded as a form of a generalized benevolent approach.
The difference between our approach and conventional
cross efficiency has to do with what will be taken as the
“optimal” rating for DMUd. Rather than looking at the sit-
uation from the perspective of DMUd, and finding a mul-
tiplier bundle that optimizes say the average rating for the
other n−1 DMUs, while restricting the score for DMUd to
be at or above its ideal level (from model (1)), we instead
look at the problem from the point of view of each of the
competitors j . For each competing DMUj , a multiplier bun-
dle is determined that optimizes the efficiency score for j ,
with the additional constraint that the resulting score for d
should be at or above d’s estimated best performance, in
a cross-efficiency sense. One can view the conventional
benevolent model as looking at the problem from the per-
spective of the collection of n−1 DMUs, and attempting to
find the best score for the average of this collection, while
guaranteeing that the ideal score for DMUd is not violated.
In our case, rather than using the ideal score for DMUd,
we strive to use a score which will actually be represen-
tative of its final measure of performance. The problem,
of course, arises that we will not know this best perfor-
mance score for d until the best performances of all other
DMUs are known as well. To combat this “chicken and
egg” phenomenon, we adopt an iterative approach that we
shall prove leads to an equilibrium.
To make these ideas more concrete, suppose that in a

game sense, one player DMUd is given an efficiency
score �d, and that another player DMUj then tries to max-
imize its own efficiency, subject to the condition that �d
cannot be decreased. We define the game cross efficiency
for DMUj relative to DMUd as

�dj =
∑s
r=1

d
rjyrj∑m

i=1�
d
ijxij
� d= 1�2� � � � � n� (4)

where drj and �
d
ij are optimal weights in the following

model (5). The subscript dj is intended to indicate that
DMUj is permitted only to choose weights that will not
deteriorate the currently estimated efficiency of DMUd. The
difference between (2) and (4) is that weights in (4) are
not necessarily an optimal, but rather are a feasible solu-
tion to the CCR model. Such a definition allows DMUs to
choose (negotiate) a set of weights (hence a form of cross-
efficiency scores), that are best for all of the DMUs. So, in
this sense, we adopt a noncooperative game approach.

To calculate the game d-cross efficiency defined in (4),
we consider the following mathematical programming
problem for each DMUj :

Max
s∑
r=1
drjyrj

subject to
m∑
i=1
�dijxil−

s∑
r=1
drjyrl � 0� l= 1�2� � � � � n�

m∑
i=1
�dijxij = 1�

�d ×
m∑
i=1
�dijxid −

s∑
r=1
drjyrd � 0�

�dij � 0� i= 1� � � � �m�

drj � 0� r = 1� � � � � s�

(5)

where �d � 1 is a parameter. In the algorithm to be devel-
oped, this �d initially takes the value given by the aver-
age original cross efficiency of DMUd. When the algorithm
converges, this �d becomes the best (average) game-cross
efficiency score. (If one wished to draw a comparison of
this model to the benevolent model of Doyle and Green
(1994), we would replace the objective function by the
average of the efficiency ratios for the n− 1 DMUs j , and
�d would be the ideal rating (from model (1)) for DMUd.)
We refer to model (5) as the DEA game d-cross-efficiency
model. Note that model (5) maximizes the efficiency of
DMUj under the condition that the efficiency of a given
DMUd, namely,

∑s
r=1

d
rjyrd/

∑m
i=1�

d
ijxid, is not less than a

given value (�d). Thus, the efficiency of DMUj is further
constrained by the requirement that the ratio efficiency of
DMUd is not less than its original average cross efficiency.
For each DMUj , model (5) is solved n times, once for

each d = 1� � � � � n. Note that for each d, at optimality,∑m
i=1�

d
ijxij = 1 holds for DMUj (j = 1�2� � � � � n). There-

fore, for each DMUj , the optimal value to model (5)
actually represents a game cross efficiency with respect
to DMUd (d-game cross efficiency), as defined in (4).
We have

Definition 1. Let d∗rj ��d	 be an optimal solution to
model (5). For each DMUj ,

�j =
1
n

n∑
d=1

s∑
r=1
d∗rj ��d	yrj

is called the average game cross-efficiency for that DMU.

Note that the average game cross efficiency no longer
represents a regular DEA cross-efficiency value.
We now present a procedure for determining the best

average game cross efficiency for DMUj .
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3. Optimal Average Game
Cross-Efficiency Scores

In this section, we present an iterative procedure for deriv-
ing average game cross-efficiency scores, and prove that
these converge. The basic idea of the algorithm is to begin
with the conventional cross-efficiency score as developed
in (3), and for each DMU d, solve model (5) for each j ,
using this as the initial �d. This process is repeated for
every d, and the average of the objective function values
of (5) becomes the new �d. When consecutive values of
�d converge to within � of one another, the algorithm ter-
minates. The specifics follow.

Algorithm

Step 1. Solve model (1) and obtain a set of original aver-
age DEA cross-efficiency scores defined in (3). Let t = 1
and �d = �1d = �Ed.

Step 2. Solve model (5). Let

�2j =
1
n

n∑
d=1

s∑
r=1
d∗rj ��

1
d	yrj �

or in a general format,

�t+1j = 1
n

n∑
d=1

s∑
r=1
d∗rj ��

t
d	yrj � (6)

where d∗rj ��
t
d	 represents optimal value of 

d
rj in model (5)

when �d = �td.
Step 3. If ��t+1j −�tj �� � for some j , where � is a spec-

ified small positive value, then let �d = �t+1d and go to
Step 2. If ��t+1j − �tj � < � for all j , then stop. �t+1j is the
best average game cross efficiency given to DMUj .

Remarks. In Step 1, the �Ed represent traditional (average)
cross-efficiency scores for DMUd, d= 1�2� � � � � n, and are
the initial values for �d (denoted as �1d) in model (5).
Although traditional cross-efficiency scores may not be
unique, from the proof of convergence of the algorithm,
it follows that any initial values for �d (or any tradi-
tional cross-efficiency scores), will lead to unique game
cross-efficiency scores. When the algorithm stops, because∑s
r=1

d∗
rj ��

t
d	yrj is the optimal value to model (5), �

t+1
j =

�1/n	
∑n
d=1

∑s
r=1

d∗
rj ��

t
d	yrj , t � 1, is unique. Also, the

notation �d = �td, t � 1, given in Step 2, means that in
model (5), �d is replaced with �

t
d. Step 3 is used to indicate

when to terminate the process of executing model (5).

Convergence of the Algorithm

The following theorem indicates that (i) all the data points
�j are bounded between �

1
j and �

2
j , (ii) all the even data

points are nonincreasing, and (iii) all the odd data points
are nondecreasing. This ensures that the above algorithm
converges.

Theorem 1. Let �1j be the regular (average) DEA cross
efficiency defined in (3). With model (5), for any

t = 2�3�4� � � � � and j = 1�2� � � � � n, we have
(i) �1j � �

t
j ,

(ii) �2j � �
4
j � · · ·� �2t−2j � �2tj � �2t−1j � �2t−3j � · · ·�

�3j � �
1
j .

Proof. (i) Let �d = �CCRd in model (5), where �CCRd is the
CCR efficiency for DMUd. Note that weights �

∗
1d� � � � ��

∗
md,

∗
1d� � � � �

∗
sd obtained from model (1) when DMUd is under

evaluation, are feasible solutions to (5). Therefore, when
�d = �CCRd , we have �1/n	

∑n
d=1

∑s
r=1

d∗
rj ��

CCR
d 	yrj �

�1/n	
∑n
d=1Edj = �1j , where the d∗rj ��CCRd 	 represent opti-

mal values of drj in model (5), when �d = �CCRd . Be-
cause �CCRd is the maximum efficiency that DMUd can
achieve, i.e., �td � �

CCR
d , then the feasible region of (5)

will not be reduced when �d = �CCRd is replaced with
�d = �td. Thus, the optimal value to (4) will always be
at least as large as

∑s
r=1

d∗
rj ��

CCR
d 	yrj , meaning that �

t
j �

�1/n	
∑n
d=1

∑s
r=1

d∗
rj ��

CCR
d 	yrj for all t > 1. Therefore,

�tj � �
1
j for all t.

(ii) Let us first look at the relations among �1j , �
2
j , �

3
j ,

and �4j for all j . Based upon (i), we know that �2j � �
1
j .

Therefore, when t = 2 and �d = �1d is replaced with
�d = �2d, the feasible region of model (5) reduces.
Thus,

∑s
r=1

d∗
rj ��

2
d	yrj �

∑s
r=1

d∗
rj ��

1
d	yrj for d= 1� � � � � n,

where d∗rj ��
2
d	 and d∗rj ��

1
d	 represent optimal values

of drj in (5) associated with �2d and �1d, respectively.
We then have �3j = �1/n	

∑n
d=1

∑s
r=1

d∗
rj ��

2
d	yrj �

�1/n	
∑n
d=1

∑s
r=1

d∗
rj ��

1
d	yrj = �2j for all j . When t = 3

and �d = �2d is replaced with �d = �3d, the feasible region
of model (5) increases. As a result,

∑s
r=1

d∗
rj ��

3
d	yrj �∑s

r=1
d∗
rj ��

2
d	yrj for all d, indicating that �4j � �

3
j for

all j . Similarly, because �3j � �
1
j is true for all j , if

�d = �1d is replaced with �d = �3d in model (5), then∑s
r=1

d∗
rj ��

3
d	yrj �

∑s
r=1

d∗
rj ��

1
d	yrj for all d, indicating

that �4j � �
2
j . Therefore, we have �2j � �

4
j � �

3
j � �

1
j

for all j .
We next prove that for t � 2:
(A) �2aj � �2a−1j , j = 1�2� � � � � n�a= 1�2�3� � � � �
(B) �2aj � �2a+2j , j = 1�2� � � � � n�a= 1�2�3� � � � �
(C) �2a+1j � �2a−1j � j = 1�2� � � � � n�a= 1�2�3� � � � �
Note that �2j � �

1
j . Proceeding by induction, suppose that

for a=�, we have �2�j � �2�−1j , j = 1�2� � � � � n. We further
have that the feasible region of (5), when �d = �2�d , is not
larger than when �d = �2�−1d . Thus, when �d = �2�d , we
have �2�j � �2�+1j . Furthermore, when �d = �2�d is replaced
with �d = �2�+1d , the feasible region of model (5) will not
reduce. Therefore, �2�+2j � �2�+1j . Thus, by induction, (A)
is true for all a.
In case (B), note that �2j � �

4
j � �

3
j � �

1
j , i.e., �

2
j � �

4
j ,

j = 1�2� � � � � n. Let �t denote the feasible region for model
(5) when �d = �td. Suppose when a = �, (B) is true.
i.e., �2�j � �

2��+1	
j , j = 1�2� � � � � n, indicating �2�+2 ⊇�2�.

From (A), we have �2��+1	j � �2�+1j , and �2�+1 ⊇ �2�+2.
Thus, �2�+1 ⊇�2�+2 ⊇�2�. Because �2�+3j and �2�+2j are
the optimal values based upon �2�+2 and �2�+1, respec-
tively, then �2�+2j � �2�+3j , indicating �2�+3 ⊇�2�+2. Next,
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Table 1. Numerical Example 1.

X1 X2 X3 Y1 Y2

DMU1 7 7 7 4 4
DMU2 5 9 7 7 7
DMU3 4 6 5 5 7
DMU4 5 9 8 6 2
DMU5 6 8 5 3 6

suppose that �2�+4j > �2�+2j . We know that �2�+3j is the
optimal value for �2�+2, and �

2�+2
j � �2�+3j . Because �2�+4j

is the optimal value in �2�+3, if �
2�+4
j > �2�+2j , this indi-

cates that optimal solutions for obtaining �2�+4j are also
feasible in �2�+2. Given (A), we have that �

2�+4
j � �2�+3j .

This is a contradiction of the fact that �2�+3j is the optimal
value based upon �2�+2. Therefore, �

2�+2
j � �2�+4j . This

shows that (B) is true when a = �+ 1, and by induction
for all a.
We finally prove (C) is true. From (B), we have �2aj �

�2a+2j . Note that �2a+1j and �2a+3j are obtained based upon
feasible regions �2a and �2a+2. Note also that �2a+2 ⊇�2a.
Therefore, �2a+3j � �2a+1j , and (C) is true.
From (A), (B), and (C), we have

�2j � �
4
j � · · ·� �2t−2j � �2tj � �2t−1j

� �2t−3j � · · ·� �3j � �1j � Q.E.D.

Numerical Example

To illustrate the game-efficiency model and the proposed
algorithm, we consider a simple numerical example given
in Table 1 involving five DMUs, with three inputs X1, X2,
X3 and two outputs Y1, Y2. In the algorithm, we use the
regular cross efficiency as the starting point for our game
cross-efficiency scores. Cross efficiency is not unique here,
and secondary goals can be imposed. For example, we can
use an aggressive strategy which not only obtains the max-
imum DEA efficiency for a DMU as the primary goal,

Figure 1. Achieving the best game cross efficiency for DMU1 in Table 1.
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Table 2. CCR efficiency, cross efficiencies, and game
cross efficiency for Example 1.

DEA cross efficiency
CCR Game cross

efficiency efficiency∗ Arbitrary Aggressive Benevolent

DMU1 0�6857 0�6384 0�4743 0�4473 0�5845
DMU2 1 0�9766 0�8793 0�8629 0�9295
DMU3 1 1 0�9856 0�9571 1
DMU4 0�8571 0�7988 0�5554 0�54 0�71
DMU5 0�8571 0�667 0�5587 0�4971 0�6386

∗In the algorithm, we set �= 0�001.

but also as a secondary goal, minimizes the other DMUs’
cross efficiencies (Sexton et al. 1986). We can also use a
benevolent strategy which not only obtains the maximum
DEA efficiency, but also maximizes the other DMUs’ cross
efficiencies (Doyle and Green 1994). The cross efficiency
calculated without imposing the secondary goal is referred
to as an arbitrary strategy, as defined in (2).
The results of the cross-efficiency evaluation under three

strategies are reported in the last three columns of Table 2.
The game cross efficiency is shown in the third column.
Figure 1 shows the solution process for DMU1. Three dif-
ferent traditional cross-efficiency scores (arbitrary, aggres-
sive, benevolent) are used. All these cross-efficiency scores
lead to the same game cross-efficiency scores. In the next
section, we will show that this solution is a Nash equilib-
rium. If one views the DMUs as competitive, it is noted
that in a (noncooperative) game sense, each “player” has an
improved score over that which it received under the usual
cross-efficiency models (except in the case of the 100%
efficient DMU3).
Figure 2 shows that after 11 iterations, the proposed

algorithm finds the game cross-efficiency scores for the five
DMUs. As per Theorem 1, it can be seen that the game
cross-efficiency scores increase when t takes on even num-
bered increasing values, and decrease for increasing odd
numbered values.
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Figure 2. Game cross-efficiency calculation for DMUs
in Table 1.
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4. Nash Equilibrium
In this section, we show that the DEA game, with the game
cross efficiencies as the payoffs, has a Nash equilibrium
given by the solution obtained from the proposed algorithm
given above.
From the proof of Theorem 1, the following is true:

Lemma 1. If �CCRd � �d � �Ed�d= 1�2� � � � � n, where �Ed is
the original average DEA cross efficiency of DMUd defined
in (3), and �CCRd is the CCR efficiency of DMUd, then
model (5) is feasible.

Definition 2. A DEA game is defined as

" =
〈
N� �Sj	j∈N �

(
1
n

n∑
d=1

s∑
r=1
d∗rj ��d	yrj

)
j∈N

〉
�

where N = %1�2� � � � � n& is the set of n players (DMUs),
and Sj = {the constraints of model (5) and �d ∈ ' �Ed��CCRd (}
represents the strategy set of DMUj , j = 1�2� � � � � n.

Lemma 2. The Sj , j = 1�2� � � � � n, of Definition 2, are
nonempty convex sets.

Proof. By Lemma 1, we know that Sj is nonempty.
Now, assume both ��′

1d� � � � ��
′
md�

′
1d� � � � �

′
sd	, �

′
d and

��′′
1d� � � � ��

′′
md�

′′
1d� � � � �

′′
sd	, �

′′
d ∈ Sj , j�d ∈ N . For any

) ∈ '0�1(, we have
')�′

id + �1−)	�′′
id� i= 1�2� � � � �m�

)′
rd + �1−)	′′

rd� r = 1�2� � � � � s�)�′
d + �1−)	�′′

d( ∈ Sj �
Therefore, Sj , j = 1�2� � � � � n is convex. Q.E.D.

Lemma 3. �1/n	
∑n
d=1

∑s
r=1

d
rj��d	yrj is a continuous

semiconcave function of �d.

Proof. (i) In regard to the continuity of

1
n

n∑
d=1

s∑
r=1
drj��d	yrj

with respect to �d, Lemma 1 indicates that model (5)
becomes the CCR model if �d < �Ed, and is infeasible if
�d > �

CCR
d . If �d ∈ ' �Ed��CCRd (, model (5) arises by adding a

constraint �d×
∑m
i=1�

d
ijxid−

∑s
r=1

d
rjyrd � 0, into the CCR

model of DMUj , j = 1�2� � � � � n. Using arguments based
on sensitivity analysis of linear programming, it can be
shown that %

∑s
r=1��d	

d
rjyrj � d = 1�2� � � � � n& are continu-

ous functions of �d if �d ∈ ' �Ed��CCRd (. (See the appendix
for a detailed proof.)
(ii) To show that �1/n	

∑n
d=1

∑s
r=1

d
rj��d	yrj is semi-

concave, assume that �′
d, �

′′
d ∈ ' �Ed��CCRd (, ) ∈ '0�1(, and

suppose that �′
d > �

′′
d. Then, �

′
d � )�

′
d + �1− )	�′′

d � �
′′
d.

The feasible region of model (5) with �d = )�′
d +

�1 − )	�′′
d will not become smaller when �d = �′

d and
will not become larger when �d = �′′

d. Therefore, we
have

∑s
r=1

d∗
rj ��

′
d	yrj �

∑s
r=1

d∗
rj �)�

′
d + �1− )	�′′

d	yrj �∑s
r=1

d∗
rj ��

′
d	yrj . This means �1/n	

∑n
d=1

∑s
r=1

d
rj��d	yrj

is semiconcave. Q.E.D.

Based on Lemmas 2 and 3, Debreu (1952), and
Glicksberg (1952), we have

Theorem 2. The DEA game " = �N� �Sj	j∈N � ��1/n	 ·∑n
d=1

∑s
r=1

d∗
rj ��d	yrj	j∈N  has at least one Nash equilib-

rium strategy portfolio.

We next show that the solution obtained from the pro-
posed algorithm is such a Nash equilibrium point. Let
fj��

t−1	 be defined as

fj��
t−1	= �tj =

1
n

n∑
d=1

s∑
r=1
d∗rj ��

t−1
d 	yrj � (7)

and let ⇀�t = '�t1��t2� � � � ��tn(T , t = 2�3�4 � � � �
Now define

F �
⇀
�t−1	= 'f1��t−1	� f2��t−1	� � � � � fn��t−1	(T � (8)

We have ⇀
�t = F �⇀�t−1	, t � 2.

Theorem 3. For the F � 	 defined in (8), there must exist
⇀
�∗, such that ⇀�∗ = F �⇀�∗	, i.e., there must exist a fixed point
of ⇀�∗ = '�∗

1��
∗
2� � � � ��

∗
n(
T .

Proof. Note that �d∗ij ��
t−1
d 	, 

d∗
rj ��

t−1
d 	, �

t−1
d ∈ Sj ,

j = 1�2� � � � � n. From Lemma 2, the Cartesian prod-
uct S of Sj (i.e., S = S1 × S2 × · · · × Sn	 is a
nonempty, compact, convex set. Further, from this lemma,
�1/n	

∑n
d=1

∑s
r=1

d∗
rj ��

t−1
d 	yrj , �

t−1
d ∈ Sd, d = 1�2� � � � � n,

j ∈ N is continuous. Therefore, F � 	. S→ S is a continu-
ous function from a nonempty, compact, convex set S ⊂Rn
into itself. From Brouwer’s fixed-point theorem (Brouwer
1911), we know that there must exist ⇀

�∗ ∈ S, such that
⇀
�∗ = F �⇀�∗	, where ⇀

�∗ = '�∗
1��

∗
2� � � � ��

∗
n(
T . Q.E.D.

Recall that the algorithm terminates when �⇀�t − ⇀
�t−1� =

�F ��t−1	 − ⇀
�t−1� < �. Therefore, the smaller the �, the

closer the solution is to the fixed point. Such a fixed point
is a Nash equilibrium (Becker and Chakrabarti 2005).
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5. Applications to Preference Voting and
R&D Projects Selection

Preference Voting

Cook and Kress (1990) developed a DEA-type model
to rank order the candidates in a preferential election.
The candidates are allowed to choose the most favorable
weights to be applied to his/her standings (first place,
second place, etc. votes). Green et al. (1996) consider this
type of weighting illusory and propose using cross effi-
ciency to maximize discrimination between the candidates.
One can argue that in such a setting, competition exists
among the players (candidates). Therefore, it is appropriate
to apply the game cross-efficiency approach.
Green et al. (1996) consider a case of 20 voters, each

of whom is asked to rank four out of six candidates on
a ballot. The voting outcomes are given in Table 3. For
example, candidate “a” receives 3 first, 3 second, 4 third,
and 3 fourth-placed votes. The data shown in Table 3 are

Table 4. Raw data of 37 R&D projects on five outputs and cost.

R&D Indirect economic Direct economic Technical Social Scientific
project contribution contribution contribution contribution contribution Budget

1 67�53 70�82 62�64 44�91 46�28 84�20
2 58�94 62�86 57�47 42�84 45�64 90�00
3 22�27 9�68 6�73 10�99 5�92 50�20
4 47�32 47�05 21�75 20�82 19�64 67�50
5 48�96 48�48 34�90 32�73 26�21 75�40
6 58�88 77�16 35�42 29�11 26�08 90�00
7 50�10 58�20 36�12 32�46 18�90 87�40
8 47�46 49�54 46�89 24�54 36�35 88�80
9 55�26 61�09 38�93 47�71 29�47 95�90
10 52�40 55�09 53�45 19�52 46�57 77�50
11 55�13 55�54 55�13 23�36 46�31 76�50
12 32�09 34�04 33�57 10�60 29�36 47�50
13 27�49 39�00 34�51 21�25 25�74 58�50
14 77�17 83�35 60�01 41�37 51�91 95�00
15 72�00 68�32 25�84 36�64 25�84 83�80
16 39�74 34�54 38�01 15�79 33�06 35�40
17 38�50 28�65 51�18 59�59 48�82 32�10
18 41�23 47�18 40�01 10�18 38�86 46�70
19 53�02 51�34 42�48 17�42 46�30 78�60
20 19�91 18�98 25�49 8�66 27�04 54�10
21 50�96 53�56 55�47 30�23 54�72 74�40
22 53�36 46�47 49�72 36�53 50�44 82�10
23 61�60 66�59 64�54 39�10 51�12 75�60
24 52�56 55�11 57�58 39�69 56�49 92�30
25 31�22 29�84 33�08 13�27 36�75 68�50
26 54�64 58�05 60�03 31�16 46�71 69�30
27 50�40 53�58 53�06 26�68 48�85 57�10
28 30�76 32�45 36�63 25�45 34�79 80�00
29 48�97 54�97 51�52 23�02 45�75 72�00
30 59�68 63�78 54�80 15�94 44�04 82�90
31 48�28 55�58 53�30 7�61 36�74 44�60
32 39�78 51�69 35�10 5�30 29�57 54�50
33 24�93 29�72 28�72 8�38 23�45 52�70
34 22�32 33�12 18�94 4�03 9�58 28�00
35 48�83 53�41 40�82 10�45 33�72 36�00
36 61�45 70�22 58�26 19�53 49�33 64�10
37 57�78 72�10 43�83 16�14 31�32 66�40

Table 3. Votes achieved by candidates a–f.

Standing

Candidate 1 2 3 4

a 3 3 4 3
b 4 5 5 2
c 6 2 3 2
d 6 2 2 6
e 0 4 3 4
f 1 4 3 3

used as four outputs. We suppose that each candidate or
DMU has a single input of one.
The following weight restrictions used in Cook and

Kress (1990) are imposed in our algorithm:
wij � 0� wij −wi� j+1 � d�j�0	� j = 1�2� � � � � k− 1�
d�·� 0	= 0�
These additional restrictions mean that the weight for a jth
place vote should be more than that for a j+1st place vote
by some amount.
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When d�j�0	 = 0, there is a weak ordering of weights
wi1 �wi2 �wi3 �wi4. Our game cross efficiencies and the
order of the candidates are given as follows:

b�1	= d�1	 > c�0�9147	 > a�0�8062	

> f�0�6704	 > e�0�6603	�

From this result, we can see that the order of the candi-
dates is the same as those obtained by the benevolent cross
efficiency in the paper of Green et al. (1996).
Green et al. (1996) also considered the situation when

there were two extra candidates, g and h, each receiving one
third-place vote. They found that there was a reversal in the
positions of candidates b and d on the introduction of the
two lowly-rated candidates g and h. To mitigate this effect,
those authors relax the assumption that each candidate be
accorded a weight of 1/m in the establishment of the overall
ratings, and suggested that each candidate applied a weight
in proportion to his/her overall rating rather than uniformly
1/m, i.e., a form of “weighted voting.”
Now, we examine whether such a reversal will occur

under our game cross-efficiency structure. The following
shows the results:

b�1�0000	 > d�0�9704	 > c�0�9011	 > a�0�7983	

> f�0�6047	 > e�0�5893	 > g�0�0662	= h�0�0662	�

We find that the order of the candidates does not change
after adding two lowly-rated candidates. We do not claim,
however, that rank reversal would not occur in some cases
under our method.

R&D Project Selection

We finally apply our approach to a data set of 37 project
proposals relating to the Turkish iron and steel industry
(see Oral et al. 1991). Each project is characterized by
five output measures: direct economic contribution, indi-
rect economic contribution, technological contribution, sci-
entific contribution, and social contribution. Again, it may
be argued that this is a case where there is competition
among DMUs. The single input is the cost. Table 4 reports
the data.
Table 5 shows the results along with Green et al.

(1996) DEA cross-efficiency scores reported in column 3.
Based upon the Green et al. (1996) project selection rule,
which chooses projects by decreasing values of DEA
cross-efficiency scores, until the budget for the program
is exhausted (the budget cannot exceed 1,000), the same
17 projects are selected, with two exceptions, namely,
projects 15 and 29. There are substantial ranking differ-
ences between the two approaches. For example, DMU6
is ranked 18th by the game cross efficiency, whereas it is
ranked 21st by the DEA cross efficiency. In all, 13 of the 37
projects are ranked differently on the game cross-efficiency
approach versus on the conventional method.

Table 5. A comparison of results to Green et al. (1996).

Game Green Green
cross-efficiency et al. et al. Our

Project no. score (�= 0�0001) score selection selection Budget

35 1 1 yes yes 36
17 0�9987 0�975 yes yes 32�1
31 0�9078 0�866 yes yes 44�6
16 0�8162 0�78 yes yes 35�4
36 0�7671 0�759 yes yes 64�1
34 0�7373 0�699 yes yes 28
18 0�7373 0�715 yes yes 46�7
27 0�7287 0�712 yes yes 57�1
37 0�7050 0�684 yes yes 66�4
23 0�6696 0�655 yes yes 75�6
26 0�6504 0�632 yes yes 69�3
1 0�6332 0�614 yes yes 84�2
14 0�6292 0�611 yes yes 95
32 0�6209 0�606 yes yes 54�5
21 0�5843 0�565 yes yes 74�4
15 0�5829 0�537 no yes 83�8
29 0�5710 0�559 yes no 72
6 0�5609 0�528 no no
11 0�5542 0�544 no no
30 0�5446 0�538 no no
12 0�5422 0�53 yes yes 47�5
10 0�5353 0�525 no no
2 0�5343 0�519 no no
19 0�5015 0�484 no no
24 0�4905 0�476 no no
13 0�4898 0�466 no no
22 0�4895 0�472 no no
4 0�4860 0�457 no no
5 0�4788 0�457 no no
9 0�4735 0�444 no no
7 0�4639 0�436 no no
33 0�4188 0�404 no no
8 0�4168 0�409 no no
25 0�3799 0�359 no no
28 0�3412 0�331 no no
20 0�3294 0�307 no no
3 0�2388 0�259 no no

Budget sum 982.9 994.7

As a final example, and to point out the extent to which
rank positions can differ between methods, we refer to
Tables 6 and 7. Table 6 displays data on 10 DMUs and the
efficiency scores under our method, and the various ver-

Table 6. Numerical Example 2.

X1 X2 Y1 Y2 Y3

DMU1 0�37589 0�19389 0�62731 0�71654 0�11461
DMU2 0�0098765 0�90481 0�69908 0�51131 0�66486
DMU3 0�41986 0�56921 0�39718 0�7764 0�36537
DMU4 0�75367 0�63179 0�41363 0�48935 0�14004
DMU5 0�79387 0�23441 0�65521 0�1859 0�56677
DMU6 0�91996 0�54878 0�83759 0�70064 0�82301
DMU7 0�84472 0�93158 0�37161 0�98271 0�67395
DMU8 0�36775 0�3352 0�42525 0�80664 0�99945
DMU9 0�6208 0�65553 0�59466 0�70357 0�96164
DMU10 0�73128 0�3919 0�56574 0�48496 0�058862
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Table 7. Results for numerical Example 2.

CCR Game cross
efficiency Rank Arbitrary Rank efficiency Rank Benevolent Rank Aggressive Rank

DMU1 1�0000 1 0�8253 1 1�0000 1 0�9928 1 0�7576 2
DMU2 1�0000 1 0�7574 3 0�9811 3 0�8945 3 0�7146 3
DMU3 0�7590 5 0�4518 7 0�6554 5 0�6172 5 0�4228 6
DMU4 0�3099 10 0�2299 10 0�3026 10 0�2914 10 0�2148 10
DMU5 1�0000 1 0�4553 6 0�7520 4 0�6374 4 0�3932 7
DMU6 0�7155 6 0�4572 5 0�6409 6 0�5882 6 0�4342 5
DMU7 0�5062 8 0�3093 9 0�4374 8 0�4123 9 0�2852 9
DMU8 1�0000 1 0�8081 2 0�9999 2 0�9587 2 0�7584 1
DMU9 0�6608 7 0�4598 4 0�6306 7 0�5802 7 0�4356 4
DMU10 0�4594 9 0�3270 8 0�4323 9 0�4158 8 0�2917 8

sions of the conventional cross-efficiency approaches are
provided. A comparison of the game cross-efficiency results
(column 7 in Table 7) with the “arbitrary” cross-efficiency
model (column 5) reveals that six of the 10 DMUs occupy
different rank positions in one than in the other. Granted, in
the benevolent model, only two rank positions differ from
those in the game analysis, but the aggressive model ranks
eight of the 10 DMUs differently from what they are ranked
at in the game model. This example illustrates that not only
is it true that the game model can rank DMUs very dif-
ferently from the ranks arising from other cross-efficiency
approaches, but as well, there are significant differences in
rankings within the various “conventional” cross-efficiency
approaches (arbitrary, benevolent, and aggressive models).

6. Conclusions
In many, if not most situations, DMUs can be viewed as
being in (at least) indirect, if not direct competition with
one another. Because efficiency ratings arising from mod-
els such as DEA provide targets that DMUs must achieve,
to become “efficient,” each unit is thus in a form of com-
petition with its peers. Cross efficiency, as developed by
Sexton et al. (1986), and elaborated by Doyle and Green
(1994) and others, offers the opportunity to arrive at effi-
ciency ratings that provide a form of joint or coordinated
strategy for the DMUs involved. These ratings yield targets
that are intended to be best, in a coordinated sense. From a
managerial perspective, the cross-efficiency idea has appeal
in that one can view the score for a given DMU as having
been the result of not just a single set of (possibly unac-
ceptable) multipliers, but rather arising from the application
of the multipliers of that DMU’s peers. As has been recog-
nized in the literature, the arbitrariness of choice of opti-
mal multipliers in model (1), when alternate optima exist,
can often result in nonunique final scores. To partially
dampen this affect, various models that implement second-
level goals can be applied. Even here, however, alternate
optima can still exist, meaning that still uniqueness may not
materialize. This paper represents a significant extension
to the conventional cross-efficiency method. It attempts to
rectify some shortcomings of the earlier approach by pro-
viding three important features: (1) it retains the essential

peer-evaluation concept of cross evaluation, but at the same
time capitalizes on the CCR approach via model (5) to find
the best possible score, in a coordinated sense, for each
DMU; (2) the iterative approach provided converges to a
unique point (score); and (3) this unique point is shown
to be a Nash equilibrium point. This latter important link
to game theory lends credibility to this new (game cross-
efficiency) concept.
We point out that while we have concentrated herein on

the CCR model, further research is to extend the ideas to
other DEA models, such as the VRS (variable returns to
scale) DEA model. As pointed out by one reviewer, cross
evaluation is problematic in the VRS model. This is due
to the fact that the “free in sign” variable in the VRS
model can lead to negative cross efficiencies. Tests of our
approach in several numerical examples reveal that nega-
tive game cross-efficiency scores do not occur even when
scores for traditional cross efficiency are negative. We point
out, however, that there is as yet no proof that this outcome
will always occur. An investigation of a VRS version of
the DEA game cross-efficiency model will be the subject
of later research.

Appendix
%
∑s
r=1��d	

d
rjyrj � d= 1�2� � � � � n& are continuous functions

of �d if �d ∈ ' �Ed��CCRd (.

Proof. Let Xl = 'xil� i = 1�2� � � � �m(T � Yl = 'yrl� r =
1�2� � � � � s(T , l= 1�2� � � � � n. For the convenience of proof,
we rewrite the CCR model and model (5) in matrix
format as

Max Y Tj 
d
j

s.t. −XTl �dj + Y Tl dj � 0�

XTl �
d
j � 1�

−XTl �dj �−1�
�dj = '�dij � i= 1�2� � � � �m(T � 0�

dj = 'drj � r = 1�2� � � � � s(T � 0�

(9)
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and

Max Y Tj 
d
j

s.t. −XTl �dj + Y Tl dj � 0�

XTl �
d
j � 1�

−XTl �dj �−1�
�d ×XTd �dj − Y Td dj � 0�

�dj = '�dij � i= 1�2� � � � �m(T � 0�

dj = 'drj � r = 1�2� � � � � s(T � 0�

(10)

Further, we let C = �0� Y Tj 	�X = '�dj �dj (T ,

A=




−XT1 � Y T1
� � �

−XTn � Y Tn

XTj � 0

−XTj � 0



� b=




0�
� � �

0

1

−1



� and

A′ = ��d ×XTd �−Y Td 	. Then, (9) and (10) become

Max CX

s.t. AX � b�

X � 0�

(11)




Max CX

s.t. AX � b�

A′X � 0�

X � 0�

(12)

Note that if we add A′X � 0 into (11), then (11)
becomes (12).
Let B be the basis for (11) and XB be its corresponding

basic feasible solution. Then, the initial basis for (12) can
be written as

B′ =
(
B� 0q

A′
B� 1

)
�

where A′
B is obtained after adjusting the components’ posi-

tions in A′ so that it corresponds to B for (11). q = n+ 2
represents the number of constraints except for nonnegativ-
ity conditions (X � 0), and 0q is a q-dimensional vector of
zeros.
Note that

�B′	−1 =
(

B−1� 0q

−A′
BB

−1� 1

)
�

Let C ′
B = �CB�0	, where CB represents the coefficients in

the objective function relative to basis B. We then have

z′ = �CBB−1 0	 · �b 0	T
as the value to the objective function of model (12).
Denote 9 ′

j = C ′
B�B

′	−1P ′
j � j ∈ IN , where IN is the set of

indices of nonbasic variables and P ′
j is a coefficient vector

for nonbasic variables in

'A A′(T �

The simplex tableau (B′ as the basis) is given by

CBB
−1A−C CBB

−1 0 CBB
−1b

B−1A B−1 0q B−1b

−A′
BB

−1A+A′ −A′
BB

−1 1 −<
where < =A′

BXB are slack variables in A
′X � 0.

We next show that < > 0. Suppose that < � 0 (i.e.,
−< � 0). Then, optimal solutions to (12) can be obtained
from the optimal solutions to (11), and the slack variables
in A′X � 0. Note that (11) is the CCR model, and the objec-
tive function in (12) has nothing to do with −< . Therefore,
the optimal value to (12) is the CCR efficiency score. This
indicates that A′X � 0 (or �d × XTd �dj − Y Td dj � 0) are
redundant—a contradiction. Thus, < > 0. This indicates that
'B−1b�−<(T is not a basic feasible solution to (12).
Now, based upon the dual simplex method, the sim-

plex tableau of (12) is obtained by adding a new row
dq+1 into the simplex tableau of (11). Suppose that B′

now becomes �B. For (12), choose one of dq+1’s component
dq+1� k < 0, and get the related new basic variable as
x̄q+1�0 =−�</dq+1� k	 > 0. Other basic variables are

x̄p0 = xp0− x̄q+1�0dp�k = xp0+
< ×dp�k
dq+1� k

� p= 1� � � � � q�

where xp0� p= 1�2� � � � � q are basic solutions related to B.
If x̄p0 � 0� p = 1�2� � � � � q + 1, this means that �B is the

optimal basis for (12). If some x̄p′0 < 0�1 � p
′ � q, then

we need more iterations. We thus discuss two cases.
Case 1. x̄p0 � 0� p= 1�2� � � � � q+ 1. Then, x̄p0 � 0� p=

1�2� � � � � q+ 1 are basic solutions and the optimal value to
(12) is

z̄= z′ − x̄q+1�09 ′
k = z′ + < ×

9 ′
k

dq+1� k
= z′ +A′XB ×

9 ′
k

dq+1� k
�

where 9 ′
k is the zj related to dq+1� k < 0 in the simplex

tableau.
Because the objective function CX does not contain �d,

9 ′
k does not contain �d. However, X

T
j �

d
j = 1 is a con-

straint. Therefore, the optimal basis must contain compo-
nents from �dj . (Otherwise, X

T
j �

d
j = 1 cannot be satisfied.)

Thus, A′
BXB must have �d, and is a linear function of �d.

Note that dq+1� k is a linear function of �d. z̄ is a ratio
of two functions that are linear with respect to �d. z̄ is
continuous when dq+1� k �= 0. Note also that dq+1� k < 0.
Therefore, when �d ∈ ' �Ed��∗d(, z̄ is a continuous function
of �d.

Case 2. x̄p′0 < 0�1 � p
′ � q. Based upon the dual sim-

plex method, in row hp′ of the simplex tableau, with �B as the
basis, we take hp′k′ < 0, and we have x̄

′
p′0 = x̄p′0/hp′k′ > 0.

Then, the new objective function value z̄′ = z̄ − �9k′ x̄′p′0,
where �9k′ is the zj related to hp′k′ < 0 in the simplex tableau.
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Similar to the discussion in Case 1, �9k′ does not contain
�d, and z̄ is a continuous function of �d. Whether z̄

′ is
a continuous function of �d depends on whether x̄

′
p′0 is

continuous with respect to �d.
Note that

x̄′p′0 = x̄p′0/hh′k′ =
(
xp′0+

< ×dp′� k
dq+1� k

)/
hp′k′

=
(
xp′0+

A′
BXB ×dp′� k
dq+1� k

)/
hp′k′ �

Because dq+1� k < 0 and hp′k′ < 0, z̄′ is a continuous func-
tion of �d if �d ∈ ' �Ed��∗d(, and note that Case 1 indicates
that A′

BXB is a linear function of �d, when �d ∈ ' �Ed��∗d(,
and x̄′p′0 is a continuous function of �d. Therefore, z̄

′ is a
continuous function of �d.
If there still exist negative basic variables, we can repeat

the above procedure until all x̄p0 � 0, p = 1�2� � � � � q + 1.
Case 1 has already indicated that the objective function of
model (12) is a continuous function of �d.
Therefore, based upon Cases 1 and 2, we have that if

�d ∈ ' �Ed��∗d(, then
∑s
r=1

d
rj��d	yrj , d = 1�2� � � � � n are

continuous functions of �d.
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