
SICS Technical Report T2004:03 ISRN: SICS-T—2004/03-SE
ISSN: 1100-3154

A Survey of CVE
Technologies and System s

by Emmanuel Frécon

emmanuel@sics.se

Interactive Collaborative Environments Laboratory

ice@sics.se

Swedish Institute of Computer Science

Box 1263, S-164 29 Kista, Sweden

Abstract

A few years ago, Virtual Reality technologies and Virtual Environments were seen
by some as a panacea and the computer interface of the future. VR received a lot of
attention in the media and devices such as head mounted displaysor data gloves
have become widely recognised. Of particular interest was the ability to realise a
vision that had been described in a number of science fiction novels: providing a
parallel world in which it would be possible to be present, interact and feel as if in
the real world. This vision is realised by Collaborative Virtual Environments
(CVEs). CVEs are three-dimensional computer-generated environments where users
are represented by avatars and can navigate and interact in real-time independently
of their physical location. While the technology has not lived up to early
expectations, real niched applications and the success of networked games have
shown its viability and promises. This report summarises a number of the
technologies that are commonly used to interface with virtualenvironments.
Additionally, it presents some of the major CVE systems to date and isolates a
number of trends when it comes to network architectures, protocols and techniques
and to software choices.

3

Contents

Chapter 1 Introduction...7
1.1. The Dawn of Virtual Environments...7
1.2. Collaborative Virtual Environments..7
1.3. Applications..8
1.4. Overview..9

Chapter 2 An Overview of VR technologies...11
2.1. Introduction..11
2.2. Short Chronology of VR Technologies...11
2.3. Core VR Technologies..13

2.3.1. Tracking Technologies..14
2.3.2. Presentation and Output Devices...14

2.3.2.1. Visual Presentation..15
2.3.2.2. Auditory Presentation..15
2.3.2.3. Input Devices...16

2.3.2.3.1. Input Devices...16
2.3.2.3.2. Tactile and Force Feedback......................................17

2.3.3. Augmented Reality..17
Chapter 3 CVE Systems Survey...19

3.1. Introduction..19
3.2. On-Line Systems...20

3.2.1. Spline - 1997...20
3.2.2. GreenSpace - 1995..21
3.2.3. Community Place - 1997...22
3.2.4. AGORA - 1998...23
3.2.5. Living Worlds - 1998..23
3.2.6. SmallTool - 1997...24
3.2.7. NetEffect - 1997..25

3.3. Active Systems...26
3.3.1. NPSNET-IV - 1995..26
3.3.2. PaRADE - 1997...27
3.3.3. The MASSIVE Family..27

3.3.3.1. MASSIVE-1 - 1995...27
3.3.3.2. MASSIVE -2 - 1999..28
3.3.3.3. MASSIVE-3 - 2000...29

3.4. Active Toolkits and Kernels..30
3.4.1. MR Toolkit - 1993..30
3.4.2. Urbi et Orbi - 2000..31
3.4.3. Avocado - 1999...32
3.4.4. DEVA - 2000..33
3.4.5. Continuum - 2002...34
3.4.6. NPSNET-V - 2002..35

3.5. Inactive Systems...35

5

3.5.1. BrickNet - 1994..35
3.5.2. RING - 1995...36
3.5.3. CIAO - 1999...37

3.6. Standards..38
3.6.1. RTP/I - 2001...38
3.6.2. DIS and HLA..39

3.6.2.1. The DIS approach - 1995...39
3.6.2.2. The High Level Architecture (HLA)................................40

3.6.3. VRML - 1997...40
3.6.4. MPEG-4/SNHC – 1999..41

3.7. Multi-User Games...42
3.8. Conclusion..42

Chapter 4 CVE Systems Trends...45
4.1. Introduction..45
4.2. Architectural Decisions...46

4.2.1. A Central Point or Not?...46
4.2.1.1. Client-Server..46
4.2.1.2. Peer-to-Peer (Unicast)...46
4.2.1.3. Mixing?...47

4.2.2. Unicast or Multicast..48
4.2.3. Dividing the Space..49
4.2.4. Interest Management...50

4.3. Network Protocols and Techniques...50
4.3.1. Reliability..50
4.3.2. Dead-Reckoning..51
4.3.3. Achieving Consistency...52

4.4. Software Choices..53
4.4.1. Bringing Semantics to Data...53
4.4.2. Behaviours..54
4.4.3. Frameworks and Middleware..54
4.4.4. Migrating lessons from 2D interfaces and CSCW....................55

4.5. Conclusion..56
Chapter 5 Conclusion...57
Chapter 6 Acknowledgements..59
Chapter 7 Bibliography...61

6

Chapter 1 Introduction

1.1. The Dawn of Virtual Environments
The term “Virtual Reality” (VR) was coined by Jaron Lanier1 [1] in 1989. Other
related terms include “Artificial Reality” [2] by Myron Kruegerin the 1970s,
“Cyberspace” by William Gibson in 1984 [3], and, more recently, “Virtual Worlds”
and “Virtual Environments” in the 1990s.

The ideas of VR have their ground in science fiction books. Theyshape one or
several parallel worlds within which we immerse and feel as ifwe were in the real
world. In the late 1980's and early 1990's, the ideas of VR invaded the public stage
through novels and media coverage. VR was to revolutionise theway we interact
with computers. While the hype has progressively died out, the numerous research
projects that have been conducted along the years have unearthednew domains and
new types of applications. For example, evacuation rehearsal is much more effective
when users are present within a realistic burning environment, as depicted in
Illustration 1 compared to a two dimensional view of the building’s floor plan.

In the media, virtual reality and virtual environments have been used almost
interchangeably and without much care. In this document, the term Virtual Reality
refers to the underlyingtechnologies, and the termVirtual Environmentto the
particular synthetic environment that the user is interacting with.

1.2. Collaborative Virtual Environments
In shared virtual environments, VR technology is used to immerse multiple
individuals in a single shared space. Shared environments have received a lot of
consideration in the past decade and have been used to support a range of activities
including virtual conferencing [4] and collaborative information visualisation [5].
Commonly, the nature of shared virtual environments is such that the participants
are collaborating in some way. Therefore this document refersto them as
Collaborative Virtual Environments, or CVEs (see sidebar). Inshort, CVEs are to
virtual environments what CSCW is to HCI.

The rapid growth in academic interest has been mirrored by the development of
commercial organisations who are offering access to sharedcommunities:
ActiveWorlds [7], The Palace [8] and there.com [9] being three ofthe most well-
known. Since the basic standard for distributing models of virtual environments over
the Internet, known as the Virtual Reality Modelling Language(VRML [10]) does
not provide explicit support for simultaneously shareable worlds, these systems use
proprietary extensions. The VRML community that is assembled as the Web3D
consortium [11], has started a number of working groups to address and standardise
these issues. Lately, the MPEG standardisation effort have added a back channel to
complete the SNHC (Synthetic Natural Hybrid Coding), which combines natural
video and audio with synthetic graphical objects.

1 Jaron Lanier is the founder of VPL Research, the first companyto sell software
and hardware VR products.

7

Illustration 1: An example
scene showing a burning
room.

In “Neuromancer”, William
Gibson defines Cyberspace
as “A consensual hallucin-
ation experienced daily by
billions of legitimate oper-
ators, in every nation... A
graphic representation of
data abstracted from the
banks of every computer in
the human system. Unthink-
able complexity. Lines of
light ranged in the non-
space of the mind, clusters
and constellations of
data...”

“A CVE is a computer-
based, distributed, virtual
space or set of places. In
such places, people can
meet and interact with oth-
ers, with agents or with vir-
tual objects. CVEs might
vary in their representation-
al richness from 3D graph-
ical spaces, 2.5D or 2D en-
vironments, to text-based
environments. Access to
CVEs is by no means lim-
ited to desktop devices, but
might well include mobile
or wearable devices, public
kiosks, etc.” (in [6]).

Chapter 1

It is not uncommon for the advocates of virtual environments toargue that they may
support social interaction in ways which go beyond what is possibleusing more
familiar CSCW technologies such as video conferences or shared desktop
applications. Crucially, virtual environments permit users to become embodied
within a shared space by means of an embodiment oravatar2, as exemplified by
Illustration 2. It is often claimed that this approach permits a degree of self-
expression for users, and many systems support the end-user configuration or design
of embodiments. It has also been argued that appropriately designed CVEs enable
users to sustain mutual awareness about each other’s activities [12].

1.3. Applications
A few years ago, virtual environments were seen by some as the interface that would
ultimately replace the current desktop-based interface. Some people predicted that
all applications would become three-dimensional in one form or another. However,
virtual environments are not a panacea. There are many limitations both at the
technological and software levels and this vision has died out. In the mean time,
virtual environments have found a number of niched application, driven by real
needs. This section summarises some of their most common applications. It points at
some representative papers or reviews whenever possible.

Virtual environments provide architects, customers and the public with the ability to
experience a new building before it is actually built. Illustration 3 shows an example
of an architectural walk-through. Such walk-throughs enable allparties to gain a
sense of space in a way which would not be possible without VR technology [13].

Mechanical design enables engineers to test the arrangementof new components and
to see and test new designs in operation (see [14] for an example). Anumber of car
manufacturers have started to introduce virtual prototyping in order to cut down the
costs of designing a new car and to reduce the number of physical mock-ups.

Scientific visualisation is one of the earliest uses of virtualreality. A well-known
example is the virtual wind tunnel [15]. While information visualisation is a separate
domain, it is a field where collaboration plays a more and more important role and
CVE techniques and ideas are slowly migrating into scientic visualisation
applications.

In the domain of psychotherapy, virtual environments can alleviate different fears
through the provision of a plausible and realistic environment that usually causes the
fear in question [16]. Well-known examples are the fear of heights[17] (see
Illustration 4), arachnophobia [18] or the fear of public speaking [19]. More
generally, in the medical domain, virtual environments can aid surgeons or students
to rehearse a particular operation, enabling them to evaluate different approaches.
Also, they are used in medical disaster planning and casualty care. A summary of
medical applications can be found in [20].

Virtual environments are an interesting way to place students in worlds in ways that
were not possible before. Some well-known examples are the virtualgorilla exhibit
[21] (see Illustration 5) or virtual gardens and environmental issues such as in the
NICE project [22].

A number of art houses have a number of VR-based installations. One example is
ZKM in Germany, with applications such as the Web Planetarium [23].The

2 The naturalness of avatars is the subject of a debate. Virtual humans through a perfect
modelling of real humans will typically raise the expectations ofusers who will assume
that these virtual humans actually behave like real humans.

8

Illustration 2: A typical
CVE scene with a number
of avatars, each represent-
ing a user. In this example,
avatars are using colour
codes to differentiate their
true geographical location.
The graphical representa-
tion of the avatars in this
scene is simplistic, more
elaborate graphics can be
used if necessary

Illustration 3: An architec-
tural walk through allows
for a better understanding
of a building before it is ac-
tually built.

Illustration 4: A virtual
hotel lobby as viewed from
a simulated glass elevator.
This scene is one of several
virtual-reality environments
used successfully in treating
subjects for fear of heights.

Introduction

entertainment industry also benefits from virtual environments and computer games
are probably the most successful applications of collaborative virtual environments.
The quest for visual quality has driven the development of 3D graphics hardware to
affordable prices. The game that probably had most impact on this revolution within
the game industry was Doom. Additionally, virtual Environments can also be found
in theme parks.

Ranging from training simulators to Augmented Reality devices in the battlefield,
Virtual Reality technology and its derivatives can vastly increase the efficiency and
accuracy of future military operations (see Illustration 6). Lately, the US army has
experienced great success in recruiting staff through the distribution of a free
computer game named “America's Army” [24].

1.4. Overview
This report has been conducted as part of a PhD thesis and aims at providing
insights in the hardware and software technologies that arenecessary to the
realisation of CVE applications. The report is organised as follows.

Chapter 1 rapidly presents the field of collaborative virtual environments and its
applications.

Chapter 2 provides an overview of the technologies necessary to the realisation of
the vision of collaborative virtual environments.

Chapter 3 describes some of the major CVE systems to date. The description is
based on a loose classification of these systems.

Chapter 4 isolates a number of current trends in CVE systems. These trends span
fields as various as communication architectures, communication protocols and
major software choices.

9

Illustration 6: A virtual
helicopter engaged in a
battlefield training scen-
ario.

Illustration 5: The Virtual
Gorilla Exhibit was de-
veloped to explore tech-
niques for presenting in-
formation that would other-
wise be difficult for users to
learn and to explore zoo
areas that were normally off
limits to the casual visitor.

Chapter 2 An Overview of VR technolo-
gies

2.1. Introduction
Virtual environments are presented to users through the utilisation of as many senses
as possible. Users interact with the environment through Virtual Reality
technologies. Many of these technologies are more or less familiar to most readers.
They have evolved over the last fourty years from a series of novel ideas, inventions
and concepts. To realise the vision of a parallel virtual world in which users can be
immersed to feel as if this world was real, a number of varying technologies have to
exist and be put in place. This chapter describes and categorises these technologies.
It is aimed at showing the broad range of issues that exist.

All these technologies seek to integrate the user with the virtual environment so as to
give him/her the sense of being immersed in the environment. To achieve this goal, it
is necessary that the result of users actions on the input devicesare reflected as
quickly as possible onto the output devices. For example, when a user wears a Head
Mounted Display (HMD), the tracking system should detect head tilting as quickly
as possible to send this information to the system that will in return adapt the images
shown onto both the user's eyes. Given the amount of informationto integrate and
process, there are inevitably delays at various stages of this input-output loop.
Usually, the human perception system can accommodate minimal delays. However,
if these increased, this would have adverse effects on the immersion experience and
would reduce the effectiveness of the metaphor.

2.2. Short Chronology of VR Technologies
This section chronologically outlines the major advances inVR technologies. It
attempts to set the scene, but does not aim at being complete in any way. A more
complete history of VR technologies can be found in [25]. This sections provides
insights into the various and very different technologies that are necessary for the
realisation of the vision of VR.

1962 Morton Heilig develops the “Sensorama Simulator” (see Illustration 7).
Resembling one of today's arcade machines, the Sensorama combined
projected film, audio, vibration, wind, and even pre-packaged odours, all
designed to make the users feel as if they were actually in the film rather than
simply watching it. The entire experience was pre-recorded, andplayed back
for the user.

1965 Ivan Sutherland, famous for his work with the electronic sketchpad [26],
describes what he calls a “kinesthetic display” [27]. It would allow one to use
all their senses to interact with and gain knowledge from a computer.
Sutherland describes an ideal computer display, which is in fact aroom where
matter can be completely controlled by a computer. Such a display would
allow anyone in the room to have any sensory experience imaginable, hence
fulfilling Sutherland's vision of a kinesthetic display.

11

Illustration 7: The senso-
rama simulator in use.

Illustration 8: The Head
Mounted Display from Ivan
Sutherland in use.

Chapter 2

1968 Ivan Sutherland works on Head Mounted Displays [28] for the firsttime (see
Illustration 8). He presents users with computer generated scenes(in
wireframe) and develops a scene generating tool.

1971 Henri Gouraud submits his doctoral thesis “Computer Display of Curved
Surfaces” [29]. “Gouraud shading” or “smooth shading” is now a common
technique in computer graphics to depict more realistic scenes. It is well
suited for hardware acceleration. Gouraud shading (see Illustration 9)
approximates the normal to the surface at all vertices of a polygon(using
adjacent polygons), calculates intensity at the vertices using illumination
equations and interpolates colour within each polygon.

1973 Bui-Tuong Phong submits his doctoral thesis “Illumination for Computer
Generated Images” [30]. Phong shading gives better quality shading than
Gouraud’s. It includes a detailed specular highlight but is more
computationally expensive.

1976 P. Jerome Kilpatrick publishes his doctoral thesis “The Use of Kinaesthetic
Supplement in an Interactive Graphics System” [31]. It introduces the basis
for force feedback enabled devices.

1977 Based on an idea by colleague Rich Sayre, Thomas DeFanti and Dan Sandin
develop an inexpensive, lightweight glove to monitor hand movements. The
Sayre glove used bend-sensing technique unlike modern gloves which are
based on optical sensors.

1978 Andy Lippman produces the “Movie Map” videodisk of Aspen (see
Illustration 10). In the movie map, users could travel around the streets of
Aspen on the computer, making right or left turns at will at any intersection
and have the screen show film sequences of what they would see ifactually
driving around Aspen.

1979 Eric Howlett (LEEP Systems, Inc.) designs the Large Expanse Enhanced
Perspective (LEEP) Optics (see Illustration 11). The LEEP optics provide for
a very wide field of view for stereoscopic viewing. These optics are the base
of all Head Mounted Displays, even though they introduce deformations at the
periphery of the images.

1979 The Polhemus tracking system [32] is released (see Illustration 12). It is a six
degrees of freedom tracking system that employs three orthogonal magnetic
fields.

1982 Thomas Zimmerman patents a data input glove based upon optical sensors,
such that internal refraction could be correlated with finger flexion and
extension. This paved the way for a better dataglove [33].

1983 Gary J. Grimes, assigned to Bell Labs, develops the “Digital Data Entry
Glove” [34], with flex sensors, tactile sensors at the fingertips, orientation
sensing and wrist-positioning sensor. This is the first widely recognised device
for measuring hand positions.

1983 Mark Callahan builds a see-through HMD at MIT. A see-through HMD
allows to blend the real scene on the outside with the artificial scene of the
virtual environment (see section 2.3.3).

1983 Myron Krueger publishes “Artificial Reality” [2].

1984 William Gibson writes about “Cyberspace” in Neuromancer [3].

12

Illustration 11: The LEEP
optics are the base com-
ponent of all modern HM-
Ds.

Illustration 10: The movie
map presented an inter-
active visit of Aspen.

Illustration 12: The Pol-
hemus magnetic tracker.

Illustration 9: Gouraud
modelled the face of his
wife through applying wires
on her face and measuring.

An Overview of VR technologies

1984 Mike McGreevy and Jim Humpries develop VIVED (VIrtual Visual
Environment Display), a prototype system for future astronauts at NASA.

1984 Radiosity [35] is born at Cornell University. Radiosity decomposes the
graphical scene in small patches and pre-computes the contributionof lights
onto those patches. While pre-computation takes time, radiosity integrates
well with real-time hardware rendering techniques while providing much more
realistic scenes.

1985 Mike McGreevy and Jim Humphries built a Head Mounted Display from
monochrome LCD pocket television displays. LCD have a lower resolution
but are cheaper and lighter than CRT-based helments.

1985 Tom Furness develops the “super cockpit”, designed to deal with pilot
information overload: visual, auditory and tactile (see Illustration 14). The
super cockpit was a research project but introduced a number of conceptsthat
are now present in combat fighters. One example is HUD (Heads Up
Displays).

1985 First commercial liquid crystal shutter displays. They provide affordable
stereo viewing.

1988 First system [36] capable of synthesizing four virtual 3-D sound sources. The
sources were localised even when the head was moved.

1989 Jaron Lanier, CEO of VPL Research (Visual Programming Language), coins
the term “Virtual Reality”.

1989 VPL Research and AutoDesk introduce commercial head-mounted displays.

1989 AutoDesk, Inc. demonstrate their PC-based VR CAD system (called
Cyberspace) at SIGGRAPH'89.

1989 Robert Stone formed the Virtual Reality & Human Factors Group atthe UK's
National Advanced Robotics Research Centre.

1990 J.R. Hennequin and R. Stone, assigned to ARRC, patent a tactile feedback
glove.

1991 Division sell their first VR system.

1992 Division demonstrate a commercial multi-user VR system.

1992 Thomas DeFanti et al. demonstrate the CAVE [37] system at SIGGRAPH
(see Illustration 15). A CAVE form a room in which walls, ceilingand floor
are projected surfaces.

1993 SGI announce the RealityEngine, a very powerful 3D image generating
engine.

1994 InSys and the Manchester Royal Infirmary launched Europe's first VR R&D
Centre for Minimally Invasive Therapy.

1994 Doom hits the game market, it is the first of a new generationof computer
games that have in common interaction through a 3D environmentand the
ability to play with or against other networked participants.

2.3. Core VR Technologies
In the previous section, a quick history of VR-related technologies was presented.
To realise the vision, a number of input and output aspects have to be covered. Input

13

Illustration 15: Through the
provision of room-size dis-
plays, CAVEs allows for
the co-presence of
groups, even though all
perspective is calculated
from the point of view of
a single (tracked) user.

Illustration 16: Doom is the
first one-person shooter
game that used a 3D envir-
onment and co-presence of
gamers as crucial aspects
of the gaming experience.

Illustration 14: The super
cockpit initiated what is
now HUDs in combat fight-
ers.

Illustration 13: Radiosity
enables more realistic
scenes that can be rendered
in real-time once pre-com-
puted.

Chapter 2

is essentially concerned with various tracking technologies that attempt to localise
body parts in space in more or less unencumbered ways. Tracking is complemented
by ways to interact with the environment, possibly receiving feedback. Interaction
through data gloves has become famous. Output is mainly concerned with two
different senses and channels: vision and hearing. Tactilefeedback allows users to
“feel” the environment in better ways.

2.3.1. Tracking Technologies
Tracking is one of the most important input channels involved inthe field of virtual
environments. Tracking devices will attempt to know the orientation and position of
one or several body parts. Tracking the hands of the user is necessary to allow
interaction with the environment and to show that this interaction takes place to all
present users (including remote users in CVEs). A recent review of available
tracking technologies can be found in [38]. Tracking is the key technology used
when using Head Mounted Displays. In that case, the tracked position and
orientation of the head are used to compute and visualise the user's viewpoint within
the scene in real-time.

There are a number of available technologies for tracking single points and/or entire
bodies:• A mechanical tracker is similar to a robot arm and consists of ajointed structure

with rigid links, a supporting base, and an “active end” which is attached to the
body part being tracked, often the hand.• An electromagnetic tracker allows several body parts to be tracked
simultaneously and will function correctly if objects come between the source
and the detector. This type of tracker uses three magnetic fields and triangulation
to compute distance and orientation [39].• Ultrasonic tracking devices consist of three high frequencysound wave emitters
in a rigid formation that form the source for three receivers that are also in a rigid
arrangement on the user.• Infra red (optical) trackers [40] utilise several emitters fixedin a rigid
arrangement while cameras or “quad cells” receive the IR light. To fix the
position of the tracker, a computer must triangulate a position based on the data
from the cameras.• There are several types of inertial tracking devices that allow the user to move
about in a comparatively large working volume because there is no hardware or
cabling between a computer and the tracker. Inertial trackers apply the principle
of conservation of angular momentum. Miniature gyroscopes can beattached to
HMDs, but they tend to drift (up to 10 degrees per minute) and to be sensitive to
vibration. Yaw, pitch, and roll are calculated by measuring the resistance of the
gyroscope to a change in orientation. If tracking of position is desired, an
additional type of tracker must be used. Accelerometers are another option, but
they also drift and their output is distorted by the gravitational field.

2.3.2. Presentation and Output Devices
Presentation to the user is made through three major senses: vision, audition and
touch. For all of these senses, the major problem is to present theenvironment
accurately as seen, heard or felt from the user's position and orientation within the
environment. Additionally, vision is faced with the challenge of presenting a

14

An Overview of VR technologies

stereoscopic view of the environment. This section focuses onvision and audition.
Touch will be covered in the next section, since it is highly connected to input
devices.

2.3.2.1. Visual Presentation

LCD Shutter glasses are the most used device for stereoscopic viewing. A signal,
sent by a transmitter, tells the glasses to alternatively allow light to pass through the
right and left lens. This signal is synchronised with the scene on the screen, so that it
is shown from two slightly offset viewpoints corresponding tothe right and left eyes.
There are also attempts to provide unencumbered stereoscopic viewing. For
example, in the DTI display systems [41], both halves of a stereo pairare displayed
simultaneously and directed to the corresponding eyes. This isaccomplished with a
special illumination plate located behind an LCD plate, as depicted in Drawing 1.

HMDs contain two lenses (LEEP optics) through which the user looks at viewing
screens. As for shutter glasses above, the computer generates two slightly different
images, one for the left eye and one for the right eye. HMDs areoften considered to
be intrusive, see Illustration 17. To overcome this problem, alternative displays have
been developed. One of them is the Binocular Omni Orientation Monitor. The
BOOM is similar to a HMD, except that the user does not wear the helmet. The
BOOM's viewing box is suspended from a two-part, rotating arm also forming a
mechanical tracker.

Rather than presenting the environment to users using small displays close to their
eyes, multi-screen displays and the CAVE™ form a more or less closed room in
which walls, ceiling and floors are projected surfaces (see Illustration 15). This
allows for the co-presence of groups, even though all perspective is calculated from
the point of view of a single (tracked) user. Most similar setups use stereo to
increase immersion. This is achieved through the use of shutterglasses, as described
above.

ImmersaDesk overcome the problems of cost and portability of CAVEs by offering
one or two projected surfaces in a table-sized display. Again, stereoscopic viewing is
based on shutter glasses. The reduction of size comes at the priceof worse
immersion and the drawback of seeing the remainder of the real surrounding room.

2.3.2.2. Auditory Presentation

In addition to visual output, a complete virtual world must incorporate a three
dimensional sound field that reflects the conditions modelled in the virtual
environment. This sound field has to react to walls, multiple sound sources, and
background noise, as well as the absence of them. Three dimensional audio is
important since it brings life to environments that would otherwise only be visual.
Furthermore, the human perceptual system uses audio cues in combination with
vision to detect where objects are, whether they are moving ornot, whether they are
interesting or not, etc. Also, sounds can help humans detecting artefacts which are
located behind other objects.

Surround sound, used in many theatres, uses the idea of stereo but with more
speakers. Their delays can be set so that a sound can seem to move from behind the
listener to in front of the listener. An example problem with thissystem is that a
plane taking off behind the listener will appear to go by the listener's elbow instead
of overhead. To overcome those problems, a little group of researcher have proposed
ambisonic surround sound. It is a set of techniques, developed in the 1970s, for the

15

Drawing 1: In parallax il-
lumination, the stereo effect
is achieved through careful
positioning of the light lines
behind the LCD panel. To
achieve a given horizontal
resolution, this type of dis-
play requires twice as many
pixels for each line of the
panel.

Light Lines

LCD

Illustration 17: An example
head mounted display, also
called a helmet.

Chapter 2

recording, studio processing and reproduction of the complete sound field
experienced during the original performance. Ambisonic technology does this by
decomposing the directionality of the sound field into spherical harmonic
components. The Ambisonic approach is to use all speakers to cooperatively
recreate these directional components. That is to say, speakers to the rear of the
listener help localise sounds in front of the listener, and vice versa.

A solution to the problem of creating a three dimensional sound field comes from
production of sound which is tuned to an individual's head. When sound reaches the
outer ear, the outer ear bends the sound wave front and channels itdown the ear
canal. The sound that actually reaches the eardrum is differentfor each person. To
resolve this problem, the computer must create a sound that is customdesigned for a
particular user. This is done by placing small microphones inside the ear canal, then
creating reference sounds from various locations around the listener. Then the
computer solves a set of mathematical relationships that describe how the sound is
changed from being produced to being received inside the ear canal. These
mathematical relationships are called Head Related Transfer Functions (HRTFs).

Finally, another solution for producing 3D sound is through audio spotlights. An
audio spotlight produces an audio beam, similar to a flash light. The technology
makes use of interference from ultrasonic waves, as described in Drawing 2. An
audio spotlight can be used in two different ways: as directed audio -sound is
directed at a specific listener or area, to provide a private or area specific listening
space; as projected audio -sound is projected against a distant object, creating an
audio image. In VR settings, it is possible to track the user's ears and aim the
spotlight at the head. Augmented Reality (see section 2.3.3) can make use of
projected audio to project onto a wall or object so that the sound will be heard as
coming right from the projection point.

2.3.2.3. Input Devices

2.3.2.3.1. Input Devices

Wands are the simplest of the interface devices and come in allshapes and
variations. Most incorporate on-off buttons to control variables in the Virtual
Environment. Others have knobs, dials, or joysticks. Their design and manner of
response are tailored to the application. Most wands operate with six degrees of
freedom. This versatility coupled with simplicity are the reasons for the wand's
popularity.

Data gloves such as the one shown in Illustration 18 offer a simplemeans of
gesturing commands to the computer. They use the combination of a 6DOF tracker
to determine the position and orientation of the hand and of bending sensors to
control an accurate virtual model of a hand in space. Data suits are an elaboration
on the data glove concept by creating an entire body suit.

More generally, almost anything can be converted into a sensing device. For
example, locomotion interfaces are energy-extractive devices that, in a confined
space, simulate unrestrained human mobility such as walking and running.
Locomotion interfaces overcome limitations of using joysticks for manoeuvring or
whole-body motion platforms, in which the user is seated and does not expend
energy, and of room environments, where only short distances can be traversed.

16

Illustration 18: The 5DT
data glove measures finger
flexure (one sensor per fin-
ger) and the orientation
(pitch and roll) of the user's
hand. It can emulate a
mouse as well as a baseless
joystick

Drawing 2: The ultra-
sound, which contains fre-
quencies far outside our
range of hearing, is com-
pletely inaudible. But as the
ultrasonic beam travels
through the air, the inherent
properties of the air causes
the ultrasound to distort
(change shape) in a predict-
able way. This distortion
gives rise to frequency com-
ponents in the audible
bandwidth, which can be
accurately predicted, and
therefore precisely con-
trolled.

Ultra Sound

Audible Sound

LoudSpeaker

Audio Spotlight

An Overview of VR technologies

2.3.2.3.2. Tactile and Force Feedback

One of the biggest complaints about virtual environment applications is often the
“lack of tangibility”. Although the area of tactile feedback isonly a few years old, it
has produced some impressive results. However, there is no interface currently built
that will simulate the interactions of shape, texture, temperature, firmness, and
force.

The area of touch has been broken down into two different areas. Force feedback
deals with how the virtual environment affects a user. For example, walls should
stop someone instead of letting him/her pass through, and pipes should knock a user
in the shin to let him/her know that they are there. Tactile feedback deals with how a
virtual object feels. Temperature, size, shape, firmness, and texture are some of the
bits of information gained through the sense of touch.

Motion platforms were originally designed for use in flight simulators. A platform is
bolted to a set of hydraulic lift arms. As the motion from a visualdisplay changes,
the platform tilts and moves in a synchronous path to give the usera “feeling” that
they are actually flying. For interaction with small objects in a virtual world, the
user can use one of several gloves designed to give feedback on the characteristics of
the object. This can be done with pneumatic pistons, which are mounted on the palm
of the glove as in the Rutgers Master II [42] (see Illustration 19) orthrough a
lightweight, unencumbered force-reflecting exoskeleton thatfits over a data glove
and adds resistive force feedback to each finger, as shown in Illustration 20. In
addition to providing haptic feedback to gloves it is possible to add it to a range of
other objects. A common method for achieving this is via a flexibly movable arm,
which resists the user’s movements according to the Virtual Environment. Many of
these devices, such as the Workspace PHANToM system employ a stylus onto
which the user’s hand or any other object can be attached. Such device also
implement a mechanical tracker.

Any attempt to model the texture of a surface faces tremendous challenges because
of the way the human haptic system functions. There are several types of nerves
which serve different functions, including: temperature sensors, pressure sensors,
rapid-varying pressure sensors, sensors to detect force exerted by muscles, and
sensors to detect hair movements on the skin. All of these human factors must be
taken into consideration when attempting to develop a tactile human-machine
interface. For example, the Teletact Commander [43], use either air filled bladders
sown into a glove, or piezo-electric transducers to provide thesensation of pressure
or vibrations.

2.3.3. Augmented Reality
The real world environment provides a lot of information that is difficult to duplicate
inside a Virtual Environment. An augmented reality system (see [44] for a recent
survey) generates a composite view for the user. It is a combination of the real scene
viewed by the user and a virtual scene generated by the computer thataugments the
scene with additional information. There are three components that are needed to
make such an augmented reality system to work: a head-mounted display, a tracking
system (or combination of such) and mobile computing power.

In most applications (see [45] for a number of application domains) the augmented
reality presented to the user enhances that person's performance in, and perception
of, the real world. The ultimate goal is to create a system such that the user cannot
tell the difference between the real world and the virtual augmentation of it. To the

17

Illustration 20: The cyber-
grasp uses an exoskeleton
to provide haptic feedback.

Illustration 19: The Rutgers
Master uses pneumatic pis-
tons to provide haptic feed-
back.

Chapter 2

user of this ultimate system it would appear that they are looking at a single real
scene.

The computer generated virtual objects must be accurately registered with the real
world in all dimensions. Errors in this registration will prevent the user from seeing
the real and virtual images as fused. The correct registrationmust also be
maintained while the user moves about within the real environment. Discrepancies or
changes in the apparent registration will range from distracting which makes
working with the augmented view more difficult, to physically disturbing for the
user, making the system completely unusable. Errors of mis-registration in an
augmented reality system are between two visual stimuli which weare trying to fuse
to see as one scene [46].

The combination of real and virtual images into a single image presents new
technical challenges for designers of augmented reality systems. There are basically
two types of HMD that can be used: video see-through and optical see-through. An
HMD gives the user complete visual isolation from the surroundingenvironment.
Since the display is visually isolating, the system must use video cameras that are
aligned with the display to obtain the view of the real world, asshown in Drawing 3.
On the contrary, the optical see-through HMD eliminates the video channel that is
looking at the real scene. Instead, the merging of real worldand virtual
augmentation is done optically in front of the user, as shown in Drawing 4. This
technology is similar to heads up displays (HUD) that commonlyappear in military
air plane cockpits and recently some experimental automobiles.

The biggest challenge facing developers of augmented reality is the need to know
where the user is located in reference to his or her surroundings. There's also the
additional problem of tracking the movement of users' eyes and heads. A tracking
system has to recognize these movements and project the graphics related to the real-
world environment the user is seeing at any given moment. As suggested by [47],
today's systems combine standard position tracking for grossregistration and image
based methods for the final fine tuning

18

Drawing 3: Video see
through HMDs use a closed
view HMD. Those closed
view HMDs are well known
from virtual reality. Two
cameras are mounted on
the head, and the virtual
image from the scene gen-
erator is combined with the
image delivered by the
cameras.

Real
World

Monitor
s

Scene
Generator

Delay
Unit

Video Composer

Head Locations

Video

Drawing 4: See through
HMDs use optical combin-
ers to mix the real world's
image, and the virtual im-
age from monitors. The
opaque displays reduce the
amount of light from the
real world by about 30%.

Real
WorldOptical

Combiners

Scene
Generator

Head Locations

Monitors

Chapter 3 CVE Systems Survey

3.1. Introduction
In [48], a number of challenges are presented. The first challengeis the various
kinds of distributed architectures used within systems, together with possible
combinations of client-server and peer-to-peer at various levels of these systems.
The second challenge is the scalability of the number of participants, active entities
and the behavioural complexity of the virtual worlds and how interest management
has been proposed as a solution to achieve this scalability. The third challenge is the
migration of a number of relevant findings from 2D interfaces into 3D environments.
Finally, the last challenge concerns human factors and how this new metaphor can
change our use of computers.

This chapter summarises a number of past and present systems for shared multi-user
virtual environments. This chapter is placed at the system level, looking at the
differences and similarities between the number of existing CVE-oriented platforms.

Depending on the application domain targeted by the systems, different architectural
solutions are used. For example, current multi-player games are making use of a
client-server infrastructure. This choice is not only drivenby technical reasons, it is
also based on commercial reasons. Through a centralised architecture, game
manufacturers gain control over the distribution and life of thevirtual worlds.
Servers are able to restrict the number of users, to implement somebilling system if
necessary (through the introduction of a single entry point), to control what users are
able to do and not do within the game environment, etc.

Based on these considerations, and the number of applications that were highlighted
in section 1.3, this chapter divides systems dependent on theirapplication domains
and capability in regard to application development. Some systems are tuned for a
wide variety of applications. Therefore, the association of systems is sometimes a bit
arbitrary. However, this classification provides with a morestructured view of the
current state of the art in the field of CVE. There are, broadly speaking four
different categories of systems for the implementation and deployment of CVE
applications.• On-line systems are for the most part aimed at the entertainment market. Such

systems have a number of requirements, the major one being their ability to run
on the Internet, sometimes using low-quality connections suchas old-fashioned
modems. Companies seeking to establish such systems have to keep in mind the
scalability of the solution in order to host a number of customers.Furthermore,
commercial models have to be put in place behind the establishment of these
systems and applications for the survival of these companies.• Active systems are “closed” systems that aim at a broader range of applications.
Such systems provide a number of facilities to develop applications within some
sort of framework imposed by the system. Typically, they will impose a view on
how data and applications should be organised and written and will make use of
this view at a number of levels to optimise resources such as CPU or network
utilisation.

19

Chapter 3 • Active toolkits and kernels will typically provide an application programming
interface (API) on top of which designers and programmers will be able to build
and develop applications. The level of this API will vary, but it will typically
offer a number of facilities that are commonplace in CVE applications so as to
relieve the burden of application development.• Inactive systems are closed systems that offer little space for interactive
applications. Such systems are tuned for the very restricted number of activities
that they support.

Given the broad range of applications and systems, a number of standards and
efforts towards standards have emerged. They hope to unify efforts worldwide
towards common goals and to provide inter-connection of systems at a number of
levels. Standards such as VRML or, to a lesser extent MPEG, are aimed at unifying
data exchange between applications. Standards such as DIS or HLA are aimed at
unifying network exchange between applications.

3.2. On-Line Systems

3.2.1. Spline - 1997
Spline [49] provides an architecture for implementing large-scale CVE based on a
shared world model. The major contribution of Spline is the introduction of a novel
division of space called “locales”. The world model is an object database containing
all information about the content of a virtual environment. Applications interact with
one another through making changes to the world model and observing changes
made by other applications to the world model. The database is partially replicated
to allow for rapid interaction. Copies are maintained approximately, but not exactly,
consistent.

Communication in Spline is mostly through multicast. However, to support users
with low speed links, a special Spline server can intercept all communication to and
from the user. The message traffic to the user is compressed to take maximum
advantage of the bandwidth available. As part of this, audio streams are combined
and localised before sending them to the user. Spline servers are replicated as needed
so that no one server has to support more users than it can handle.

The key to scalability in Spline is its division of the virtual worlds into “locales”
[50]. A locale has arbitrary geometry and this division of the world is purely an
implementation issue. At a given time, a user only sees a subset of all the locales
that compose a world. These are generally the locale containing the user's point of
view and those neighbouring it. Each locale is associated to a separate set of
multicast addresses. Using different addresses accommodates the communication of
different kinds of data, for example, audio data, visual data andmotion data. To
help maintaining floating point precision over long distance, each locale has its own
coordinate system.

Conceptually, locales failed to model a number of real world occurrences. For
example, while it is natural for designers to associate localesto rooms in an
environment that contains buildings and rooms, seeing throughwindows cannot
always be possible in all configurations. While this could be arguedto be a careless
design by the environment developer, one has to remember that locales seek to solve
the problem of scalability and that combining a number of locales into a bigger one
can impair scalability by increasing the number of potential participants. Another
example of conceptual deficiency is the inability for locales to model the differing

20

Drawing 5: In Spline, pro-
cesses subscribe to the loc-
ale containing a participant
and their immediate neigh-
bours. Neighbouring rela-
tions are expressed through
explicit boundaries. In this
example, the locales sub-
scribed to by the taller par-
ticipant are grey.

CVE Systems Survey

permeability of media. Locales are associated to a number of multicast addresses for
the different media that are supported by the system and a participant subscribes to
the multicast groups of a locale and its immediate neighbours. This does not
accommodate for the fact that sound can travel differently than light, in other words
that it is possible to hear without seeing what is happening behind awall. Again,
such problems can be alleviated through the merging of locales, but this is at the
price of scalability.

The protocol used for Spline (ISTP, the Interactive Sharing Transfer Protocol [51])
uses a hybrid UDP and TCP approach for the transmission of object updates within
a locale. It uses a best-effort approach through the transmissionof updates via UDP
(multicast or unicast) in order to ensure the best possible interactivity. To detect
packet loss ISTP uses sequence numbers that are incremented each time an object is
updated. ISTP guarantees reliability through the resending of the full state via a
TCP connection when gaps in sequence numbers have been detected orwhen state
changes arrive too late. This technique impairs interactivity since it does not support
causal ordering between related objects and since it relies on aconstant delay for the
discovery of packet loss.

3.2.2. GreenSpace - 1995
GreenSpace [52] is based on a peer-based distributed database that represents the
virtual world. Every client is presented with an individual world view of the shared
global GreenSpace world. The world data structure is based on so-called groups,
which are collections of chunks. Chunks are objects of specialised types that define
the data and methods for a world. Chunks are organised into groups and clients
subscribe to groups. A client process, which has a world view of the collection of
groups that it is interested in, manipulates the chunks of that group. The client's
action are reflected to all other remote clients that have the same interest in that
group.

GreenSpace uses several communication mechanisms for the transmission of
information between remote clients. Multicasting is predominantly used to pass
transitional messages. An example of a transitional message is a position update.
The transmission frequency of these messages itself ensures their reliable
transmission. Messages that involve a change of state are more critical and a reliable
multicasting protocol (RMP [53]) is used for that purpose. Finally, peer-to-peer
TCP/IP communication is used in particular cases such as when sending the
initialisation data on world entrance.

The network architecture of clients [54] is based on two different modules that can
either run on the same machine or on two separate machines. Thishas a number of
advantages. The communication layer can be moved to another machine that has full
multicast access (for example, outside a firewall). Furthermore, this arrangement
allows changes to the communication protocol between clients without modifying the
way applications actually communicate with one another.

A central, lightweight server is assigned with two simple tasks: assigning multicast
channels and allowing each host to discover who else is in the world or universe.

Greenspace relies solely on the existence of a multinational multicast architecture
for communication between remote peers. However, the establishment of such an
architecture (called the MBone) is impaired by precautions at the corporate level and
its non-availability for home users. Finally, there are not enough details in the
various papers describing the system to judge whether RMP is an appropriate

21

Chapter 3

protocol for the transmission of critical state data. RMP hasfour levels of quality of
service: unreliable, reliable, source ordered, and total ordered. The adequate
selection of these levels has a number of implications on the interactivity of the
system and none of the standard levels seems to provide support for causal ordering.

3.2.3. Community Place - 1997
Community Place [55] is based on a shared-world abstraction wherethe common
world is composed of a database of objects. Community Place has a particular
emphasis on the Internet and its technologies. As a result, it uses VRML as the
description language for the content of the world and attempts to scale in the number
of users and active objects while trying to address the capabilities of low-end
consumer client PCs (slow modem connection, no graphics acceleration).

Community Place is based on a hybrid client-server and peer-to-peer architecture.
3D browsers perform communication solely through servers, whichare responsible
for the dispatching of communication messages between relevant browsers. At
initialisation time, a 3D browser reads the initial description of the scene in the form
of a VRML file with associated behaviours. It then contacts theserver which will
inform the client of any other users in the scene and any other objects not contained
in the original description scene, and their respective location.

The communication between the browser and the server is optimised in two ways.
First, it is based on a very efficient representation of 3D scenetransformations.
Second, it has an open-ended support for script specific messages.This mechanism
enables Community Place to send and receive script-level messages that allow the
browser to share events and so support interaction with the 3D scene. There are two
possibilities for this cross-browser communication. In the simpler model (“Simple
Shared Scripts”), scripts communicate directly with one another through the server,
as depicted in Drawing 6. The drawbacks of this model are ownership and
persistence: Issues such as object ownership and locking have tobe resolved at the
script level and for each script; furthermore, all modifications applied to an object
will be lost once all browsers have left. As a solution to those problems, Community
Place introduces the concept of “Application Objects” (AO). These reside off the
browsers, on the network, and communicate with the server, as depicted in Drawing
7. They are composed of three parts: the 3D representation, the associated scripts
that accept user input and communicate back to the AO, and the AO sidecode that
implements the application logic. AO define a controller for the application and let it
live even when all browsers have left the virtual world.

Community Place's approach to scalability is two-fold. It reduces communication
between the clients and the servers as much as possible as explainedabove.
Furthermore, it uses spatial areas of interest to select which clients should receive
information sent by a given client or application object. This isbased on auras that
surround participants and a distributed aura manager that automatically creates
groups of clients based on the intersections of their respectiveauras. The groups are
associated to multicast groups, which allows a hierarchy of servers to calculate aura
collisions between objects in a distributed manner.

The major drawback of the AOs used in community place is the introduction of a
number of message exchanges before the result of an interaction can be transmitted
to all interested parties. Indeed, interaction will be discovered at one client, will have
to transit through the server to the host in charge of the AO before being processed
and sent back to all interested clients via the server(s). While this technique
alleviates the problems of synchronisation, it impairs interaction through the

22

Drawing 7: In the AO ap-
proach, messages gener-
ated at the interacting cli-
ents are forwarded to a spe-
cific process where all code
resides via the server. Res-
ults are propagated back to
all clients, including the
origin of the interaction.

Server

Client Client
6 6

Application Object

1
2 5 5

3 4

Drawing 6: The SSS ap-
proach is suitable for a
number of simple shared
scene updates. It propag-
ates script messages cre-
ated at the interacting cli-
ent to all other clients via
the server.

Server

Client Client
2 5

1
3 4

CVE Systems Survey

introduction of a number of delays, even for the interacting client.

3.2.4. AGORA - 1998
AGORA [56] is a system for the realisation of virtual communitiesbased on the
VRML standard. AGORA has a shared and centralised database and is based on the
client-server approach. AGORA divides the space into regions of static sizes and
client browsers are associated to one and only one region at a time. The central
server filters information so that clients will only receive information about other
clients that are part of the same region. To minimise the delayfor an incoming client
to receive the initial state of the virtual world, AGORA introduces the concept of an
interactive VRML server (I-VRML). The principle consists of storing information
sent by all remote clients in a single server so as to be able to reproduce a complete
VRML snapshot of the environment upon new connection of a client. As a result,
the incremental addition of objects that have been modified orof remote avatars is
reduced to a minimum.

To minimise traffic between the clients and the server, the server uses a special
packet-delivery technique that consists of grouping avatars and object updates into
so-called notice vectors. For this grouping to happen, the server delays update
delivery and the clients rely on dead-reckoning techniques for the interpolation of the
positions of objects and avatars. This is similar to the techniques employed in
NetEffect (see section 3.2.7).

AGORA solely relies on a single server and while special attention is paid to reduce
the traffic from the server to the clients, AGORA suffers fromthe problem of scale
at the server side. As the environment grows and the number of participant grows,
the amount of networking and computing resources will grow and the server will
stop being able to cope with this flow of data. This is especially true since the server
is also in charge of the dynamic construction of the initial VRML scene sent to new
connecting clients. Furthermore, the concept of notice vectors, while minimising the
number of messages sent to clients and thus saving precious bandwidth impairs
interaction by introducing arbitrary delays.

3.2.5. Living Worlds - 1998
In [57], an implementation of the former Living Worlds [58] proposalis presented.
Living Worlds was an effort to standardise multi-user extensions to VRML97. The
implementation is based on three layers. The lowest level is a generic notification
system called Keryx. Above this notification system, genericsupport for state
sharing is provided by an event interface. Finally, the top layer consists of the
support for zones, a region of the space according to the Living Worlds proposal.

Keryx supports anonymous interaction between loosely coupled parties. It
implements a notification server as a cloud of events. Sources inject events into the
cloud, and the notification service takes care of deliveringthem to clients. Clients of
the notification system are decoupled by an Event Distributor (ED). Sources send
events to an ED which delivers them to clients. An ED also implements a number of
services through the interception of certain types of events. Clients are able to send
subscriptions in the form of filters to an ED. They will in return receive all events
that match the subscription filter. To provide more scalability,event distributors can
be connected together. The preferred transport mechanism is TCP, but a reliable
protocol on top of UDP is also provided.

In the paper, the authors divide the virtual environment into zones. Each zone is

23

Chapter 3

associated to an extended Event Distributor: the zone server. Zones do not need to
be defined spatially, but they represent collections of information of interest to
participants. The zone server implements a generic state-sharing protocol using
events such as object creation, differential state update, complete state update or
object deletion. Clients use subscription filters to restrict their event flows to the
zone that they are interested in. To solve the problem of concurrent access to
objects, a pilot (a specific client) is associated to shared objects. Only the pilot is
able to modify an object. Ownership migrates from client to client and finally to the
zone server if no client is interested in an object any more. This ensures persistence.
The implementation also has some support for prediction (dead-reckoning
techniques) and for spatial filtering.

This implementation of the Living Worlds proposal suffers from the introduction of
a relaying server that delays the arrival of packets at all interested clients. This is
especially true since the implementation only shares a single environment and does
not provide for any partitioning of the worlds. Furthermore, TCP, as the preferred
choice for communication, has a number of disadvantages. It introduces unnecessary
queues and enforces reliable transmission of all packets, whilevirtual environments
should accommodate for the non-arrival of less important packets to achieve a high
degree of interaction and minimise delays, e.g. position updates.

3.2.6. SmallTool - 1997
SmallTool [59] is a VRML-based browser and architecture for the realisation of
large-scale multi-user virtual environments. SmallTool uses aspecifically tailored
protocol called DWTP – The Distributed World Transfer and communication
Protocol [60]. DWTP is based on a hybrid approach. It relies both on TCP and
UDP for the realisation of its goals. Typically, TCP is used forthe transmission of
information chunks of large sizes or during the initialisation phase. Unicast of
multicast UDP is used for the remaining of communication.

DWTP enforces an infrastructure in the form of a number of types of daemons that
can be replicated over the Internet to achieve greater scalability. These are depicted
in Drawing 8. Reliability daemons detect UDP packet losses usinga protocol based
on positive acknowledgement. Recovery daemons allow connected applications to
recover lost packets. World daemons transmit the initial content of virtual worlds
and their populating avatars and embodied applications. Unicast daemons allow
multicast unaware clients to join and participate through the implementation of
multicast-to-unicast bridges.

SmallTool introduces a number of VRML extensions to divide virtual environments
into hierarchical regions, to allow transportation from oneworld to the other through
portals, to represent users as logical entities and to representshared applications
embodied within the environment by a number of geometrical entities.

SmallTool introduces several classes of behaviours to reason about shared
behaviours and interactions. Autonomous behaviours are either completely
deterministic or independent of the state of their shared copies. However, such
behaviours might be influenced by user interactions and might thenneed
resynchronisation. Synchronised behaviours are not completely deterministic, but
can be treated as such for time periods until the next resynchronisation. Independent
interactions are interactions that do not depend on any otherinteraction performed
concurrently. The effects of such an interaction require immediate synchronisation
of all the copies of the concerned objects. Finally, shared interactions occur when
several users have the possibility to perform a certain behaviour and might

24

CVE Systems Survey

experience concurrent access to objects.

To accommodate this classification and provide for shared behaviours, SmallTool
distributes events generated at user interactions. The resulting cascade of VRML
events is not distributed until an explicit synchronisation. Synchronisation is usually
initiated by the process that generated the interaction, but this cannot always be the
case, and the world daemon might take over responsibility. Shared interactions use
a hierarchical object locking mechanism. Locks are only satisfied by the world
daemon and a time-out mechanism avoids starvation.

In SmallTool, the world daemon is in charge of two major tasks: ensuring
persistence of the worlds (and transmitting their contents to newcomers) and
synchronising interaction. World daemons are associated with an environment and
there is no partitioning. Consequently, in highly interactive applications where a
large number of participants are interacting, world daemons could experience
scaling problems.

3.2.7. NetEffect - 1997
NetEffect ([61] and [62]) is an infrastructure for developing, supporting and
managing large-scale virtual worlds for use by several thousands of geographically
dispersed users using low-end computers and modems. The system partitions the
world into so-called communities. Each community is associated to one server only,
while one server can handle one or several communities. At anypoint in time, all
users of a community are connected to the same server.

NetEffect is based on a graph of servers with one master server and a number of
peer servers, as depicted on Drawing 9. The master server has twomajor goals.
Firstly, it takes care of initial connection and distributionof clients and maintains
each user's personal database. Upon initial connection, a client is handed the address
of a peer server, responsible for the “nearest” community (in thevirtual sense) and
all further communication will occur between the client and the peer server.
Secondly, the master server is in charge of load-balancing between the different peer
servers. It is able to decide and migrate a whole community fromone server to
another if necessary. All communication between servers and client and servers is
solely TCP based.

To reduce network usage between the servers and the clients, NetEffect uses a
number of techniques. Firstly, it divides communities into a hierarchy of places and
ensures that clients only receive updates for other clients that are within the vicinity
of the same place. Secondly, it uses so-called “group dead-reckoning”. Using this
technique, the server waits and accumulates movement updates forwell-chosen
groups of clients during a short period of time. Once it has expired,a vector is sent
to all relevant clients. These will use the position and velocity information to
approximate the position of other clients in real-time. Finally, NetEffect support bi-
part audio communication in a peer-to-peer manner. Audio communication between
two participants is mediated by the peer server, but all GSM-encoded traffic will
transit directly between the clients.

NetEffect addresses the problem of scale from an enhanced chatperspective. While
the movement filtering and the server hierarchy are suitable for such scenarios, the
architecture would not be able to accommodate tighter interaction between the
clients, since this would increase the load on the servers. Another drawback of the
system is the way that it supports audio. As soon as larger groups of participants
wish to talk, the peer-to-peer model will imply the unnecessary duplication of large

25

Drawing 9: The architec-
ture of NetEffect is based
on a graph of servers with
one master server in charge
of server load balancing
and initial connection.
Periphery servers under-
take the major burden of
network traffic.

S S

S

M

Chapter 3

numbers of audio packets to allow their transmission from the sender to all potential
receivers.

3.3. Active Systems

3.3.1. NPSNET-IV - 1995
NPSNET [63] is the successor of SIMNET [64]. SIMNET intended to provide
interactive networking for real-time, human-in-the-loop battle engagement
simulation and war-gaming. SIMNET is based on a distributed architecture with no
central server. Entities connected to the simulation broadcast events to the network
(and thus all other connected simulation processes) at regular intervals. Receivers
are responsible for deciding upon the relevance of the message and for calculating
the effects according to a similar algorithm at all receiving processes to allow for
fair-play. In between object position updates, receivers interpolate their position
using dead-reckoning techniques. The type of information thatis exchanged within a
military simulation has been standardised in a standard called Distributed Interactive
Simulation (DIS), a standard that emerged from the SIMNET effort. The standard
describes the semantic of a number of Protocol Data Unit (PDU) and how these
should be interpreted at the receiving side, more information can be found in section
3.6.2.1.

NPSNET IV is a network software architecture for solving the problem of scaling
very large distributed simulations. NPSNET is the system that pioneered the idea to
logically partition the space into regions. In NPSNET, regions are hexagonal cells.
Hexagons are used because they are regular, have a uniform orientation and have
uniform adjacency. Each region is associated to a distinct multicast group, therefore
allowing a smooth transition from the broadcast model employed in SIMNET and
previous DIS-based simulation. Each vehicle is associated to anArea Of Interest
(AOI) which is typically defined by a radius. This is explained in more details in
Drawing 10. The size of this radius depends on the type and functionality of the
vehicle.

NPSNET is tuned for ground-level military simulations of real-life situations. The
size of the cells and the division itself are calculated to accommodate military
vehicles in normal situations. Using hexagons with a 2.5 km radius, a vehicle that
advanced at the world record advance rate would only change cell every hour,
leading to very few multicast group subscriptions and unsubscriptions.

The major drawback of NPSNET is precisely what it is tuned for. NPSNET is
aimed at ground-level military simulations where vehicles move at normal speeds.
There are number of situations where this is not adequate. For example, while being
suited for open-spaces or environments where participants are evenly spread, the
constant subdivision of the space into cells is not well suited for environments with a
number of buildings and rooms which will typically attract a number of persons
within a small area. For example, a virtual university campus would be
approximately the size of one NPSNET cell but would have to accommodate
thousands of participants within this very cell. This is where the network culling
introduced by multicast groups would fail: client machines would have to process
too many incoming messages and to render too many entities.

Finally, NPSNET enforces all connected entities to send their state frequently. This
allows new participants or temporary disconnected participantsto easily recover and
catch up with the current state of the virtual world. However, this scheme puts a

26

Drawing 10: This figure il-
lustrates the principles of
area subscription in
NPSNET and what happens
when a vehicle changes
cell. When the Jeep above
changes cell in the direction
of the arrow, it will stop
subscribing to the multicast
groups that are associated
to the cells which are light
grey and will start subscrib-
ing to the groups associated
to the cells which are dark
grey. The origin and destin-
ation positions of the AOI
of the vehicle are also de-
picted.

CVE Systems Survey

permanent load on the network, even if object states are not changed.

3.3.2. PaRADE - 1997
The Predictive Real-time Architecture for Distributed Environments, PaRADE [65],
is a an experimental platform for the realisation of real-time multi-user close
interaction applications. In particular, PaRADE tries to address the issue of
maintaining sufficient causality and consistency within theconstraints of real-time
many-humans-in-the-loop interaction. The general idea behind PaRADE is that,
through knowledge of time delays between all participating peers, a user's actions
may be predicted locally and sent to other participants in advance so that each user
may observe the actions as they occur. To make this possible, PaRADE needs help
from the application. For example, the movement of controlled avatars may be
restricted in a manner that allows the prediction of both movements and interaction
with other entities, thus minimising the need for roll-back.

PaRADE builds upon a number of features to achieve the goals describedabove.
Wall clock time is maintained on all hosts by clock synchronisation. This is achieved
through robust estimation techniques mixing a novel algorithm for Round-Trip Time
(RTT) estimation and NTP (Network Time Protocol). Replicated databases are
maintained through the communication of non-deterministic event and local
calculation of deterministic events. Causality and update control over the replicated
databases is guaranteed through entity locking and the exchangeof entity
sequencers. Ownership requirement prediction is used to overcome delays incurred
by sequencer exchange. To this end, PaRADE uses heuristics such as spatial
proximity, collision detection, interest groups or explicit request.

All events are stamped with their actual or predicted time of commencement
according to wall clock time. This ensures that events that represent continuous
changes over time will result in consistent evaluation at eachparticipating process
once the event is delivered. Roll-back strategies are provided so that wrongly
predicted events (and their results) are negated. PaRADE introduces the notion of
sufficient causal ordering. It allows the application to dictate where the before-after
relation of the standard causal ordering must be applied. This allows only a subset
of the sequencers associated to objects to be encapsulated in the event delivery.

PaRADE does not address the problem of scale through the partitioning of space.
However, this is not the purpose of this experimental system. PaRADE lets the
application and the application programmer help the system in order to improve
real-time performance in close collaboration. However, thisrequires a thorough
knowledge of the implications of the design decisions. For example, deciding which
objects should be part of the sufficient causal ordering is not an easy task. Neither is
the decision upon the heuristics to employ to transfer the object locks to make sure
ownership has been transferred in time. Finally, being able to balance user intent and
application restriction to guarantee good prediction results will perhaps not always
be possible.

3.3.3. The MASSIVE Family

3.3.3.1. MASSIVE-1 - 1995

MASSIVE [66] (Model, Architecture and System for Spatial Interaction in Virtual
Environments) is a CVE system with a specific focus on large-scale multi-user
virtual environments. MASSIVE distinguishes itself from other systems through a

27

Chapter 3

full implementation of the spatial model of interaction (see section 4.2.4).

The communication architecture of MASSIVE is based on typed peer-to-peer
connections, which utilise a combination of RPC, shared attributes and streams.
MASSIVE uses spatial trading to negotiate interactions between processes sharing
the virtual environments. Spatial trading combines the virtualreality techniques of
aura collision detection with the distributed systems concept of attribute-based
naming service. Aura collision is performed within an aura manager. Upon aura
collision, the manager passes out mutual interface references to the objects involved
which enables them to establish a peer connection within which all further
communication will take place. This is depicted in Drawing 11.

An important example of information exchange between peers is focusand nimbus
so as to compute awareness. MASSIVE also supports the concept of portals. Upon
transportation from one world to the other, an object will notify its aura manager so
that other objects can be notified. The aura manager will possiblytransfer the
responsibility for the object to another aura manager and the object will initialise a
new connection.

In MASSIVE, all communication is via connection between pairs of typed
interfaces. This restriction is a significant shortcomingand a source of potential
network inefficiency. Indeed whenever a group of peers have tocommunicate, it
would be more appropriate to rely on group communication such as multicast to
transmit most of the information. Another potential problem ofthe approach of
MASSIVE is the scalability of the aura manager. As the number of participants
within one world grows, the aura manager will have to handle anincreasing number
of remote objects and compute their collisions.

3.3.3.2. MASSIVE -2 - 1999

MASSIVE-2 [67] is an implementation of an extension to the spatialmodel of
interaction (see section 4.2.4). This extension introduces the concept of third party
objects. Third parties can have two effects on awareness: attenuation or
amplification of existing awareness relationships, and the introduction of new
aggregate awareness relationships. Third party objects are medium specific in the
sense that they can operate differently in the audio medium thanthe graphics
medium. Such objects are embodied within the space and they might apply their
effects recursively to one another.

Third party objects might be activated under three different cases. Firstly, the third
party object's awareness of an object represents and expresses thedegree of
membership that the object has on the third party (regions, rooms, etc.). Secondly,
the third party might be activated according to how aware otherobjects are of it and
mediates mutual awareness of the other objects (common focus on an object).
Thirdly, the effects of a third party might depend on how much oneobject is aware
of it and how much it is aware of another object. In this last case, the third party
consumes information from its members and make it available to external observers
as an aggregate view at a lower level of awareness.

There are five main applications of third party objects: world structuring and
regions, including nested spatial structures; aggregate viewssuch as dynamic and
mobile crowds of participants; common foci, i.e. objects which affect the mutual
awareness of sharing participants; representational of group services such as non-
local communication, subjective presentation; load management through the
automatic creation and destruction of third party object by the system to cope with

28

CVE Systems Survey

computational and network load.

In MASSIVE-2, each third party object is mapped directly to a corresponding group
object, each group object managing one or more multicast groups (for various media
for example). The spatial structure of third party objects within the virtual
environment maps directly onto a hierarchy of groups managed by group objects.
Participants send to one and only one group at any given time, itis their most local
entirely containing group. Groups may send an aggregated streamof information
upwards in the hierarchy. Reception of groups is controlled through the concept of
auras around a participant or another process. Group reception is inthe majority
controlled by spatial overlap between auras and group representation. Consequently
an observer will receive information from potentially many groups.

MASSIVE-2 makes use of two multicast groups for the discovery of objects and
object data sending. The discovery group is used for a state transfer mechanism that
requests and initialises the content of a group at a new incoming peer that has just
joined. Apart for audio and video, MASSIVE-2 uses a reliable multicast protocol
for all communication. This protocol uses sequence numbers on messages, which
allows receivers to detect errors (NACK) and request retransmission using unicast.

Through the introduction of multicast and of third party objects,MASSIVE-2
improves greatly over its predecessor. However, while the concept of data
aggregation is of high relevance to minimising network load, it introduces an non-
negligible computing load. It is unclear where, in the current implementation, this
processing is taking place and how much load it actually representin typical
situations. Through the use of unicast, the reliable multicast protocol of MASSIVE-
2 is subject to repair implosion. While the wide use of partitioningtechniques
minimises the risks for repair implosion, it still might happen within aggregated
information regions such as crowds of avatars.

3.3.3.3. MASSIVE-3 - 2000

MASSIVE-3 [68] is built to overcome some of the limitations of MASSIVE-2. For
example, to support lower-bandwidth networks and to support extensibility and
modification in better ways. MASSIVE-3 answers a number of requirements: the
support for hierarchically structured virtual objects, the support for a number of
consistency policies, a route to the support of modem-based users, acapable and
flexible mechanism for interest management and the support for persistent virtual
worlds.

MASSIVE-3 is based on the concept of an environment. An environment is
modelled as a fully replicated distributed database. Each database can contain any
number of hierarchically structured data items where the environment itself is at the
root of the hierarchy. An environment is controlled by a single master process.
Every change to an environment is represented within the system by an event object.
Communication between replicated copies of an environment is logically multicast
but realised using a TCP-based client-server model where the master process is the
server. Normal applications never change their local copies directly, instead events
are all copied to two sending and receiving queues and executed on reception. There
are a number of standard data types that can populate an environment: 3D
transformations, geometry or behaviours (coded in C++). Someof these data can be
marked as local only and will not lead to any network communication.

MASSIVE-3 implements a consistency model pioneered by PaRADE (see section
3.3.2). Each data item has a designated owner. To separate reliable updates from

29

Chapter 3

unreliable ones, each item has two distinct sequencers increased in accordance to the
reliability of the update. Every message includes a list of item sequencer values that
must be reached before the event can be enacted. Ownership can be transferred in
agreement with the current owner. Finally, events can be posted ahead of time.

MASSIVE-3 implements three different update policies. The first, “classic”, policy
consists of transferring ownership from one client to another before being able to
update a given data item. The second policy let all updates transfer and be decided
upon by the current owner of the data item. Finally, the last policy, inherited from
CIAO (see 3.5.3), combines both previous ones by requesting ownership and
requesting the owner for the execution of an update simultaneously.Consequently,
once the ownership has been transferred during the first update,all further updates
will originate from the new owner, which guarantees the best interaction possible.

MASSIVE-3 attempts to establish an interest management modelthat is not based
solely on space. It extends the notion of Locales from Spline (see section 3.2.1) by
sub-dividing them into aspects, defined themselves by a number of functional
classes, an organisational scope, a fidelity and a cost. MASSIVE-3 allows a locale
to contain aspects with the same functional and organisational scopes, but with
different fidelities (lower resolution, composite objects, e.g. crowds). An observer
can then choose an aspect at a particular fidelity level according to some policy.
This is done through the offering of a framework for the development of selection
policies and the implementation of a number of standard policies based on
topological distance (like Spline), Euclidean distance (likeNPSNET), awareness
(similar to MASSIVE-2) and benefit/cost. MASSIVE-3 uses different policies for
replication, graphical rendering and audio rendering.

Apart from the questions raised over PaRADE, the major issue with MASSIVE-3 is
how to select an actual policy for interest management. There might be ways to
select these automatically, based on, for example, CPU and network load. But, this
type of selection would require a carefully designed benefit/cost model or variations
(subject to hysteresis), seeking for an optimal. In an example, the authors describe
the effect of a number of manual selection policies. However, thecomplexity of this
selection, with a number of parameters to assimilate, makes it an inappropriate mean
for users with a medium technical level.

3.4. Active Toolkits and Kernels

3.4.1. MR Toolkit - 1993
The MR Toolkit [69] simplifies the development of VR applications byproviding
standard facilities required by a wide range of applications. The MR Toolkit is
based on the Decoupled Simulation Model that structures VR application into four
distinct components: the geometric model, computation, presentation and interaction.
In this model, the computation component proceeds separately andasynchronously
of the remaining components.

Based on this model, MR Toolkit provides support for common VR devices such as
3D trackers, HMDs or gloves and support the distribution of the user interface and
data over several workstations. One typical example is the separate rendering of the
two views necessary for stereo viewing in HMDs onto two different workstations.
MR Toolkit categorises all the running processes necessary for a single-user
application into master and slave, so that communication between processes always
occur through the master process.

30

CVE Systems Survey

The MR Toolkit can be extended to allow multiple independent MR Toolkit
applications to communicate with one another across the Internet. This is achieved
through the MR Toolkit Peer Package [70]. Using this package the master process
of an MR Toolkit application can transmit device data to other remote applications,
and receive device data from remote applications. Application-specific data can also
be shared between independent applications. The Peer Package is based on a peer-
to-peer model where each peer maintains a list of all other connected peers. Peers
are connected pairwise and a peer may send a message to any or allother peers at
once.

Finally, the MR Toolkit is complemented by the Object ModellingLanguage
(OML), a procedural and interpreted language with fundamental data types and
operations for geometry, object-oriented programming and behaviour specifications.
OML behaviours react to a combination of events, generate some changes in the
state of the object and trigger other behaviours through the generation of new events.
The Environment Manager (EM) [71] allows the creation of distributed
environments through the sharing of a number of OML objects. Objects are
replicated to a relevant subset of all connected applications. EMdifferentiates
between shared object, local objects and ghost objects (the representation of local
objects). EM offers different schemes for controlling concurrency, i.e. ownership
token passing and ownership and access permissions. Whichever the scheme is, EM
will ensure that the shared state is distributed at all copies of an object. The major
contribution of EM is its support for “multi-user-different-content” applications as
opposed to most systems. EM provides for simplistic subjective views mechanisms.

The various tools associated with the MR Toolkit do not provideany partitioning of
the space in themselves. While this can probably be achieved at the application level,
it is questionable whether these instruments would be sufficient to achieve
partitioning for large scale multi-user environments. Furthermore, the Peers Package
is solely based on UDP and does not offer any guarantees when it comes to data
transmission. While this is not generally a problem on local networks, packet loss
and reordering are common place on the Internet.

3.4.2. Urbi et Orbi - 2000
Urbi et Orbi [72] takes an alternative approach to the problems related to the
realisation of multi-user shared environments. In this approach, the worlds have
enough semantics for a terminal to represent it faithfully whatever its nature is (from
textual commands to 3D rendering). To this end, Urbi et Orbi uses conceptual
graphs to arrange the environments. The objects contained in an environment are
linked to one another with relations that carry a number of semantics, both spatial
and non-spatial. Examples of such relations are “is localised on”, “is adjacent to” or
“is composed of”.

Urbi et Orbi is based on a fully distributed model where no connectedprocess is
aware of the current state of the whole world. Participants' processes are associated
to cells and partitioning techniques based on the graph relationships are used to
achieve scalability. The structure of the graph changes constantly, for example as a
participant changes cell. The system makes use of group communication, on top of
the Ensemble system [73]. Group communication lets the system choose different
policies for the distribution of messages, e.g. causal ordering or unreliable multicast.

Urbi et Orbi is constructed around a novel programming language called Goal. Goal
is used at two different levels: it is the interface between thesystem and the
programmer and it is also used to transport information both between modules and

31

Chapter 3

between machines. Goal is distribution and replication oriented and carries
semantics about distribution within the language itself. Goal isalso a scripting
language which eases code migration.

Urbi et Orbi imposes a new and different language onto programmersand
environment designers. While the reasons for this introduction are understandable,
they provide a possible hindrance to acceptance of the system as such. Furthermore,
a new language also introduces limitations by not allowing the reuse of existing
external code or migrating such code. Again, this can impair acceptance. Finally,
even though it is based on Ensemble, a well-known system that is tuned for
scalability, Urbi et Orbi has not been tested in real-life conditions, i.e. on the Internet
with varying delays, congestions, etc.

3.4.3. Avocado - 1999
Avocado [74] is an object-oriented framework for the development of high-end
distributed, interactive VE applications. Avocado provides programmers with the
concept of a shared scene-graph, accessible from all processes forming a distributed
application. Each process owns a local copy of the scene graph and the contained
state information, which is kept synchronised. Avocado combines the familiar
programming model of existing stand-alone toolkits with built-in support for data
distribution that is almost transparent to the application developer.

All avocado objects are field containers representing object state information as a
collection of fields. They support marshalling for the reconstruction of exact object
copies remotely. Compatible fields can be connected so that whenever the source
field changes, the destination field is set to the same value.Avocado uses a
distributed shared memory model where processes can attach themselves to one or
more distribution groups. The implementation ensures that all modification made to
a local copy of an object are replicated across all its replicas. Avocado only
replicates fields, while the orthogonal graph constructed by the field connectors is
not distributed. This ensures that the result of connections areexecuted at the
process that has created them and associates one process for the behaviours that can
be described using this mechanism.

Apart from the C++ API, Avocado features a complete language binding to the
interpreted language Scheme. Therefore, application programmers can take a two
tracked approach to development. Complex and performance critical functionality is
implemented in C++, while the applications themselves can simply be a collection of
scheme scripts. This allows rapid development, since scripts can be tested and
debugged while the application is running.

Avocado is built on top of Ensemble [73] and enforces a total message ordering to
guarantee consistency in the presence of incremental state updates. This introduces
an additional network latency, especially in Internet settings. Furthermore, it does
not entirely account for the vast majority of applications where some actions can be
conducted in parallel in various parts of the environment. Total ordering enforces the
delivery of messages in exactly the same order while not taking into account the
local causality of these separate group of actions. Another drawback of the Avocado
approach is the impossibility to migrate execution ownership through the
enforcement of local field connections. This is also valid at the programming level,
where no apparent support for script and/or application migration isprovided.
Finally, through a focus on high-end systems, Avocado sets aside any partitioning
techniques, which might impair some classes of applications.

32

CVE Systems Survey

3.4.4. DEVA - 2000
DEVA [75] intends to be a framework for the realisation of large-scale distributed
virtual reality applications. Large scale raises a number of challenges: number of
objects, complexity of the behaviour required of these objects, complexity of
individual rendering techniques, number and geographical distribution of
simultaneous users, and number of co-existing and interacting applications. To this
end, DEVA divides its architecture into three distinct components. Within the
DEVA framework, rendering and spatial management is handledby a specific
system called MAVERIK [76]. Additionally, DEVA comprises two core services: 1)
an execution environment, a means by which applications and user interactions can
be integrated in a single run-time environment and 2) a distribution architecture, a
means of distributing the actions of the user and the behaviour of the applications
across a wide area network.

DEVA is based on a client/server architecture where distribution objects are
mirrored at the clients. The server is in fact a cluster of processors running identical
processes called server nodes. Together, all server nodes form a single multi-
threaded parallel virtual machine capable of processing large numbers of objects.
The intention of the server is to provide a computing resource formultiple virtual
environments, and maintain a far heavier processing load than clients. All
communication is based on TCP/IP and the communication strategy is based upon
the assumption that inter server node communication is fast compared to
client/server communication.

The programming model of DEVA is one of communicating “entities”, which can
represent objects in the virtual environment, properties of the environment or more
abstract programming concepts. Entities export a number of methodsthat can be
called by other objects, and implement these using optimised imperative code (C++).
Upon creation entities are associated to one of the nodes of the server nodes. DEVA
provides means for entity migration to help balancing processing load if necessary.

Entities are decomposed into two different parts: an objectiveand subjective part,
the former being located on the server and the latter on each client. Typically, an
object represents what an entity does and a subject represents howthe entity looks,
sounds and feels. DEVA encourages low update rates on objects when
communicating from the subject to the object and vice-versa. Forexample, changes
caused by the manipulation of a subject (at a client) can make use of policies to only
send a fraction of the changes at the object. Similarly, communication between the
object and the subject might use techniques such as parametric curvesto smooth out
the effects of these discrepancies.

DEVA introduces the notion of components to describe the behaviours of entities. A
component is a collection of methods and attributes relating toa single concept that
can be attached or detached from an entity at run-time. A component is divided into
a single object and multiple subjects, as described above. Entitiescontain two list of
components, one inherited from the environment and the othercontaining their own
innate behaviour. Components are written in C++.

DEVA attempts to minimise communication between the server andthe clients by
filtering away packets and making this visible for the application programmer
through the concept of subjectivity. Confining to this model requires very careful
design and will perhaps not always be possible. The introduction of a pool of servers
taking care of the vital part of entities introduces inevitablenetwork delays at
interaction time (for example, for the acquisition of locks on entities). Finally,

33

Chapter 3

DEVA is solely based on C++ and requires the subjective parts of the components to
be migrated and replicated at all clients, which impairs heterogeneity and
environment dynamism.

3.4.5. Continuum - 2002
Continuum [77] is a Java middleware for building large-scale real-time networked
virtual environment applications. Continuum is an open software framework from
which several profiles can be derived, each addressing a specific application domain.
The platform relies on a partial replication model and a configurable event
communication mechanism that allows arbitrary consistency and synchronisation
protocols to be implemented.

In Continuum, the objects populating the space encapsulate a state anda behaviour.
The types of the objects are described using a so-called Object Definition Language
(ODL). ODL supports basic types, classes and interfaces, and class inheritance. An
interface or a class definition consists of typed attributes that describe the shareable
state of the object and one-way methods that describe the external interface of the
behaviour of the entity. ODL is seconded by a compiler that will generate stubs to
be filled in by the programmer, apart from all system and communication oriented
code. For the description of object behaviour, Continuum is interfaced to a reactive
programming framework that provides programmers with primitives dealing with
concurrency and event handling.

The replication model of Continuum is based on a master-slave relationship. Only
one master can exist for an object at a given time. This is typically the creator of the
object, but mastership is allowed to migrate if necessary. Continuum separates the
behaviour of an object between its master and slave replicas. Thisallows the
implementation of application-specific techniques to mask network latencies, such as
dead-reckoning. Continuum offers a framework to plug in different consistency
policies. For example, for highly dynamic objects, the master replica will constantly
push in an unreliable manner the kinematic state of the object. Other objects can
make use of the high-level event communication based on the shared methods
described in the ODL. Concurrency control can be handled using anapproach
centralising decision at the master replica.

Communication within Continuum is based on events. An event represents an
arbitrary change in the state of the object. Events are allocated to event channels and
it is up to the consistency policies to decide the types of eventsto exchange between
replicas. Continuum provides support for unicast and multicast UDP, as well as
TCP. It also offers an SRM-like [78] reliable multicast protocol.

Continuum implements a default aura management policy for the spatial partitioning
of objects. This policy is doubled with a resource mapping policy which determines
the allocation and multiplexing of event channels to perform thefiltering. A grid-
based partitioning policy is an example of such a policy. Aura managers within each
simulation use a control protocol to discover sets of objects that become visible and
discard objects no longer visible.

Through the offering of a pluggable architecture, Continuum offersan attractive
solution to the problem of large-scale virtual environments. For example, while the
current aura mechanism does not take into account different media, extensions to the
framework are made possible for this to happen. However, this offering has the price
of complexity: deciding which consistency policies to use, which partitioning of the
space to use and which concurrency policy to use is a difficult task for the

34

CVE Systems Survey

application programmer.

3.4.6. NPSNET-V - 2002
NPSNET-V [79] attempts to put in place the technologies that will allow large-scale
shared virtual worlds to adapt, scale and evolve continuously without being taken
off line. To this end, NPSNET-V layers and aggregates plug-ins so that it is possible
to create software in which the only functionality not provided as a plug-in is a
minimal binding mechanism (or micro kernel). The system is entirely based on Java
and structures host applications as component hierarchies, alsocalled application
graphs.

In NPSNET-V, the atom of composition is the module. Modules can form graphs
using so-called module containers. Modules can be added or deleted from containers
at any time, and removal operations are recursive. All modules are required to
possess instance names, which allows the naming of any module using file-system
path conventions. Modules are grouped in containers according to their functional
role and are expected to maintain awareness of their neighbouring modules (via the
containers). Modules have to be explicitly initialised, started, stopped and destroyed.
They also provide seamless updating through specific methods to replace and retire
them, with enough handshaking to migrate the state of an old module into a new one.

To communicate with one another, modules make use of a common interface layer
based on a number of invariant Java interfaces. One type of sharedinterface is the
property. Other modules can request to listen to property modifications. Another
specific type of interface is the service. Services are placed in the hierarchy and
announce a module's ability to perform a critical application role. Only one module
can provide a given service within a given context, but services may be looked up
upwards in the hierarchy, which allows their overriding if necessary.

NPSNET-V integrates a mechanism for XML-based configurationand serialisation
of the module hierarchy. This allows all or part of the module hierarchy to be saved
and recreated at a later stage. Together with an included configuration HTTP
service, this mechanism allows the transfer of application components between
clients and, for instance, to reproduce the entire state of a running application
remotely.

In NPSNET-V, shared entities are organised in a hierarchical containment structure.
Entities are modular constructs that conform to the model-view-controller pattern
and that represent individual elements of virtual worlds. Additionally to the model-
view-controller separation, the entity adds two crucial roles: observers and remote
proxy. Observers allow models to notify their dependent view andcontrollers of
changes to the model state. Entity state replication depends on the remote proxy
interface, or ghost, which acts as a stand-in for a remotely owned master model.

In itself, NPSNET-V does not provides solutions to the problems of scale at run-
time. It provides only few of the numerous techniques that will be necessary for the
realisation of massive shared virtual worlds. NPSNET-V posesthe grounds onto
which standards for networking, physical modelling, graphics, etc. can possibly be
developed.

35

Chapter 3

3.5. Inactive Systems

3.5.1. BrickNet - 1994
BrickNet [80] is a software toolkit based on the client-server model. A client can
connect to a server to request objects of interest. These objects are deposited by
other clients connected to the same server or by another server on the network. In
BrickNet, virtual worlds are composed of objects that are self-contained and embody
their graphic, behavioural and network properties. One particularfeature of
BrickNet is the possibility to have virtual worlds with different content. A virtual
world manages its own set of objects, some or all of which may be shared with the
other virtual worlds on the network.

BrickNet uses the servers as object request brokers and communication dispatchers.
A server keeps track of client requests for objects and object updates, and services
these requests when possible. Additionally, servers keep tracks of clients' status,
their addresses and port information, and manage the sendingor receiving of packets
of information. All communication between clients has to transit via a server in
BrickNet.

BrickNet is implemented using a mix of C and Starship programming languages.
Starship is an interpretive language and can be used to describe objects' behaviour
and share the execution of these behaviours on the network [81]. Starship is actually
used throughout the system as the language for application development. Both the
shared object hierarchies and their behaviour are created usingthe language.
BrickNet distinguishes four classes of behaviours: simple, environment-dependent,
reactive and capability-based. The first two categories executein parallel without
any synchronisation, except against local environmental conditions such as the
frame rate. The two last categories use the ownership mechanisms of BrickNet to
decide where the behaviours are to be executed and distribute their results.

BrickNet is based on the client-server model. As such delays are introduced when
messages transit from the clients to the server in interactive situations. In large-scale
multi-user situations, the servers then become the bottleneck ofcommunication.
Finally, the description of the system does not specify whether BrickNet uses some
sort of reliable protocol above its UDP-based communication service.

3.5.2. RING - 1995
RING [82] is a system that supports interaction between large numbersof users in
virtual environments with dense occlusion. RING is built on top of a client-server
architecture where clients exchange information through servers only and where
several servers can be connected together to exchange information about their
respective clients. At the servers, object-space visibility algorithms are used to
compute the region of influence of each state change, as depictedin Drawing 12.
Update messages are sent only to the small subset of workstations to which the
update is relevant. In some cases, these updates are relayed through several servers
to reach their client destination.

RING represents the environment as a set of independent entities, each of which has
a geometric description and a behaviour. Entities with a dynamic behaviour are
either autonomous or controlled by human input. Every RING entity is managed by
exactly one client workstation. Clients execute the programs necessary to generate
behaviour for their entities. Clients maintain “surrogates” for some of the remote
entities, typically the entities which are visible to them according to the server.

36

Drawing 12: The key prin-
ciple that drives RING is
the recognition that in
highly occluded environ-
ments such as above, only A
and D need to exchange
movement updates.

A

B

C

D

CVE Systems Survey

Between updates, surrogate behaviour, in RING's case position updates only, is
simulated by every client.

This server oriented design allows servers to process messages before propagating
them to other workstations. Typical operations are culling, augmenting or altering
messages. Culling is implemented using precomputed line-of-sight visibility
information. This pre-computation is based on a subdivision of theenvironment into
cells. During the simulation, servers keep track of which cells contain which entities
by exchanging periodic updates messages when entities cross cellboundaries. Real-
time position updates are propagated only to servers and clients containing entities
inside some cell visible to the one containing the updated entity.

Depending on the capabilities of the available workstations and networks, clients can
send messages to server(s) via unicast or multicast. Similarly, servers can exchange
information using multicast. Each cell is associated to a multicast group. Entity
updates are relayed to the multicast group representing the cell in which the update
occurred. Each server listens only to the groups for the cell visible to one region of
the environment. When a server receives a multicast message (from another server),
it propagates it to clients with entities residing in the cell represented by the
multicast group. This arrangement avoids the periodic messagesthat are otherwise
necessary to detect cell boundary crossing.

The author of RING has experimented with different server topologies. For
example, in [83] it is shown that associating servers to regions of the environment
and letting clients migrate from one server to the other as needed reduces the total
amount of traffic.

The type of environments targeted by RING are highly-occluded environments. As
such, the approach fits well for such environments. But it is not generic since it
cannot be applied to more open spaces. Furthermore, the approach doesnot address
the problems raised by other media. For example, audio reflects offwalls and
transits differently across space. Consequently, the pre computation of visibility
information cannot apply to audio the same way. Furthermore, RING is based on a
server approach. While the communication and the algorithms are tuned for high-
capacity and high-speed filtering and forwarding of messages, this approach still
needs the transmission of packets up to application user-space, the computation
necessary to make decisions and the sending back of packets down to the network
hardware. Typically, this will take much more time than a multicast-only approach
where packets are effectively filtered at the network hardware level.

3.5.3. CIAO - 1999
CIAO (Collaborative Immersive Architectural layOut) [84] is a system that aims at
achieving optimal responsiveness in multi-user virtual environments. This is
achieved through a novel multicast-based optimistic concurrency control mechanism
doubled by a user interface that attempts to show the effects of possible conflicts to
let humans solve them using different means.

CIAO is based on an hybrid peer-to-peer and client-server model.The architecture
of CIAO comprises three different types of nodes: participant nodes, a session
manager and object information servers. Communication between participant nodes
is multicast-based while communication with the servers is done through TCP.
Participant nodes perform tasks such as human input processing, real-time
rendering, avatar management and network communication. A session manager
helps during the initialisation phase when new participants wishto join a new

37

Chapter 3

environment: it allocates multicast addresses and points at environment description
files. The data for these files is obtained from the object information server. In
CIAO, the content of the virtual environment is fully replicated at all sites.

In CIAO, users manipulate objects without waiting and notify other participants of
their actions immediately. If there are conflicting operations on the same object, an
associated token is used for the maintenance of consistency.The semi-optimistic
algorithm uses an incremental sequence number. When a participantstarts
manipulating an object, it assumes being able to acquire the lock on the object and
multicasts the incremented sequence number, as depicted in Drawing 13. This
operation is, later, validated or cancelled by the current owner of the object. To
avoid conflicting operations confusing the users, a novel user interface is introduced.
Only a ghost representation of the object is used during manipulation and the results
of the manipulation are shown once it is terminated. During the manipulation, any
manipulation by another user is also shown using another ghost. This allows users
to solve the conflicts verbally or any other communication means.

CIAO focuses on minimising latency when manipulating common objects. As such,
the algorithm that it proposes is only a “last resort” to keep consistency. However,
the algorithm as described is sensitive to the non-reliability of multicast
transmission. Indeed, inconsistencies will anyhow be introduced during token
passing if some processes miss the reception of these messages.

3.6. Standards

3.6.1. RTP/I - 2001
Distributed interactive media are about managing the shared state of a medium. All
participants are potentially able to change that state. Shared virtual environments of
shared whiteboards are examples of such media. RTP/I (Real-TimeApplication
Level Protocol for Distributed Interactive Media) [85] is a standardised application
level protocol framework that addresses the problems of this specific class of
application. RTP/I aims to make applications interoperable and allow the direct
reuse of common functionality in the form of generic services.

RTP/I is based on a media model. This model is oriented around four concepts: the
application, the environment, states and events. In the RTP/Iterminology, the
environment is the part of the information needed by the participants that remains
constant over the course of a session. The state of the medium can change for two
reasons, either by the passage of time or by non-deterministic events. The state itself
is divided into sub-components, such as 3D objects or avatars in a CVE. Event and
state transmissions form the basis of a distributed interactive media stream within
which multiple senders can emit information.

RTP/I is especially designed to meet a number of requirements that are specific to
this class of applications and generic enough to be needed in all applications of this
class. These requirements are the framing of state and event data, the support for
consistency and fragmentation, a standardised way to query the state of a sub-
component, the ability to convey meta information, and a flexible protocol design.
To this end, RTP/I reuses many aspects of RTP, including the concept of two
distinct protocols for the transportation of data and meta information.

TeCo3D [86] is a shared workspace for dynamic and interactive 3D models which
uses RTP/I as its transport mechanism and acts as a proof of concept. TeCo3D uses
a completely replicated distribution architecture with reliablemulticast as the

38

Drawing 13: In CIAO, per-
mission to perform opera-
tions is optimistically
handled. The operation as
well as the ownership trans-
fer are sent from the inter-
acting site. On reception,
the owner will acknowledge
the transfer through the
sending of a validation
message to both the inter-
acting site and all its ob-
servers.

Actor Observer

Owner

1

1

2 2

CVE Systems Survey

transport layer. Inconsistencies caused by the operation delays are handled by
deliberately delaying the local updates to match the transmission delays. Each node
keeps a history, and if inconsistencies occurs, the situation is rolled back, the
conflicting operation is carried out, and situation is rolled forward back to the
current time. As a last resort, TeCo3D also includes a method forexplicit state
request.

3.6.2. DIS and HLA
Motivated by a requirement for simulation-based tools to support acquisition,
planning, training and analysis efforts, the defence community (most notably the US
Department of Defence) has heavily invested in research programmes on distributed
simulation. This has resulted in a suite of protocols, collectively known as DIS
(Distributed Interactive Simulation), a standard [87] for interconnecting large
numbers of heterogeneous simulators across local and wide area networks.

Two important trends have emerged in the DIS community: a wish to use DIS
technology for non defence-oriented applications, and a recognition of the fact that,
while the DIS protocol constitute the low-level basis for distributed simulation, a set
of standards and tools at a higher abstraction level is required to enable the timely
and effective development of applications.

3.6.2.1. The DIS approach - 1995

DIS aims at the interconnection a large number of simulators using both local and
wide area networks. It allows the combination of a wide range of features within one
single shared synthetic environment: real-time interactive human-in-the-loop
simulators, autonomous agents and numerical simulations of physical processes to
name a few. DIS is based on three key principles:• object/event architecture: Synthetic environments are composed of a collection

of objects interacting with one another through the way of events. These events
mediate the status and actions of these entities and result in the transmission of
standardised network packets called PDUs (Protocol Data Units).• Autonomous simulation nodes: Simulation nodes broadcast the events of all the
objects that they are responsible for. It is the responsibility ofthe receivers to
decide upon the effects of these events on their own state and local view of the
environment.• Transmission of state change information only: DIS is highly dependent on a
technique called dead-reckoning and the existence of predictive modelling
algorithms at the receivers. Continuous state modificationsare transmitted at a
reduced update rate and the receivers locally extrapolate future information
based on past information (see section 4.3.2).

DIS is a proven concept and is extensively used as standard protocol for simulator
interoperability. An advantage of the DIS concept is that all DIS compliant
simulators, including networked VR, can operate within one virtual environment.
However, DIS has three major drawbacks. Firstly, messages can get lost or arrive in
the wrong order due to the use of the UDP/IP protocol. Secondly, the messages sent
are part of standardised PDUs of fixed size, although generic PDUs exist to
communicate any type of data. Finally, due to the broadcast mechanism the
scalability is rather limited.

The fixed-sized PDUs in combination with the dead-reckoning algorithms are well

39

Chapter 3

suited to communicate state-updates and events between simulators (short
messages). However, PDUs are relatively large and entire PDUs need to be
broadcast even if just one attribute is changed.

3.6.2.2. The High Level Architecture (HLA)

The HLA standard [88] has a twin goal: easing interoperability ofheterogeneous
simulations and reusing simulations and their components. To that end, HLA
focuses on interface specifications without making specific demands on the
implementation of each simulation. The standard is based on four concepts:• The Run-Time Infrastructure(RTI) is an implementation of a distributed

operating system that will be the base software layer for future HLA
applications. The RTI takes care of communication between all simulation
models.• The Interface Specificationis a formal, functional description of the interface
between the HLA application and the RTI.• A set of technical rules is defined to which an HLA participant has to comply.• TheObject Model Templatesare standardised formats to define the functionality
of simulation models and the interaction between models. Thus the capabilities of
all simulation models are defined before the actual simulation takes place.

HLA divides simulations into a number of federations concentrating on specific
areas of the simulation. Federations are populated by a number of members called
called federates. Federates may be simulation models, data collectors, simulators,
autonomous agents or passive viewers. Simulated entities, such as vehicles or
aircraft, are referred to as objects and live entities can be mapped onto objects by
using surrogates. The Federation Object Model (FOM) describes all possible
interactions between the federates and the Simulation Object Model (SOM) the
capabilities of a single federate.

The state of each object is defined by its attributes. Objects interact with each other
and with the environment via interactions which may be viewedas unique events,
such as grasping an object, or a collision between objects. Attributes are own by
federates, initially the object creator, but ownership may change during execution.

In order to reduce network traffic and limit the amount of computation each federate
has to perform, HLA provides a mechanism of publication and subscription. Upon
initialisation, each simulation registers (with the RTI) which objects and which
attributes it will represent (publication). It also registers which attributes and
interactions it needs in order to be able to perform its task (subscription). Federates
can not only subscribe to attribute types, but also to (ranges of) attribute values, so
as to maximise filtering at the source. Both publications and subscriptions are
dynamic and may be changed during a session.

The Run-Time Infrastructure supports HLA compliant simulations through a
number of services. The main categories of services are the management of
federations, subscriptions, objects, ownership and time.

3.6.3. VRML - 1997
The VRML97 standard is a file format for describing arbitrary three-dimensional
scenes and objects. Sometimes referred to as VRML 2.0, VRML97 is the defined
standard that is derived from the VRML 2.0 format specification. A VRML97

40

CVE Systems Survey

world is a structured text file that is interpreted by VRML enabled browsers. The
precursor to VRML97, VRML 1.0, enabled the sole description of geometry and
materials; that is, any arbitrary three-dimensional structure using any texture or
colour. The VRML97 standard complements the missing geometry primitives of
VRML 1.0 and supports animations and behaviours through complex event routing
and behaviour scripting.

VRML is aimed at single users exploring 3D scenes or worlds, whichare distributed
across the Internet. The file format of VRML is structured around the concept of
nodes. The scene graph is defined though a hierarchy of nodes, where some nodes
contain other nodes and others are leaf nodes (not containing other nodes). One of
the advantages of VRML is that nodes can be defined through a URL(Uniform
Resource Locator). This enables a single VRML world to exploit resources (3D
data, textures, sounds and so on) across the Internet. Although the VRML97
standard is taken to be the basis of a number of server-based multi-user systems, the
standard itself is solely single user.

VRML97 pays specific attention to the ability to animate 3D scenes. An event
propagation system is standardised. Animations are driven by the notion of linear
key framed interpolation. Parts of the scene graph can be associated to a number of
keys that will describe their value at some moment in time. Their real-time values
will be interpolated between the key frames as time goes by. A numberof graph
properties can be controlled this way, for example position, orientation, colours and
normals.

VRML97 also pays specific attention to the ability to write applications and bind
them to the scene graph in adequate ways. For the application development,
VRML97 allows scripts to be associated with parts of the scene graph. Two
languages are specified, although script compliance is not a requirement from the
standard: ECMA script and Java. Scripts are triggered by the event system and are
provided with a standardised interface to modify the scene graph as the result of
their execution.

Further work in the area of 3D on the Web includes the forthcomingX3D standard.
Work in X3D is concerned with expressing the capabilities of VRML97using the
Extensible Mark-up Language (XML). A number of working groups withinthe
consortium are looking at multi-user extensions of the format.

3.6.4. MPEG-4/SNHC – 1999
MPEG-4 [89] is the next generation standard for the coding of audio-visual data.
The standard includes since 1997 an activity called SNHC, Synthetic/Natural
Hybrid Coding, which deals with the coding of synthetically and naturally generated
audio-visual information. As such, SNHC is primarily concernedwith the
compression of specific media streams beyond traditional audioand video, e.g.
geometry, text, animation, text-to-speech. SNHC and MPEG provides therefore a
totally different approach to compression, based on content, composition and the
resource capabilities of the receivers.

MPEG has adopted VRML as its main scene composition mechanism and extended
it for the support of 2D objects, face and body animation and 3D mesh coding.
Another major difference is that MPEG uses a binary coding representation of the
VRML scene, known as BIFS (Binary Format for Scene Description). BIFS
supports content streaming and MPEG pays special attention to efficient scalable
coding of a number of content types, e.g. VTC (Visual Texture Coding), geometry

41

Chapter 3

mesh compression, facial and body animation parameters, text-to-speech synthesis
and structured audio. MPEG supports rudimentary interactivity through the
processing of user input events. In version 2 of the standard, a back channel allows
some information to be sent to the transmitter end, thus allowing for multi-user
scenarios.

3.7. Multi-User Games
Multi-user games are one of the most successful applications of collaborative virtual
environments. Their success justifies specific attention within this report. Multi-user
games have their roots in so-called Multi-User Dungeons (MUDs) [90]. MUDs are
text-based games which originate in the early 1980s. The games spaceis represented
of rooms, doors and artefacts and is represented by a shared database. Additionally
to browsing, manipulating the database, creating rooms and giving them behaviour
through an embedded language, users can also communicate with each other in real-
time.

Since MUDs, multi-user facilities have become an entire component of most modern
games and a sales argument. The game industry is following the same trend as the
academia and there is a current focus on massively multi-player games (MMGs).
The premise of MMGs is a large shared game world inhabited by thousands
simultaneous players. MMGs emphasise often on social interaction and on the story
line. The number of registered users in games such as Lineage, TheSims Online,
Star Wars Galaxies, EverQuest and Ultima Online records to millions. Most
existing MMGs are based on a client-server model. The servers have to handle large
data flows and multiplex these in real-time. Scalability within these architecture is
ensured through overly dimensioned servers and through employing server clusters.
In this context, highly interactive games such as Quake or Doom divide the worlds
into many small isolated game sessions with a handful of players each. There exist a
number of commercial middleware systems for server based game architectures,
Terraplay [91], Butterfly.net [92] and TeraZona [93] to name some of them. Group
communication and interest management are used in a number of academic
distributed game implementation, including AMaze [94], MiMaze [95], Mercury
[96], Continuum (see section 3.4.5) and [97]. People working in the entertainment
industry have recently started to publish more openly their ideasand solutions, see
[98], [99] and [100] for a few examples.

Game designers and developers have understood the potential oftightly integrating
a scripting language to the game platform for a long time. As described above,
MUDs were already based on an embedded language. Even though it isdifficult to
get much information from the entertainment industry, it seems that most games are
doubled by a scripting language of some sort. For example, the Unrealengine
contains UnrealScript [101]. Instead of inventing specific languages for the sole
purpose of describing game logic [102], developers seem now to have moved to a
more practical approach and start using well supported and more generic languages
such as Python [103], LUA [104] or TCL [105]. The major commercial advantage of
scripting languages for games is double. First, they allow to prolong the life of
games through facilitating the later release of “extras” in the form of new levels,
new worlds, etc. Second, game developers are driven by very tight development
cycles and games that are being released are usually not entirely tested and
debugged. Scripting languages allow to patch problems quicker so as to satisfy users
through a “continuous” stream of game updates via the Internet.

42

CVE Systems Survey

3.8. Conclusion
Since the beginning of the 1990s, CVE systems have flourished and this chapter has
isolated some of the most important ones. The design and implementation of so
many systems have led to a number of learnings and these have started to be
consolidated into a number of standards and proposals, as described in section 3.6.
The next chapter will provide an overview of the major technicalsolutions that have
been found so far.

43

Chapter 4 CVE Systems Trends

4.1. Introduction
CVE systems are complex to built and the issues that they need to address are many.
This chapter describes the most important issues and solutions that have been
provided and points at relevant systems whenever possible. Research in the field
have been directed into two major directions. On one side, a lot of effort has
addressed the issues that are related to CVE data distribution and the networking
aspects that are directly relevant. On the other side, some more effort has been put
on understanding the human aspects of the technology and how thesense of presence
can be achieved. However, the issues of application development have been less
scrutinised, even though a number of these issues go hand in hand with data
distribution and human interaction aspects.

At the networking level, there are a number of issues that all systems are trying to
address in a number of ways. Networked virtual environments tryto ensure the
illusion of a shared virtual world so that the effects of users' interactions are
perceived at all remote peers within an acceptable amount of time.The time elapsed
between an action and its perceived results conditions the illusion and the feeling
that all remote participants actually share an identical simulated world.

Sharing a virtual world is more than just navigating around and talking to one
another, it also consists of focusing on common objects, interacting with these in
“real-time” and concurrently. This object-based interactionis an essential
component of the human communication that can occur through the metaphor as it is
instantiated by all these systems. Consequently, most systems have to incorporate
mechanisms to handle concurrency and to make sure that users take turns or agree
on a common goal in a natural manner. This will keep the virtual world consistent
with all participant's will and ensure that the effect of their concurrent actions will
be perceived at all participants in the same order and with the same results.

An additional issue is one of causality, or making sure that a synchronised course of
actions is perceived in the same order by all participants. This issue is crucial when
several remote participants are engaged in the course of several simultaneous
actions. Ideally, all the effects of these actions have to be perceived at all
participants in the same order, to avoid ambiguities in the gestural communication
that emerges from their different interactions.

At the application development level, one of the crucial issues isto provide enough
support while still offering flexibility and openness. For example,the structure of a
number of systems have been influenced by the graphical aspects of virtual
environments and the concept of a scene graph. The quest for flexibility is driven by
the novelty of the field and the introduction of different programming interfaces or of
a variety of programming languages has been seen as one possible solution. Finally,
a later trend consists in the influence of middleware technologies on the field of
CVE. This trend answers, again, the double quest for flexibility and openness, and
aims at providing enough power and “tweaks” so as to best support the application
or domain at hand.

45

Chapter 4

4.2. Architectural Decisions

4.2.1. A Central Point or Not?
There are two general models between which all systems described in this chapter
oscillate: these are the client-server and the peer-to-peer model. Both have
advantages and drawbacks.

4.2.1.1. Client-Server

The client-server model makes one process, the server, responsible for a (sub) part
of the environment. In this model, clients send object updates to the server which is
in charge of further delivery to other clients than the sender, as depicted in Drawing
14. Examples of such systems are AGORA, DEVA, BrickNet, RING, Living
Worlds and NetEffect. The advantage of this model is that it gracefully solves the
problems of concurrency and causality by letting the server decide upon the course
of actions at a central and common point. The server is responsible for a number of
objects, responsible for transferring ownership between all participants who wish to
interact with the objects and responsible for the order of a set of actions. Another
advantage of a server solution is the possible gain in bandwidth at the client side.
The server is able to take a number of decisions upon which object updates should
be transferred, at which pace, within which vicinity, as exemplified by RING. All
these decisions can be made in concert with the clients and their known available
bandwidth access. Consequently, client-server solutions areoften used for
community-oriented systems, which target consumer computers with modem
connections.

The client-server approach has a number of drawbacks. From the human-aspects
point of view, its main drawback is the introduction of arbitraryand unnecessary
communication delays. Indeed, before any decision has to be taken at the client side,
the client has to ensure that it will be allowed to perform the action. Furthermore,
the server is responsible for the dispatching of object updates to all interested
participants. Therefore, network packets will travel twice: once from the source
client to the server and a second time from the server to the destination clients. On a
congested Internet, this travel time can be measured in hundreds of milliseconds, if
not in seconds in the worst cases. Server architectures are also facing the problem of
scale. As the number of clients grows, as the number of objects grows, their
processing and network load will increase. A solution, as employed in a number of
systems, is the multiplication of servers in various ways (arbitrary, by virtual
geographical position, by actual geographical position, etc.). This solution has a
financial cost that might not be sustainable within all contexts. Finally, through the
introduction of a central point, a server-centric solution introduces possible long-
lived failures. As soon as one or several servers stop working, for hardware or
software reasons, part of the virtual environment will also stop working and stop
living.

4.2.1.2. Peer-to-Peer (Unicast)

In the peer-to-peer model, all participants' processes will communicate directly with
a restricted and well-chosen set of other participants, as depicted in Drawing 15.
Early systems such as MASSIVE-1 and the MR toolkit used this model. As opposed
to the client-server model above, this model has the advantage to shorten network
delays by suppressing an additional hop between the client and theserver. Packets
sent by a client will reach all interested clients at once, without the explicit help of a

46

Drawing 14: In a client-
server architecture (Nodes
represent clients), informa-
tion is sent by the clients to
the server that chooses to
forward it further to the oth-
er interested nodes.

Node 1

Node 4

Node 3

Node 2Server

Drawing 15: In a peer-to-
peer unicast architecture,
each node sends informa-
tion to the other interested
nodes.

Node 1

Node 4

Node 3

Node 2

CVE Systems Trends

third party server. Since interaction is one of the key points justifying the very
existence of CVEs, this solution is generally preferred for systems tuned for highly
interactive environments. This solution has the advantage of not putting the burden
of scale on any specific central point within the network. Instead, used in
conjunction with partitioning techniques, peers will only haveto communicate with a
restricted set of peers. As consumer hardware is gaining in bothcommunication and
processing power, peer-to-peer systems are gaining importance.

However, there are a number of drawbacks to the peer-to-peer approach. For
example, concurrency and causality of actions become more complexproblems
since they have to involve the arbitration of a number of remote peers. Additionally,
filtering facilities such as those offered by servers to restrict the flow of information
in the direction of specific clients in a concerted way are harder to achieve. One
solution would be for each pair of clients to actually negotiate how this
communication should occur, but such a solution requires some additional
processing power at the sending client, which is not always compatible with the
number of other tasks that it has to perform in real-time (graphical and audio
rendering, for example). Finally, a pure peer-to-peer approach is the one that
actually puts the largest burden on the network since packets have to be duplicated
as many times as there are destination peers. To relieve this situation, multicast has
been proposed and is in use in a large number of systems. This is discussed in
section 4.2.2.

4.2.1.3. Mixing?

Recent research has acknowledged the complexity of actually finding a model that
fits the needs of all applications. Therefore, a number of systems are seeking to
combine the approaches in a number of ways to benefit in the best ways from both
approaches. There are a number of situations where relying on a central point is
crucial and simplifies the network architecture necessary to the establishment of
large-scale multi-user virtual environments. One example of sucha situation is the
initial connection to the virtual environment. Relying on a server centralises the
distribution of resources in an easy way. Since this server is only used at connection
and possibly at disconnection time, its load is insignificanteven when a large
number of participants are involved. This sort of solution is used in systems such as
CIAO and GreenSpace. Another example is how systems achieve persistence of the
virtual worlds, be it with or without evolution. Persistence involves the necessary
allocation of computer resources to store objects that have been created by remote
participants and should be kept within the environment, and to keep these objects
alive when participants have left. This allocation needs to be planned and organised
and relying on a number of “central” nodes on the network is a necessary solution.
An example system using this technique is Community Place and its so-called
application objects (AO).

Other systems have experimented with the combination of both approaches at the
protocol level. In those systems, the peer-to-peer approach is used to make sure that
most packets reach their destination as soon as possible in an attempt to keep the
best interaction results as possible. However, these systems usea number of servers
to ensure the reliability of the transmission and possible retransmission when
failures have been detected. An example of such a system is SmallTool.

It seems to be difficult to find an approach that suits all possible applications. This
recognition have led a number of developers to offer frameworkswithin which the
different models can be mixed in harmony with the specific requirements of the

47

Chapter 4

applications. Continuum, and NPSNET-V to a lesser extent are such examples.
However, these frameworks increase the actual work to be undertaken to develop
applications since they only offer a number of more or less finalised building bricks
that have to be refined and assembled in harmony. This leads to longer development
cycles, especially since these issues are still not fully understood and since real-life
trials are still important to show the appropriateness of the chosen approaches.

4.2.2. Unicast or Multicast
In virtual environments, packets sent by participants have to reach a number of
destinations. These destinations are typically participantsthat the system decides are
interested in the packets. Partitioning techniques of all sorts are used to make the
decision, this is covered in section 4.2.3. To reach their destination packets have to
be duplicated. In client-server approaches, the server is in charge of the duplication.
In pure peer-to-peer solutions, the peers (participants processes) themselves are in
charge of the duplication. There is however an alternative choice, which is the one of
multicast. IP multicast is a way to form groups of processes on the network. Each
packet sent to a group will be received by all members of the group, as depicted in
Drawing 16. The network implements “intelligence” to duplicate packets as needed
instead of at the source. Duplication will usually happen within theInternet routers
themselves, allowing for hardware acceleration and a faster delivery of the packet
(see Drawing 17).

However, multicast has a number of drawbacks. For example, until thedébut of
IPv6, the number of available multicast groups was restricted. Therefore, schemes
where each active object would be associated to a separate multicast group and
where remote participants would join these groups as needed have been impractical.
Such schemes are also impaired by the fact that joining and leaving operations cost a
number of network and computing resources both at the client side and within the
routers. This very problem does actually apply to all multicast solutions.
Furthermore, the spreading of multicast on the Internet has beenslow: network
operators are reluctant to offer multicast to their customers, computer hardware only
supports a handful of multicast groups in network cards3 and operating systems
have been slow to incorporate multicast capabilities. Finally, multicast packet
delivery is based on UDP and is, thus, unreliable. Reliability is discussed in section
4.3.1.

Multicast has a number of advantages over unicast. For example, in unicast
solutions based on the client-server model, packets have to travel all the way from
the network hardware, through the operating system up to the application server
before a decision can be made whether they should be forwarded to another
participant or not. For the forwarding to happen, packets have to travel all the way
back from the application, through the operating system, down to the network
hardware. These travel times, under stressed situations can account for a large part
of the delays introduced (see sidebar). These travel times arealso of importance in
pure peer-to-peer unicast approaches where packets are already duplicated at the
clients. This is especially true since such clients have to perform a number of other
computing intensive operations such as the rendering of the graphical 3D scene or
the mixing of audio packets coming from the remote participants. On the other hand,

3 Most network cards support the multiplexing of less than two dozens distinct multicast
addresses in hardware. Operating systems will take over the multiplexing when the
number of subscribed groups have overtaken the amount supported by the hardware.
When this happens multicast traffic can be slowed down due to the necessity to utilise
CPU resources at the operating system level.

48

Drawing 16: In a peer-to-
peer multicast architecture,
nodes subscribe to a group
and send information to the
group. All members of the
group will possibly receive
this information.

Node 1

Node 4

Node 3

Node 2

Travel time from the applic-
ation to the network
through the operating sys-
tem is very much dependent
of how the operating system
is written and how it
handles interrupts, espe-
cially in stressed situations.
The travel time through the
protocol stack is however
non negligible. This has led
to research such as [106]
and [107], and better OS
implementations.

Drawing 17: IP multicast
routes packets intelligently
so that they are only duplic-
ated at the routers connec-
ted to the local networks
containing the receivers.

LAN
LAN

LAN

Sender

Target
Group

Router

Router

CVE Systems Trends

uninteresting multicast packets can already be discarded at thehardware level, or at
the low-level software level.

To alleviate the slow spreading of multicast and its difficultyto reach consumers, a
number of systems rely on mixed architectures, see section 4.2.1.3. Example of such
systems are Spline, Community Place, SmallTool and Continuum. In these systems,
servers are placed on a trusted network to glue together true clients and other
multicast capable peers. Packets coming from the clients will be multiplexed at the
application-level to all necessary clients of the servers andalso sent to the multicast
groups. Symmetrically, multicast packets incoming at the server will be forwarded
as necessary to the clients. In a system like Spline, additional computing is
performed at the servers in order to minimise the bandwidth used. An example of
such processing is the re-encoding of audio streams or the pre-mixing and
spatialisation of audio streams.

4.2.3. Dividing the Space
Human perceptual and cognitive limitations form the basis of the responses to the
problems of scale. These solutions typically subdivide the virtualspace so that each
participant is not overloaded and perceives “enough” of the environment. “Enough”
is defined in terms of their interest in the environment and its contents, and features
such as solid boundaries or distance are used to restrict perception. For example,
audio packets from distant enough participants can be discarded since audio
spatialisation will render them inaudible. Position updates from an entity in another
room can also be discarded under the condition that walls form aperfect visual
obstacle. However, participants’ interests will change dynamically as they navigate
and environments themselves are also deemed to change. Therefore interest
management schemes need to be flexible and dynamic.• NPSNET divides the environment into hexagonal cells of fixed size, as depicted

in Drawing 18. Each participant sends position updates to their current local cell
but can choose to receive updates from several cells, as long as they are part of
their area of interest (AOI). This type of subdivision is appropriate for
applications such as battle simulations where objects move with predictable
speeds and trajectories and where objects are spread rather evenly across the
entire space.• SPLINE divides the environment into so-called “locales” ofvariable size, as
depicted in Drawing 19. Each locale possesses its own local coordinate system,
which provides infinite geometric scalability. Each participant sends position
updates to their current locale, and receives information fromtheir current locale
and its adjacent neighbours. Neighbouring is locally expressed within each locale
to avoid any global knowledge. The use of variable sizes and shapes for locales
provides additional flexibility when dealing with less predictable objects and
environments and is more appropriate for indoor environments.• MASSIVE-2 divides the environment into regions whose boundaries can provide
different degrees of permeability for different media, as depicted in Drawing 20.
For example, a wall may hinder all visual information but only attenuate audio
information. Regions can also provide aggregate representations of their contents
and move with it. For example, a region may synthesise a crowd ofparticipants
and move with them, offering a simplified representation at a distance (less
position updates, pre-spatialised audio, etc.).

Cells, locales and regions use spatial properties and especiallydistance, to tackle the

49

Drawing 18: In NPSNET,
participants subscribe to
the hexagonal partition that
contains themselves and all
the immediate neighbours
of this hexagon. (The local
participant is represented
by a circle, remote parti-
cipants by diamonds).

Drawing 19: In Spline, the
spatial subdivision is based
on regions of variable size.
Participants subscribe to
the partition that contains
themselves and all its im-
mediate neighbouring par-
titions.

Drawing 20: In MASSIVE-
2 regions add the notion of
permeability. This figure is
similar to the Spline ex-
ample above. For the sake
of simplicity, it is limited to
demonstrating the concept
of permeability (dashed
lines) when it comes to
artefact locations.

Chapter 4

issues of scale and reduce the effects of movement and interaction. Typically,
systems will associate dedicated and specific network resources to each sub-division
of the space. These resources will be used by a restricted set of participants.
Consequently, only a reduced number of participants will share those resources,
which minimises the use of network bandwidth at all interestedparties: both at the
resources in question (whenever relevant) and at the participants. All the systems
described above associate multicast groups to regions. However,dividing the space
is also used in client-server solutions. Typically, such systems will associate servers
to regions. Example systems using these techniques are CommunityPlace (for its
aura manager), RING and NetEffect.

4.2.4. Interest Management
There are also other models to tackle these problems at a higherlevel. The most
prominent of these was pioneered in [108]. It proposes a model based ontwo
components: the concept of aura and the concept of awareness.

Each active object of the virtual world has an aura for each mediumin which it can
interact (graphics, audio, etc.). This aura defines the extent to which interaction with
other objects is possible and interaction between two objects canonly happen when
their respective auras collide. Auras facilitate scaling by limiting the number of
object interactions that must be handled.

The second component of this model regulates interaction or communication
between two objects once their auras collide. Interaction is controlled through the
concept of awareness. One object's awareness of another quantifies the subjective
importance or relevance of the other object in a given medium. Ingeneral, more
resources (bandwidth, audio quality, etc.) will be dedicated to objects with high
awareness.

To compute mutual awareness, two additional fields are associated to active objects:
focus and nimbus. The focus characterises the observer'sallocation of attention,
while the nimbus characterises the observed object'smanifestationor observability.
The observer's awareness of the observed is a function of the observed nimbus and
the observer's focus, as explained further in Drawing 21. These fields can be
manipulated in various ways. For example, they can be used to model social
behaviours such as shouting (large nimbus) or whispering (small narrow nimbus).
This model has been implemented in a number of systems, namely an earlier version
of DIVE [109] and MASSIVE-1. MASSIVE-2 also implements this model in an
extended version where the effects of third party objects on mutual awareness and
interaction are taken into account.

4.3. Network Protocols and Techniques

4.3.1. Reliability
In shared virtual environments, the state of objects has to be replicated in one form
or another to the participants so as to ensure that they will be ableto access them
whenever needed. For graphical objects or their position, access will be necessary
for every frame to be rendered. Consequently, it is of crucial importance that some
of the objects and their state are distributed to all interestedparties in a reliable way.
This reliability is the key to the illusion to share an identical virtual world.

There are two ways of achieving the reliable delivery of packets: the “black-box”
approach or in agreement with the application (Application-LevelFraming). In the

50

CVE Systems Trends

former approach, the application gives away packets to the protocol level and the
protocol itself ensures their delivery to the recipients. TCP is a well-known example
of such an approach. There are also a number of reliable multicast protocols that
attempt to provide a similar service. For example, RMP [110] is used ina number
of systems such as GreenSpace and Urbi et Orbi. In these protocols,the application
can tune the delivery requirements. For example, it can request a total ordering of
packets.

A number of systems use TCP or “blind” multicast protocols. Examples of such
systems are Avocado, Urbi & Orbi and GreenSpace. This has the advantage of
relieving the application from the intricate details of reliable delivery of packets.
However, this approach has also a number of drawbacks. For example, TCP
ensures the timely and ordered delivery of all packets that aresent, though it is not
always necessary. A typical example is the position updates of an object. Since these
occur very often, it does not make sense to ensure their ordereddelivery as long as
they are expressed in absolute coordinates. Instead, what is more important is the
reception of the last sent update. Updates in between can gracefully be discarded if
necessary. TCP does not support this style of communication. Furthermore,
experience has shown that for highly-interactive applications, reliability has to be
relaxed for the system to scale to a large number of users.

To address those problems, a number of systems have tried to let the application
participate to such decisions at a finer granularity. One typicalexample of such a
protocol is SRM (see section). In one of its profiles, Continuum provides support
for SRM. Also, MASSIVE-2 uses a protocol which is similar to SRMbut with a
different acknowledgement scheme. The success of this approach and the recognition
of different requirements when it comes to reliability of delivery have also led to a
number of standard proposals. RTP/I [111] is one example of such a proposal. This
view on relaxed reliability is also one of the driving forces behind frameworks such
as Continuum and, to a lesser extent, NPSNET-V.

4.3.2. Dead-Reckoning
Dead-reckoning is a technique to smooth out otherwise jerky position updates from
participants. It was pioneered by SIMNET [64] and can be found in most systems
The idea is to rely on a kinematic model (velocity, acceleration) to interpolate at all
receiving participants the position of a moving object. This is exemplified in
Drawing 22. Dead-reckoning has a number of advantages. It minimises the number
of network packets necessary to describe the position updates of the participants,
which accounts for the majority of data events within a number ofapplications (see
paper). Additionally, it decouples the animation effects from the capacity of both
the sender and the receivers. Providing a physical model allows the receivers to
animate remote participants at each rendering frame. Symmetrically, the position
updates of the sender are not conditioned to the frame rate in any way.

Because of network delays, the dead-reckoned path of remote copies will drift apart
from the true movement of a participant. Consequently, while offering a number of
advantages, dead-reckoning also introduces subjectivity when it comes to the real
position of participants at a given time. This is further explained in Drawing 23.

Some client-server systems such as NetEffect or AGORA have extended the idea to
a group of participants. The server cumulates position updates for a (small) time
period and all information received within this period is forwarded to the relevant
clients periodically. This optimisation has the advantage ofcutting down the
overhead of the protocol headers at various levels. Sending a group of updates

51

Drawing 22: Dead reckon-
ing minimises network
traffic through the use of a
kinematic model. In this ex-
ample, a new transforma-
tion and velocity vector are
only transmitted at t1 and
t5. This is to be compared to
sending position updates at
all intermediary
timestamps.

t1

t2
t3

t4
t5

t6

t7

t8

Drawing 23: Dead reckon-
ing introduces slight incon-
sistencies because of net-
work delays. The kinematic
information sent at t5 ar-
rives later at remote peers.
A dead-reckon path can be
smoothed on reception to
converge towards the path
of the participant.

t5

Chapter 4

within one single packet reduces redundant UDP or TCP headers and application-
level headers. Since position updates can be expressed with very few bytes,
aggregation forms an effective compression technique. This is especially true since,
at the hardware and operating system level, there is very little difference between
sending a UDP packet at its maximum size or at a smaller size (see sidebar).

The technique of dead-reckoning can be taken a step further. Theidea is to make
sure all remote clients get a copy of a deterministic object behaviour. This can be
achieved through the transmission of a parametric curve for example, but more
complex behaviours can also be obtained. Systems such as DEVA or Continuum
support the transmission of high-level events that will trigger the behaviour of
objects in a deterministic fashion. This approach has the advantage of considerably
decreasing the amount of information transiting on the network (assuming the
behaviour has been transmitted previously). However, it poses some synchronisation
problems since behaviour execution is subject to the separate processing power of
all remote participants. However, when movement is a sole function of time and can
be expressed as such, the technique is powerful. Such a technique is used, for
example, in VRML97.

4.3.3. Achieving Consistency
For the illusion of a shared virtual world to be entertained, thelocal copies of all
participants have to be kept consistent across time and space. While participants
might accept delays to reach the consistent state (see sidebar), consistency should
happen within a “reasonable” amount of time. There are two major (and
complementary) ways to achieve consistency: supporting roll-back mechanisms or
making sure a user is allowed to perform an operation before it is actually executed.

The most widely used technique is the association of an ownership to each object of
the virtual environment. Some systems do not allow for the transfer of ownership
(residing for example, within a server). In systems that allowtransfer of ownership,
this transfer has to be done prior to any operation on the object itself. Even though
finer-grained ownership is possible, e.g. at the level of object fields, most systems
associate one owner to each object. Since ownership transferis subject to network
delays of all sorts and, thus, might impair interaction betweenparticipants, a
number of systems have tried to minimise these delays using a number of techniques.
For example, PaRADE uses prediction techniques to know in advancethat
ownership has to be transferred. These techniques are combinedwith application-
dependent semantics about what can and cannot be done when participants approach
an object. The system advocates the locking of users' possibilities just before an
action can be performed, sends the “guessed” action in advance and offers some roll-
back facilities if the action was not performed. There are other techniques that can
be used, for example tracking the objects that are pointed at by the interaction device
and requesting for ownership in advance. Such techniques have the drawback of
introducing unnecessary network traffic.

In some other systems, such as CIAO, a more optimistic approach istaken. Users
are more or less allowed to perform actions on objects at once. Ownership transfer is
sent simultaneously and the system hopes that if there is conflict, it will be solved by
other means such as the other communication channels between the various
participants involved. To achieve a consistent state at all sites, the system
incorporates roll-back mechanisms that allow all processes toget back to a previous
state and advance to an agreed state.

In the real world, events happen according to their causal order. However, in CVEs

52

Our everyday life in front of
a computer is full of delays
that we accept without too
many questions: waiting for
a Web page to appear in the
browser, waiting for an ap-
plication to start up, etc. Our
experience has taught us to
acknowledge these delays
and to live with them. As
time goes by, all hardware
parts of a computer work
faster, but the delays are still
there.

In network communication,
there are per-byte and per-
packet costs. In some archi-
tectures such as buses or
hardware forwarders the
per-byte cost prevails. In
other architectures such as
CPU-based protocol pro-
cessing or software forward-
ers the per-packet cost pre-
vails. In personal com-
puters, the per-packet cost is
dominant at the protocol
processing level, even
though operations such as
data copy and checksum
computations are propor-
tional to packet size. Con-
sequently, in some UDP im-
plementations, the discard-
ing effects of checksums can
be minimised and con-
trolled at the application-
level [112].

CVE Systems Trends

causality may be violated due to non-deterministic message transmission delays in
the network. Causality has been widely studied in parallel and distributed systems.
Most of the work is focused on logical time systems and based on Lamport's
happened beforerelation [113] and the vector clock. Logical time is not generally
suitable for CVEs because not necessarily real-time. Consequently, wall-clock time
is adopted instead to characterise the real-time behaviours inCVEs. Most of the
work so far has been focuses on vector time, and adapting the concept to multicast
[114]. The problem with this approach is that it reduces the potential concurrence of
the system by ordering events that, from the applications perspective, have no
relation. Consequently, in [115] the authors of PaRADE make a trade-off between
the real-time requirements and causality through proposing a scheme aimed at
maintaining only those important causal relationships. However, the scheme needs to
know all the objects that an event will affect, which is not always applicable in
CVEs, which are highly dynamic in their content and non-deterministic as such.

4.4. Software Choices

4.4.1. Bringing Semantics to Data
The graphical aspects of virtual environments have in most cases dictated the
software representation of the worlds themselves. At one or another level, most of
the systems handle a hierarchy of objects well-suited for the creation of a scene
graph. At the graphical level, this hierarchy has a number of advantages. An
example is its ability to recursively move a whole sub hierarchy ofobjects through
the modification of the transformation of the top object of the hierarchy to be moved,
as described in Drawing 24.

In a number of systems, the scene graph is the only semantic aspectavailable to the
programmer. For example, Avocado provides the scene graph as a sole abstraction
and mechanisms to transparently replicate it at all sites participating to the
environment.

There are, however, attempts to enhance this vision through a number of additional
concepts. Urbi et Orbi is one such example. It is based on conceptual graphs where
the links between objects carry a given semantic, instead of simply forming a
hierarchy. Examples of such relations are “is localised on”, “is adjacent to” or “is
composed of”. This semantic allows the application and the programmer to reason at
a higher level of abstraction and to extract more information from the connections
between objects. This can be beneficial in a number of situations.

Other attempts consist in bringing true object orientation to the structure of the data.
Through the introduction of classification and inheritance,applications and
programmers are able to reason at a higher level, for example to know whether some
operations are available on a given object or not. Two examples of such systems are
Continuum and NPSNET-V. In the latter, object orientation is complemented by a
hierarchy to enhance the abstraction.

One of the effects of this search for more abstraction is the ability for several
systems to provide for alternative visualisations of the environments themselves. For
example, MASSIVE-1 provides a textual 2D rendering of the worlds and its
inhabitants. This rendering (organised like a map) offers enough cues for textual
participants to get a grip of where participants are and to understand a number of
the activities that they are engaged in. Urbi et Orbi takes another approach by
making available a shell in which commands can be executed to perform actions on

53

Drawing 24: If the graphic-
al representation of a num-
ber of books, in the hier-
archy, is placed under the
graphical representation of
a bookshelf, moving the
bookshelf will have the ef-
fect of also moving the vari-
ous rows of books posi-
tioned on the bookshelf.

Bookshelf

Books

Chapter 4

the world components.

4.4.2. Behaviours
Behaviours give life to CVEs which would otherwise simply be static environments
populated by avatars. While this theme of research is of high relevance and
conditions the actual success of CVE as an application domain, ithas been less
investigated than other issues such as the architectural and networking aspects. This
section does not consider behaviours as simple animation of thescene. It focuses on
behaviours that can be triggered through human interaction and other unexpected
events in the environment and how their results can be mediatedto all necessary
participants. There are, however, a number of questions which arerecurrent across
existing systems.

A few systems are based on a classification (arbitrary or not) of behaviours. This
classification helps understand how the results of an execution can be seen at all
remote participants. It works in conjunction with the networking mechanisms so as
to try to minimise traffic as much as possible. The key directionof these models is
that they try to separate “expected” behaviours from “unexpected” ones. Through a
replication of all or part of the code that describes the behaviours, it should be
possible to execute them in parallel, upon arrival of an unexpected event and until
the next one. Two examples of such systems are SmallTool and DEVA.In
SmallTool, explicit resynchronisation has to occur at application-chosen points in
time. DEVA separates entities of the environment between an objective and a
subjective part. The objective part is in charge of the unexpected, while the
subjective part is in charge of its results. DEVA replicates the subjective parts and
allows them to derive slightly.

The key problem behind this type of behavioural description is the one of
synchronisation. Without any synchronisation, the replicated copies of the
environments at all participants may diverge with time and lead to inconsistencies
which might have disastrous effects on both the metaphor and thecommunication
that occurs between participants through the environment.

To speed up the design and implementation process, a few systems have recognised
the necessity to introduce interpreted languages. These languages, typically at a
higher level, allow for quicker application development and thetrial of various
application interfaces and semantics, leading to better applications for the end user.
An extreme example of such a system is Urbi et Orbi, where a specific language has
been designed and around which most of the system is built. In general, there is little
information available up to which extent it is possible to implement actual
applications using those languages, or a combination of interpreted and imperative
languages. Some systems such as BrickNet or Spline have taken unconventional
languages, which increases the learning curve and minimises the benefits of such an
approach.

4.4.3. Frameworks and Middleware
Designing and realising platforms for the deployment of CVE applications is a
challenge. At the networking level, there are a number of flowsto control and handle
to minimise bandwidth usage and to maximise interaction betweenall the
participants. Most early systems have been aimed at understanding these issues and
finding novel ways to tackle the various issues. It has been foundthat, within some
application domains, some models work better than other. For example, at the

54

CVE Systems Trends

current time, a client-server model seems best suited for community-based
applications. However, since this impairs interaction in general, new hybrid or pure
peer-to-peer models have to be found.

To account for the complexity of the task and allow experimentation with different
models and algorithms when it comes to data distribution and networking, a number
of late systems are based on the idea of frameworks. Example of such systems are
Continuum, NPSNET-V, JADE [116] or Bamboo [117]. The three last systems are
oriented towards providing a run-time architecture that allows environments and
applications to run non-stop and to be upgraded as needed during their (long lasted)
life-time. The first system, Continuum is more geared to being able to mix network
protocols, policies and architectures so as to suit the needs of particular application
domains.

The drawback of frameworks is their very nature: they are frameworks into which
components have to be plugged in. This means that the development of these
components is a time consuming task, especially since these have to be developed in
a concerted and compatible manner. Thus, their establishment has to undergo some
sort of standardisation process or through their acceptance by alarger community.
To this end, NPSNET-V has opened its source code to the Internetcommunity. The
later developments of the MPEG standardisation effort offera more industrial
approach.

4.4.4. Migrating lessons from 2D interfaces and CSC W
CVEs, through the primary use of a three-dimensional metaphor have had to develop
an understanding of their possibilities and limitations. The dominant approach has
been to start “from scratch”, under the assumption that the metaphor was so much
different from the traditional two-dimensional desktop. However, taking such an
approach partly disregards years of research in the field of human-computer
interaction. Consequently, a number of authors and systems havetried to bring back
some of the lessons from traditional 2D interfaces into the world of 3D collaborative
virtual environments. One such lessons is the recognition that the content of the
shared environment does not necessarily appear to be identicalas seen from all
participants view point.

Earlier experiences in 2D interfaces have shown that this not always adequate. It has
been shown that the strict WYSIWIS (What You See Is What I See) is too
restrictive and “Relaxed WYSIWIS”[118] has been proposed to relieve these
problems. Relaxed WYSIWIS acknowledges that there are inherent conflicts
between the needs of a group and the needs of individuals and proposes to relax
constraints along four different dimensions: display space, time of display, subgroup
population and congruence of view.

Learning from 2D interfaces, a number of authors — [119] and [120] — have tried
to migrate these concepts into what is generally called “subjective views”. These
subjective views can reflect the different roles and interests of participants. For
example, a plumber and an electrician wish to see different aspectsof a 3D
architectural model, namely pipes and wires. In their most straightforward approach,
subjective views allow the appearance and/or presence of artefacts within
environments to be tweaked according to the needs and roles ofparticipants. This
type of scenario is exemplified by Illustration 21 and Illustration22 (taken from the
approach in [120]). However, the authors in [119] have also experimentedwith
different positions for participants and objects.

55

Illustration 21: A view of a
town in a path finding scen-
ario.

Illustration 22: In this view
of the same scenario, albeit
from the other participant's
viewpoint, arrows on the
ground indicate the path to
be followed and buildings
that are not important for
the explanation are made
transparent.

Chapter 4

There are also other examples of such migration among some of theother systems.
For example, NPSNET-V requires all entities to fit to the model-view-controller
abstraction [121] pioneered by Smalltalk. NPSNET-V requires that the abstract
state of each object of the virtual world, its model, be separate from its views, which
depict the object to the user, and from its controllers, which control the state of the
object. While not explicitly stated as above, Continuum also takesa similar
approach through the use of a specific language for the description of the objects
(their state), their capacity (their methods), leaving aparttheir graphical
representation.

4.5. Conclusion
Early systems such as MR toolkit have contributed to show that realising shared
virtual environments was possible and that the idea had potential for a number of
applications and domains. Later, and as the field matured, scaling in the number of
participants and active objects has become a new problem that systems have had to
tackle. The scaling issues partly originate from military usage of the technology and
systems such as SIMNET. To deal with these problems a number of both network
and software architectural solutions have been investigated.At a higher level, the
key idea consist in modelling and using the human perceptual weaknesses to reduce
the number of “interesting” entities to be taken in account. Thishas resulted in
techniques such as awareness, world partitioning or automated summary of
participants groups. At a lower level, and to ensure scalability for the remaining
participating processes, the network architectural solutions depend on the
requirements of the platform and the target applications. Currently, trends are trying
to find the best models to intertwine peer-to-peer and client-server architectures.
They also focus on offering open frameworks and middleware within which different
replication and distribution strategies can be mixed and chosen from to best apply to
the application at hand.

With time CVE applications have slowly migrated from technology demonstrators,
through research prototypes into real applications in niched domains. As migration
occurred, developers and designers have realised that more traditional software
programming methods could be migrated into the field. Also, learnings from the past
have been taken into account and experiences from collaborative 2Dinterfaces have
transposed into CVE systems. However, the relative novelty of the field and the
small amount of programmers and designers involved have slowed down this
recognition and migration.

56

Chapter 5 Conclusion

CVE applications are highly interactive and recent trends show that they will soon
have to support thousands of participants. As shown in this report, the research
issues raised by such grand goals are many and complex. Here are some of the most
important challenges, inspired by [48] and complemented by the survey conducted in
this report.

CVEs accommodate varying numbers of geographically distributedusers. All
participants have to be kept updated with changes in the virtual environment. They
will also converse using means such as network audio and video communication.
Supporting these users at the networking level raises many issuesand CVE systems
handle distribution in significantly different ways. There are three major network
architectures being used: client-server, peer-to-peer unicast and peer-to-peer
multicast (see section 4.2). Current research is looking into new ways of combining
these architectures to better support various applications and media over mixed
infrastructures (networks and computers).

The scalability of CVEs refers to two distinct aspects: the graphical and behavioural
complexity of the environments and their content; and the numberof simultaneous
participants and active entities that can be hosted within these worlds. All
participants have to be kept updated with changes in the environment. As the
number of participants and active entities increases, network traffic to mediate
messages describing those changes as well as audio and video communication will
also increase. Whichever the distribution architecture is, the major bottleneck is the
so-called “last mile”, the connection of end users to the Internet (see sidebar) and the
processing power available at their computer.

Human perceptual and cognitive limitations form the basis of the responses to the
problems of scale. These solutions typically subdivide the virtualspace so that each
participant only perceives “enough” of the environment. “Enough” is defined in
terms of their interest in the environment and its contents,and features such as solid
boundaries or distance are used to restrict perception. For example, audio that
attenuates with distance can simply be cut off at a given distance. The recurrent
theme of these solutions consists in dividing the space in smaller areas and
associating separate software and hardware resources to these subdivisions.

CVEs are slowly migrating from the research sphere into the industry. This shift
generates stronger requirements on software quality and modularisation. It has
resulted in the emergence of a number of software frameworks that seek to provide
pluggable architectures where modules, possibly written in variouslanguages, can
be assembled to form an application. The relative novelty of CVE applications and
the necessity to experiment with various designs and approaches have also led to the
slow integration of interpreted languages into systems and toolkits. As these
languages do not require any recompilation, they shorten development time and
allow designers and programmers to take a more iterative approach.

CVE collaboration usually assumes that each participant sees the same content, still
from a different perspective. Earlier experiences in 2D interfaces have shown that
this is not totally adequate. This has led to the introduction of “subjective views”

57

Home connection to the In-
ternet is improving, but
users are also becoming
more demanding. Current
trends show the develop-
ment of home networks,
computers that will always
be powered (media centres,
personal video recorders)
and the popularity of applic-
ations that constantly access
the network (P2P applica-
tions). All these trends point
at a future where a number
of applications and com-
puters will constantly com-
pete for external access to
the Internet. In short, band-
width will continue to be a
scarce resource, even if the
problem has evolved under
the past five years.

Chapter 5

(see section 4.4.4). These subjective views allow users to perceiveenvironments
slightly or radically differently, reflecting the different roles and interests of
participants. More generally, a “space-vs-place” debate [122] as also agitated the
community. Although not exclusive, these opinions have led to different types of
environments. Space has resulted in fully navigable CVEs with avatars. Place has
resulted in environments that are not necessarily three dimensional or where means
to ease and constrain navigation are provided.

58

Chapter 6 Acknowledgements

Some of the illustrations in this report originate from elsewhere:• Illustration 1 is courtesy of the former Fraunhofer CRCG, now imedia - The
ICPNM Academy.• The model used for Illustration 3 originates from Lightscape.• Illustrations 4 and 5 are courtesy of the Georgia Institute of Technology.• Illustration 10 is courtesy of the MIT.• Illustration 13 is from the paperA Two Pass Solution to the Rendering
Equation: a Synthesis of Ray Tracing and Radiosity Methodsby John R.
Wallace, Michael F. Cohen and Donald P. Greenberg (1987). The image
appeared on the cover ofComputer Graphics: Principles and Practiceby Foley,
van Dam, Feiner and Hughes.• Illustration 16 is courtesy of Id Software.• The helmet shown on Illustration 17 is from the former Division, Inc.• Illustration 18 is courtesy of Fifth Dimension Technologies.• Illustration 19 is courtesy of the center for advanced information processing at
Rutgers, the state university of New Jersey.• Illustration 20 is courtesy of Immersion Corporation (formerlyVirtual
Technologies Inc.)

59

Chapter 7 Bibliography

[1] Jaron Lanier's Home Page, http://www.jaronlanier.com/.
[2] Myron W. Krueger, Artificial Reality II, Pearson Higher Education, ISBN:

0201522608 , January1991.
[3] William Gibson, Neuromancer, Ace Books, ISBN: 0441569595, March1984.
[4] Emmanuel Frécon and Anneli Avatare-Nöu, Building Distributed Virtual

Environments to Support Collaborative Work, Proceedings of the ACM
Symposium on Virtual Reality Science and Technologies, Taipei, Taiwan ,
pp. 105-113, November 1998.

[5] Dave Snowdon, Elizabeth Churchill and Emmanuel Frécon (Eds), Inhabited
Information Spaces: Living with your data, Springer Verlag, ISBN:
1852337281, January2004.

[6] Elizabeth F. Churchill, David N. Snowdon and Alan J. Munro (Eds),
Collaborative Virtual Environments - Digital Places and Spaces for
Interaction, Springer-Verlag, ISBN: 1-85233-244-1, May2001.

[7] ActiveWorlds, http://www.activeworlds.com/.
[8] The Palace, http://www.thepalace.com/.
[9] there.com, http://www.there.com/.
[10] Gavin Bell, Rikk Carey and Chris Marrin, The Virtual Reality Modeling

Language, ISO/IEC 14772-1:1997, 1997
[11] The Web3D Consortium, http://www.web3d.org/.
[12] Steve Benford, Dave Snowdon, Chris Brown and Gail Reynard, Visualising

and populating the Web: Collaborative virtual environments for browsing,
searching and inhabiting Webspace, Computer Networks and ISDN Systems,
Vol. 29, No. 15, pp. 1751-1761, November 1997.

[13] Navinchandra K. Patel, Simon P. Campion and Terrance Fernando,
Evaluating the Use of Virtual Reality as a Tool for Briefing Clients in
Architecture, Proceedings of the Sixth International Conference on
Information Visualisation (IV'02) , London, England , pp. 657-663, July
2002.

[14] Christian Knöpfle and Gerrit Voβ, An intuitive VR user interface for design
review, Proceedings of the working conference on Advanced visual interfaces,
Palermo, Italy , pp. 98-101, 2000.

[15] Steve Bryson and Creon Levit, The Virtual Wind Tunnel, IEEE Computer
Graphics and Applications, Vol. 12, No. 4, pp. 25-34, July/August 1992.

[16] Dorothy Strickland, Larry Hodges, Max North and Suzanne Weghorst,
Overcoming phobias by virtual exposure, Communications of the ACM, Vol.
40, No. 8, pp. 34-39, 1997.

[17] Larry F. Hodges, Rob Kooper, Thomas C. Meyer, Barbara O. Rothbaum,
Dan Opdyke, Johannes J. de Graaff, James S. Williford and Max M. North,
Virtual Environments for Treating the Fear of Heights, IEEE Computer, Vol.
28, No. 7, pp. 27-34, July 1995.

[18] Azucena Garcia-Palacios, Hunter Hoffman, Albert Carlin, Thomas A.
Furness III and Cristina Botella, Virtual reality in the treatment of spider
phobia: A controlled study, Behaviour Research and Therapy, Vol. 40, No. 9,
pp. 983-993, 2002.

61

Chapter 7

[19] Mel Slater, David-Paul Pertaub and Anthony Steed, Public Speaking in
Virtual Reality: Facing an Audience of Avatars, IEEE Computer Graphics
and Applications, Vol. 19, No. 2, pp. 6-9, March/April 1999.

[20] Russ Zajtchuk and Richard M. Satava, Medical applications of virtual
reality, Communications of the ACM, Vol. 40, No. 9, pp. 63-64, 1997.

[21] Don Allison, Brian Wills, Doug Bowman, Jean Wineman and Larry F.
Hodges, The Virtual Reality Gorilla Exhibit, IEEE Computer Graphics and
Applications, Vol. 17, No. 6, pp. 30-38, November/December 1997.

[22] Maria Roussos, Andrew E. Johnson, Thomas G. MoherJason Leigh,
Christina A.Vasilakis, and Craig R. Barnes, Learning and Building Together
in an Immersive Virtual World, Presence, Vol. 8, No. 3, pp. 247-263, June
1999.

[23] Detlev Schwabe and Mårten Stenius, The Web Planetarium and Other
Applications in the Extended Virtual Environment EVE, Proceeding of the
16th Spring Conference on Computer Graphics, Budmerice, Slovakia , pp. ,
May 2000.

[24] Michael Zyda, John Hiles, Alex Mayberry, Casey Wardynski, Michael
Capps, Brian Osborn, Russell Shilling, Martin Robaszewski and Margaret
Davis, Entertainment R&D for Defense, IEEE Computer Graphics and
Applications, Vol. 23, No. 1, pp. 28-36, January/February 2003.

[25] John Vince, Virtual Reality Systems, ACM Press, ISBN: 0-201 87687-6,
1995.

[26] Ivan E. Sutherland, Sketchpad---A man-machine graphical communication
system, Proceedings of the AFIPS Spring Joint Computer Conference, , pp.
328-346, January 1963.

[27] Ivan E. Sutherland, The Ultimate Display, Proceedings of IFIPS Congress,
New York, USA , pp. 506-508, May 1965.

[28] Ivan E. Sutherland, A Head-mounted Three-dimensional Display, AFIPS Fall
Joint Computer Conference Proceedings, Vol. 33, No. 1, pp. 757-764, 1968 .

[29] Henri Gouraud, Continuous Shading of Curved Surfaces, IEEE Transactions
on Computers, Vol. 20, No. 6, pp. 623-628, June 1971.

[30] Bui-Tuong Phong, Illumination for Computer-Generated Images, PhD Thesis
University of Utah, Department of Computer Science, July1973

[31] P Jerome Kilpatrick, The Use of Kinesthetic Supplement in an Interactive
System, PhD Thesis University of North Carolina at Chapel Hill, Computer
Science Department, 1976

[32] F. Raab, E. Blood, T. Steiner, and H. Jones, Magnetic position and
orientation tracking system, IEEE Transactions on Aerospace and Electronic
Systems, Vol. 15, No. 5, pp. 709-717, September 1979.

[33] Thomas Zimmerman and Jaron Lanier, A Hand Gesture Interface Device,
Proceedings of CHI'87, Toronto, Canada , pp. 235-240, April 1987.

[34] Gary J. Grimes, Digital Data Entry Glove interface device, Patent 4,414,537,
AT & T Bell Labs, November1983

[35] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett
Battaile, Modeling the interaction of light between diffuse surfaces,
Proceedings of SIGGRAPH '84, Minneapolis, USA , pp. 213-222, July 1984.

[36] Wenzel, E.M., Wightman, F. L. and Foster, S. H., A virtual display system
for conveying threedimensional acoustic information, Proceedings of the
Human Factors Society, 32nd Annual Meeting, , pp. 86-90, 1988.

[37] Carolina Cruz-Neira, Daniel J. Sandin and Thomas A. DeFanti, Surround-
Screen Projection-Based Virtual Reality: The Design and Implementation of
the CAVE, Proceedings of SIGGRAPH '93 Computer Graphics

62

Bibliography

Conference, , pp. 135-142, August 1993.
[38] Jannick P. Rolland, Larry D. Davis and Yohan Baillot, A Survey of Tracking

Technologies for Virtual Environments, in Woodrow Barfield and Thomas
Caudell, Fundamentals of Wearable Computers and Augmented Reality,
Lawrence Erlbaum, ISBN 0805829024, 2001

[39] F. Raab, E. Blood, T. Steiner, and H. Jones, Magnetic position and
orientation tracking system, IEEE Transactions on Aerospace and Electronic
Systems, Vol. 15, No. 5, pp. 709-717, September 1979.

[40] Mark Ward, Ronald Azuma, Robert Bennett, Stefan Gottschalk and Henry
Fuchs, A Demonstrated Optical Tracker with Scalable Work Area for Head
Mounted Display Systems, Proceedings of ACM Symposium on Interactive
3D Graphics (I3D 92), Cambridge, MA, USA , pp. 43-52, March 1992.

[41] How does the DTI display work?, http://www.dti3d.com/technology.asp.
[42] Daniel Gomez, Grigor Burdea, Noshir Langrana, Integration of the Rutgers

Master II in a virtual reality simulation, Proceedings of the IEEE Virtual
Reality Annual International Symposium (VRAIS'95), Research Triangle
Park, North Carolina, USA , pp. 198-202, March 1995.

[43] Robert J. Stone, Haptic Feedback: A Brief History from Telepresence to
Virtual Reality, Proceedings of the First International Workshop on Haptic
Human-Computer Interaction, Vol. 2058, No. , pp. 1-16, September 2000.

[44] Ronald Azuma, Yohan Baillot, Reinhold Behringer, Steven Feiner, Simon
Julier, Blair MacIntyre, Recent Advances in Augmented Reality, IEEE
Computer Graphics and Applications, Vol. 21, No. 6, pp. 34-47,
November/December 2001.

[45] Ronald Azuma, A Survey of Augmented Reality, Presence: Teleoperators and
Virtual Environments, Vol. 6, No. 4, pp. 355-385, August 1997.

[46] Ronald Azuma, Tracking requirements for augmented reality,
Communications of the ACM, Vol. 36, No. 7, pp. 50-51, 1993.

[47] Nathaniel I. Durlach and Anne S. Mavor, Editors, Virtual Reality: Scientific
And Technological Challenges, NATIONAL ACADEMY PRESS, ISBN: 0-
309-05135-5, 1995.

[48] Steve Benford, Chris Greenhalgh, Tom Rodden and James Pycock,
Collaborative virtual environments, Communications of the ACM, Vol. 44,
No. 7, pp. 79-85, July 2001.

[49] Richard C. Waters, David B. Anderson, John W. Barrus, David C. Brogan,
Michael A. Casey, Stephan G. McKeown, Tohei Nitta, Ilene B. Sterns,
William S. Yerazunis, Diamond Park and Spline: A Social Virtual Reality
System with 3D Animation, Spoken Interaction, and Runtime Modifiability,
Presence: Teleoperators and Virtual Environments, Vol. 6, No. 4, pp. 461-
480, August 1997.

[50] John W. Barrus, Richard C. Waters, David B. Andersson, Locales:
supporting large multiuser Virtual Environments, IEEE Computer Graphics
and Applications, Vol. 16, No. 6, pp. 50-57, November 1997.

[51] Richard C. Waters, David B. Anderson and Derek L. Schwenke, Design of
the Interactive Sharing Transfer Protocol, Proceedings of the 6th IEEE
Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WET ICE'97), Cambridge, MA, USA , pp. 140-147, June 1997.

[52] Jon Mandeville, Thomas Furness, Masahiro Kawahata, Dace Campbell, Paul
Danset, Austin Daul, Jens Dauner, Jim Davidson, Jon Howell, Kigen Kandie
and Paul Schwartz, GreenSpace: Creating a Distributed Virtual Environment
for Global Applications, Proceedings of the IEEE Networked Reality
Workshop, Boston, MA, USA , pp. 95-117, October 1995.

63

Chapter 7

[53] Brian Whetten, Todd Montgomery and Simon Kaplan, A High Performance
Totally Ordered Multicast Protocol, in Kenneth P. Birman, Friedmann
Mattern and André Schiper, Theory and Practice in Distributed Systems,
Lecture Notes in Computer Science 938, Springer Verlag, ISBN 3-540-
60042-6, 1994

[54] Paul Schwartz, Lauren Bricker, Bruce Campbell, Tom Furness, Kori Inkpen,
Lydia Matheson, Nobutatsu Nakamura, Li-Sheng Shen, Susan Tanney,
Shihming Yen, Virtual Playground:Architectures for a Shared Virtual World,
Proceedings of the ACM Symposium on Virtual Reality Software and
Technology 1998, Vol. , No. November, pp. 43-50, 1998.

[55] Rodger Lea, Yasuaki Honda, and Kouichi Matsuda, Virtual Society:
Collaboration in 3D space on the Internet, Computer Supported Cooperative
Working, Vol. 6, No. 2/3, pp. 227-250, 1997.

[56] Hiroaki Harada, Naohisa Kawaguchi, Akinori Iwakawa, Kazuki Matsui and
Takashi Ohno, Space-sharing architecture for a three-dimensional virtual
community, IEE Distributed Engineering Journal, Vol. 5, No. 3, pp. 101-106,
September 1998.

[57] Mike Wray and Rycharde Hawkes, Distributed Virtual Environments and
VRML: an Event-based Architecture, Computer Networks and ISDN
Systems, Vol. 30, No. 1, pp. 43-51, April 1998.

[58] Living Worlds, http://www.web3d.org/WorkingGroups/living-worlds/.
[59] Wolfgang Broll, Populating the Internet: Supporting Multiple Usersand

Shared Applications with VRML, Proceedings of the VRML’97 Symposium,
Monterey, CA, USA , pp. 87-94, February 1997.

[60] Wolfgang Broll, DWTP - An Internet Protocol for Shared Virtual
Environments, Proceedings of the International Symposium on VRML,
Monterey, CA, USA , pp. 49-56, February 1998.

[61] Tapas K. Das, Gurminder Singh, Alex Mitchell, P. Senthil Kumar and Kevin
McGee, NetEffect: a network architecture for large-scale multi-user virtual
worlds, Proceedings of the ACM symposium on Virtual reality software and
technology, Lausanne, Switzerland , pp. 157-163, September 1997.

[62] Tapas K. Das, Gurminder Singh, Alex Mitchell, P. Senthil Kumar and Kevin
McGee, Developing Social Virtual Worlds using NetEffect, Proceedings of
the Workshop on Enabling Technologies Infrastructure for Collaborative
Enterprises (WET-ICE '97), MIT, Cambridge, MA, USA , pp. 148-154, June
1997.

[63] Michael R. Macedonia, Michael J. Zyda, David R. Pratt, Donald P.
Brutzman and Paul T. Barham, Exploiting Reality with Multicast Groups: A
Network Architecture for Large-scale Virtual Environments, Proceeding of
the 1995 IEEE Virtual Reality Annual International Symposium (VRAIS'95),
RTP, North Carolina, USA , pp. 2-10, March 1995.

[64] James M. Calvin, Alan Dickens, Bob Gaines, Paul Metzger, Dale Miller and
Dan Owen, The Simnet Virtual World Architecture, Proceedings of the IEEE
Virtual Reality Annual International Symposium, Seattle, Washington, USA ,
pp. 450-455, September 1993.

[65] David J. Roberts and Paul M. Sharkey, Maximising Concurrency and
Scalability in a Consistent, Causal, Distributed Virtual Reality System,
Whilst Maintaining the Effect of Network Delays, Proceedings of the 6th
IEEE Workshop on Enabling Technologies Infrastructures for Collaborative
Enterprises, Cambridge, MA, USA , pp. 161-166, June 1997.

[66] Chris Greenhalgh and Steve Benford, MASSIVE: A Distributed Virtual
Reality System Incorporating Spatial Trading, Proceedings of the 15th

64

Bibliography

International Conference on Distributed Computing Systems (DCS’95),
Vancouver, Canada , pp. 27-34, June 1995.

[67] Chris Greehalgh and Steve Benford, Supporting Rich And Dynamic
Communication in Large Scale Collaborative Virtual Environments,
Presence: Teleoperators and Virtual Environments, Vol. 8, No. 1, pp. 14-35,
February 1999.

[68] Chris Greenhalgh, Jim Purbrick and Dave Snowdon, Inside MASSIVE-3:
flexible support for data consistency and world structuring, Proceedings of
the third international conference on Collaborative virtual environments, San
Francisco, California, United States , pp. 119-127, 2000.

[69] Chris Shaw, Mark Green, Jiandong Liang and Yunqi Sun, Decoupled
Simulation in Virtual Reality with the MR Toolkit, ACM Transactions on
Information Systems, Vol. 11, No. 3, pp. 287-317, July 1993.

[70] Chris Shaw and Mark Green, The MR Toolkit Peers Package and
Experiment, Proceedings of the IEEE Virtual Reality Annual International
Symposium (VRAIS'93), Seattle, WA, USA , pp. 463-469, September 1993.

[71] Qunjie Wang, Mark Green and Chris Shaw, EM - An Environment Manager
for Building Networked Virtual Environments, Proceedings of the IEEE
Virtual Reality Annual International Symposium, Research Triangle Park,
North Carolina, USA , pp. 11-18, March 1995.

[72] Didier Verna, Yoann Fabre and Guillaume Pitel, Urbi et Orbi: Unusual
Design and Implementation Choices for Distributed Virtual Environments,
Proceedings of the 6th International Conference on Virtual Systems and
MultiMedia, Gifu, Japan , pp. , October 2000.

[73] Mark Hayden, The Ensemble System, Technical Report, TR98-1662, January
1998

[74] Henrik Tramberend, Avocado: A Distributed Virtual Reality Framework,
Proceedings of the IEEE Virtual Reality Conference, Houston, Texas, USA ,
pp. 14-21, March 1999.

[75] Steve Pettifer, Jon Cook, James Marsh and Adrian West, DEVA3:
Architecture for a Large Scale Distributed Virtual Reality System,
Proceedings of the ACM symposium on Virtual Reality Science and
Technology , Seoul, Korea , pp. 33-40, October 2000.

[76] Roger Hubbold, Jon Cook, Martin Keates, Simon Gibson, Toby Howard,
Alan Murta, Adrian West and Steve Pettifer, GNU/MAVERIK: a micro-
kernel for large-scale virtual environments, Proceedings of the ACM
symposium on Virtual reality software and technology, London, United
Kingdom , pp. 66 - 73, December 1999.

[77] Frédéric Dang Tran, Marina Deslaugiers, Anne Gérodolle, Laurent Hazard
and Nicolas Rivierre, An Open Middleware for Large-Scale Networked
Virtual Environments, Proceedings of the IEEE Virtual Reality Conference,
Orlando, Florida, USA , pp. 22-29, March 2002.

[78] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne and Lixia
Zhang, A Reliable Multicast Framework for Light-weight Sessions and
Application Level Framing, IEEE/ACM Transactions on Networking, Vol. 5,
No. 6, pp. 784-803, December 1997.

[79] Andrzej Kapolka, Don McGregor and Michael Capps, A Unified Component
Framework for Dynamically Extensible Virtual Environments, Proceedings of
the 4th International Conference on Collaborative Virtual Environments,
Bonn, Germany , pp. 64-71, October 2002.

[80] Gurminder Singh, Luis Serra, Willie Png and Hern Ng, BrickNet: A Software
Toolkit for Network-Based Virtual Worlds, Presence, Vol. 3, No. 1, pp. 19-

65

Chapter 7

34, Winter 1994.
[81] Gurminder Singh, Luis Serra, WUlie Png, Audrey Wong and Hern Ng,

BrickNet: Sharing Object Behaviors on the Net, Proceedings of the IEEE
Virtual Reality Annual International Symposium, Research Triangle Park,
North Carolina, USA , pp. 19-25, March 1995.

[82] Thomas A. Funkhouser, RING: A ClientServer System for Multi-User
Virtual Environments, Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics, Monterey, CA, USA , pp. 85-92, 209, April 1995.

[83] Thomas A. Funkhouser, Network Topologies for Scalable Multi-User Virtual
Environments, Proceedings of the IEEE Virtual Reality Annual International
Symposium, San Jose, CA, USA , pp. , April 1996.

[84] Un-Jae Sung, Jae-Heon Yang, Kwang-Yun Wohn, Concurrency Control in
CIAO, Proceedings of the IEEE Virtual Reality Conference, Houston, Texas,
USA , pp. 22-28, March 1999.

[85] Martin Mauve, Volker Hilt, Christoph Kuhmünch and Wolfgang Effelsberg,
RTP/I - Toward a Common Application Level Protocol for Distributed
Interactive Media, IEEE Transactions on Multimedia, Vol. 3, No. 1, pp. 152-
161, 2001.

[86] Martin Mauve, TeCo3D - A 3D Telecooperation Application based on
VRML and Java, Proceedings of MMCN/SPIE '99, San Jose, CA, USA , pp.
240-251, January 1999.

[87] , IEEE Standard for Distributed Interactive Simulation, IEEE Standard
1278.1, 1995

[88] , The IEEE HLA Standards, IEEE Standards 1516 series,
[89] , Moving Picture Experts Group, ISO/IEC International Standard 14496,

January1999
[90] Richard Bartle, Interactive Multi-User Computer Games, , December1990
[91] Terraplay Network Solution for Gaming,

http://www.terraplay.com/prodpdf/terra_prod_system.pdf.
[92] Butterfly.net: Powering Next-Generation Gaming with Computing On-

Demand, http://butterfly.net/platform/technology/idc.pdf.
[93] TeraZona White Paper, www.zona.net/whitepaper/Zonawhitepaper.pdf.
[94] Eric .J. Berglund and David R. Cheriton, AMaze: A multiplayer computer

game, IEEE Software, Vol. 2, No. 3, pp. 30-9, 1985.
[95] Christophe Diot and Laurent Gautier, A distributed architecture for

multiplayer interactive applications on the Internet, IEEE Networks magazine,
Vol. 13, No. 4, pp. 6-15, 1999.

[96] Ashwin R. Bharambe, Sanjay Rao and Srinivasan Seshan, Mercury: a
scalable publish-subscribe system for internet games, Proceedings of the first
workshop on Network and system support for games, Bruanschweig,
Germany , pp. 3-9, April 2002.

[97] Stefan Fiedler, Michael Wallner and Michael Weber, A communication
architecture for massive multiplayer games, Proceedings of the first workshop
on Network and system support for games, Bruanschweig, Germany , pp. 14-
22, April 2002.

[98] Jonathan Blow, A look at latency in networked games, Game Developer, Vol.
5, No. 7, pp. 28-40, July 1998.

[99] Rick Lambright, Distributing object state for networked games using object
views, Game Developer, Vol. 9, No. 3, pp. 30-39, March 2002.

[100] Paul Bettner and Mark Terrano, 1500 archers on a 28.8: Network
programming in Age of Empires and beyond, Proceedings of the 2001 Game
Developer Conference, San Jose, CA, USA , pp. , March 2001.

66

Bibliography

[101] UnrealScript Language Reference,
http://unreal.epicgames.com/UnrealScript.htm.

[102] Robert Huebner, Adding Languages to Game Engines, Game Developer, Vol.
4, No. 7, pp. , September 1997.

[103] Bruce Dawson, Game Scripting in Python, Proceedings of the Game
Developers Conference, , pp. , 2002.

[104] Roberto Ierusalimschy, Luiz Henrique de Figueiredo and Waldemar Celes
Filho, Lua-an extensible extension language, Software: Practice &
Experience, Vol. 26, No. 6, pp. 635-652, June 1996.

[105] Tux Racer, http://tuxracer.sourceforge.net/.
[106] Craig Partridge and Stephen Pink, A faster UDP, IEEE/ACM Transactions

on Networking, Vol. 1, No. 4, pp. 429-440, August 1993.
[107] Bengt Ahlgren, Per Gunningberg, and Kjersti Moldeklev, Increasing

communication performance with a minimal-copy data path supporting ILP
and ALF, Journal of High Speed Networks, Vol. 5, No. 2, pp. 203-214,
1996.

[108] Steve Benford, John Bowers, Lennart Fahlén and Chris Greenhalgh,
Managing Mutual Awareness in Collaborative Virtual Environments,
Proceedings of ACM Symposium on Virtual Reality Software and
Technology, Singapore , pp. 223-236, August 1994.

[109] Lennart Fahlén, Chris Brown, Olov Ståhl and Christer Carlsson, A Space
Based Model for User Interaction in Shared Synthetic Environments,
Proceedings of InterCHI'93,, Amsterdam, The Netherlands , pp. 43-50, April
1993.

[110] Brian Whetten, Todd Montgomery and Simon Kaplan, A High Performance
Totally Ordered Multicast Protocol, Theory and Practice in Distributed
Systems, Vol. 938, No. , pp. 33-54, September 1994.

[111] Martin Mauve, Volker Hilt, Christoph Kuhmünch and Wolfgang Effelsberg,
RTP/I - Toward a Common Application Level Protocol for Distributed
Interactive Media, IEEE Transactions on Multimedia, Vol. 3, No. 1, pp. 152-
161, March 2001.

[112] Lars-Åke Larzon, Mikael Degermark, Stephen Pink, UDP Lite for real-time
multimedia applications, Proceedings of the IEEE International Conference of
Communications, Vancouver, British Columbia, Canada , pp. , June 1999.

[113] Leslie Lamport, Time, clocks, and the ordering of events in a distributed
system, Communications of the ACM, Vol. 21, No. 7, pp. 558-565, July
1978.

[114] Kenneth Birman, André Schiper and Pat Stephenson, Lightweight Causal and
Atomic Group Multicast, ACM Transactions on Computer Systems, Vol. 9,
No. 3, pp. 272-314, August 1991.

[115] David J. Roberts, Benjamin G. Worthington, Paul M. Sharkey and Johannes
Strassner, Influence of the Supporting Protocol on the Latencies Induced by
Concurrency Control within a Large Scale Multi User Distributed Virtual
Reality System, Proceedings of the International Conference on Virtual
Worlds and Simulation (VWSIM), SCS Western Multi-conference, San
Francisco, CA, USA , pp. 70-75, January 1999.

[116] Manuel Oliveira, Jon Crowcroft, Mel Slater, Component framework
infrastructure for virtual environments , Proceedings of the third international
conference on Collaborative virtual environments, San Francisco, CA, USA ,
pp. 139-146, September 2000.

[117] Kent Watsen and Michael Zyda, Bamboo - A Portable System for
Dynamically Extensible, Real-Time, Networked, Virtual Environments,

67

Chapter 7

Proceedings of the IEEE Virtual Reality Annual International Symposium,
Atlanta, Georgia, USA , pp. 252-259, March 1998.

[118] M. Stefik, D. G. Bobrow, G. Foster, S. Lanning and D. Tatar, WYSIWIS
revised: early experiences with multiuser interfaces, ACM Transactions on
Information Systems (TOIS), Vol. 5, No. 2, pp. 147-167, 1987.

[119] Dave Snowdon, Chris Greenhalgh and Steve Benford, What You See is Not
What I See: Subjectivity in Virtual Environments, Proceedings of Framework
for Immersive Virtual Enviroments (FIVE'95), QMW University of London,
UK , pp. 53-69, December 1995.

[120] Gareth Smith, Cooperative Virtual Environments: lessons from 2D multi user
interfaces, Proceedings of the Conference on Computer Supported
Collaborative Work'96, Boston, MA, USA , pp. 390-398, November 1996.

[121] Glenn E. Krasner and Stephen T. Pope, A Description of the Model-View-
Controller User Interface Paradigm in the Smalltalk-80 System , Journal of
Object Oriented Programming, Vol. 1, No. 3, pp. 26-49, 1988.

[122] Steve Harrison and Paul Dourish, Re-place-ing space: the roles of place and
space in collaborative systems, Proceedings of the 1996 ACM conference on
Computer supported cooperative work, Boston, MA, USA , pp. 67-76,
November 1996.

68

