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Abstract

Cryptosystems based on elliptic curves are in wide-spread use, they are considered
secure because of the difficulty to solve the elliptic curve discrete logarithm prob-
lem. Pollard’s rho method is regarded as the best method for attacking the logarithm
problem to date, yet it is still not efficient enough to break an elliptic curve cryptosys-
tem. This is because its time complexity is O(

√
n) and for uses in cryptography the

value of n will be very large. The objective of this thesis is to see if there are ways
to improve Pollard’s rho method. To do this, we study some modifications of the
original functions used in the method. We also investigate some different functions
proposed by other researchers to see if we can find a version that will improve the
performance. From the experiments conducted on these modifications and functions,
we can conclude that we get an improvement in the performance for some of them.

Keywords— elliptic curves, Pollard’s rho method, elliptic curve discrete loga-
rithm problem, cryptography, adding walk, mixed walk, cycle-detecting algorithm,
iterating function, random walk
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1 Introduction
It is possible to write endlessly about
elliptic curves. (This is not a threat.)

Serge Lang, [Lan78]

Elliptic curves have been studied in mathematics for almost two millennia. It first ap-
peared in Diophantus’s Arethmetica [BM02] as the problem "To divide a given number
into two numbers such that their product is cube minus its side". The task here is to find
x and y such that x(δ − x) = y3 − y for a given number δ, which actually is an elliptic
curve [BM02].

Physics, applied areas and many fields of mathematics are brought together by the
study of elliptic curves. One example is when elliptic curves are used in cryptography
which we first encountered in the mid-eighties in primality proving [GK99] and when
Lenstra used elliptic curves to factorise integers [LJ87]. This might have inspired Victor
Miller [Mil85] and Neil Koblitz [Kob87] since around 1985 they independently suggested
using finite abelian groups, provided from elliptic curves over finite fields, in cryptosys-
tems. The security of this type of cryptography lies in solving the elliptic curve discrete
logarithm problem (ECDLP) which can be extremely hard depending on the elliptic curve
E and the underlying finite field [HMV04].

However, a man called Pollard wrote an article in 1978, where he explained that his
function [Pol78] together with a cycle-detection algorithm could be used to solve the
discrete logarithm problem. In a cycle-detection algorithm, we let an iterating function
f : G → G be a random mapping1, where G is a group of finitely many elements. The
sequence x0, x1, x2, ... is then defined by xi+1 = f(xi) with some initial value x0 ∈ G.
This sequence represents a walk in the group G. Since G is finite, some element must
appear twice in the sequence; there is some pair of distinct indices m and 2m such that
xm = x2m. When this happens it is called a collision [HPSS08].

Pollard proposed using Floyd’s cycle-detecting algorithm [Knu97, exercise 6, p.7] in
his method which got the name Pollard’s rho method.

Since Pollard’s rho method is simple and effective for small groups, it is of practical
interest. It has the advantage of only requiring a negligible amount of storage, while its
complexity [Pol78] is similar to the complexity of other methods used to solve the discrete
logarithm problem, such as baby-step giant-step algorithm [Sha71].

There are modifications to this method that are put forth by researchers; in one of them
we use the cycle-finding algorithm suggested by Brent five years after Pollard published
his article about the rho method. Brent’s cycle-finding algorithm is supposedly 36% faster
than Floyd’s [Bre80].

In 1998 Teske executed an experiment of Pollard’s rho method, where the original it-
erating function was compared to the functions proposed by Teske herself [Tes98, Tes00],
revealing a significant improvement of the performance.

Around these years Van Oorschot and Wiener found that parallelising a variant of
Pollard’s rho method yields a factor b speed-up of run-time when using b processors
[VOW99].

A couple of years later, Nivash proposed yet another cycle-detecting algorithm where
a stack is used [Niv04].

1A mapping that is chosen from the set of all |G||G| mappings f : G → G with equal probability is
called a random mapping [Tes98].
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Pollard’s rho method, especially its modifications and when being parallelized, is con-
sidered the best method for attacking the elliptic curve discrete logarithm problem known
to date [Tes00].

This thesis intends to see whether or not we can get better performance by providing
some changes in Pollard’s rho method. As already mentioned, some improvement of the
method has already been put forth by other researchers. Our work will include some of
the modifications made in these experiments, but we will also add some new changes,
trying to fill in the gap of existing work on this topic.

1.1 Report outline
Section 2 will give the reader the concepts needed to understand the rest of the thesis; this
will include the definitions of groups and fields, the arithmetic of elliptic curves and their
properties and also an overview of how Pollard’s rho method works, especially over the
elliptic curves. In section 3 we will provide the reader with implementation details and the
methods that were used to answer the research question. Section 4 contains information
of the different functions compared in our experiments and the findings on these. We will
also include the result from a more thorough experiment conducted on the iterating func-
tions suggested by Teske [Tes98]. Section 5 includes a discussion about the results found,
a few considerations and future work opportunities. Lastly, in section 6 we conclude the
report.
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2 Preliminaries
In this section, we will provide the background information necessary in order to under-
stand the rest of the thesis, this will form the basis of the report. This will include an
introduction of elliptic curves, first over the field of real numbers and later over the finite
fields. It will also include a description of the arithmetics over elliptic curves. We then
introduce the general Pollard’s rho method followed by Pollard’s rho method over elliptic
curves.

We will assume that the reader is familiar with the basics of algebraic structures and
cryptography. However, let us recall the following about groups and fields

2.1 Algebraic structures
Definition 1 (Group). Let G be a non-empty set and let ∗ be a operation that combines
two elements in the set to produce a third element in the set. We say that the pair (G, ∗)
is a group if the following properties are satisfied

1. The operation is associative. Hence, a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b and c in G.

2. There is an identity element e in G with respect to ∗. Hence, for all a in G we have
that e ∗ a = a ∗ e = a

3. For each element a in G there is an element a′ in G such that a ∗ a′ = a′ ∗ a = e. The
element a′ is called an inverse of a with respect to ∗.

If the group has the property that a ∗ b = b ∗ a for all a, b in G, then (G, ∗) is called an
abelian group.

Definition 2 (Subgroup). Let H be a subset of the group (G, ∗), if H forms a group under
the operation ∗ then it is called a subgroup of G.

Definition 3 (Cyclic subgroup). Let G be a group and a ∈ G. The subgroup 〈a〉 =
{ak| k ∈ Z} is called the cyclic subgroup generated by a.

Definition 4 (Cyclic group). A group G is cyclic if it is equal to one of its cyclic sub-
groups, hence if G = 〈a〉 for some element a, called a generator of G.

Definition 5. The number of elements of a finite group G is called its order. It is denoted
by |G|.

Theorem 1 (Lagrange’s theorem). Let H be a subgroup of the finite group G, then the
order of H divides the order of G. Hence,

|G| = m · |H| , for some integer m.

Proof. The proof for this theorem can be found in [Gal12, p.148]

Definition 6 (Ring). A ring is a setR equipped with two binary operations, + and · called
addition and multiplication respectively. It must satisfy the following axoims

1. R is an abelian group under addition. The additive identity, denoted 0R, is called zero.

2. Multiplication is associative, meaning that (a · b) · c = a · (b · c) for all a, b, c ∈ R

3



3. a · (b+ c) = (a · b) + (a · c) and (b+ c) · a = (b · a) + (c · a). Hence, multiplication is
distributive over addition.

If the multiplication is commutative, i.e.,

a · b = b · a

for all a, b ∈ R, then the ring is called commutative.
A unity, denoted 1R, is a non-zero element that is an identity under multiplication. If

the ring contains such an element then it is called a ring with unity.

Definition 7 (Unit). Let R be a commutative ring with unity and a be a element in R. If
a has a multiplicative inverse, i.e. there is a a′ such that aa′ = a′a = 1R, then a is called
a unit.

Definition 8 (Field). A field is a commutative ring with unity in which every non-zero
element in it is a unit [Gal12].

Definition 9 (Discrete logarithm problem). Let g, h ∈ GwhereG is a group. The discrete
logarithm problem (DLP) is to find an integer x ∈ G such that

gx = h,

if such an integer exists. As we can see in the book [HPSS08], the smallest posible x with
this property is called the discrete logarithm of h in base g and is denoted by x = logg(h).

A special case is the following: Let p be a prime and let g, h ∈ F∗p, where g is a
generator to the group. The discrete logarithm problem is to find an integer x such that

gx ≡ h mod p.

Example 2.1. We let the group be F∗5 = {1, 2, 3, 4}. Since 2 and 3 generate our group
with respect to multiplication mod 5, we let g = 2 and h = 1. We then get

2x ≡ 1 mod 5

and so
x = log2(1) = 4.

2.2 Elliptic curves
In this section, we introduce the reader to the arithmetics of elliptic curves. Knowledge of
these is necessary in order to understand the methods to solve the elliptic curve discrete
logarithm problem for which this work is about.

We will start by defining an elliptic curve over a field K. We will let K be the field
over real numbers for now, but later on introduce the field we will work over for the
remainder of the thesis, namely the finite field Fp.

Definition 10. An elliptic curve E over a field K is the set of all points, (x, y) ∈ K ×K
satisfying the simplified Weierstraß equation

E(K) : y2 = x3 + ax+ b, (1)
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where the coefficients belong to the field K. An additional element usually denoted ∞
and called the ”point at infinity” is added to the set. It is visualised as a point sitting at
the top and the bottom of every vertical line. It is also required that the elements a and
b are chosen such that the discriminant D = 4a3 + 27b2 6= 0, i.e. such that the curve is
non-singular. This ensures that the curve has no cusps or self-intersections [Kob94]. We
will see in the examples below that the curves we will use have distinct real roots, this
will give us a discriminant different from zero.

Example 2.2. Let y2 = x3 − x, we have that this cubic has three disctint roots since
we can rewrite it as y2 = x(x − 1)(x + 1) and see that the roots are x = 0,±1. The
discriminant for this curve is equal to −4 6= 0. This elliptic curve is depicted in Figure
2.1 (a)

Example 2.3. Now we instead have that y2 = x3 + 1
4
x+ 5

4
and get that we have one real

root by the same argument, and the discriminant is equal to 169
4
6= 0. This elliptic curve is

depicted in Figure 2.1 (b)

Example 2.4. We let y2 = x3− 3x+ 2 wich can be rewritten as (x− 1)2(x+ 2) and here
we can see that we have a multiple root. When computing the discriminant we get that

4(−3)3 + 27 · 22 = 0.

Hence, this curve is singular. This is depicted in Figure 2.2 (a), where we see that the
curve has a self intersection.

Example 2.5. Finally, for the last case we will get a triple root since we have the curve
y2 = x3. As anticipated this discriminant will be equal to 0 and this singular curve,
depicted in Figure 2.2 (b) will have a cusp.

(a) E1 : y
2 = x3 − x (b) E2 : y

2 = x3 + 1
4x+ 5

4

Figure 2.1: Elliptic curves over the field R.
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(a) E2 : y
2 = x3 − 3x+ 2 (b) E1 : y

2 = x3

Figure 2.2: Examples of curves with a self intersection as in (a) and a cusp as in (b).

As we can see in the Figures 2.1 and 2.2, the shape of the curve depends on the values of
a and b, and an elliptic curve is symmetric over the x-axis which means that the reflection
of any point P ∈ E(K) in the x-axis will also belong to the curve.

Point addition. We let E be an elliptic curve defined over the field K and E(K) be
the set of all points on the curve. Then E(K) form a group, with the point at infinity
∞ being the identity element. This means that there is some operation defined over the
elliptic curve, namely point addition.

To define point addtion we first take two elements of the set,

P = (x1, y1), Q = (x2, y2).

We then draw a line L through these points, this line will intersect the curve E at some
pointR′ = (x3,−y3), and if we reflect it over the x-axis we will get the pointR = (x3, y3)
which we will define as the sum of P and Q [Was08]. This is depicted over the field of
real numbers in Figure 2.3.

6



Figure 2.3: Point addition: P +Q = R over the field R.

For us to know the coordinates of point R, we need to calculate the slope of L. From the
definition given earlier we know that this line will go through the reflection of the point
R. We will go through this briefly. A full explanation of how we get the slope can be
found in [Was08, p. 12-14].

Case 1. See figure (2.3).

We will start by assuming that P and Q are distinct, x1 6= x2. The slope m between
these points will then be

m =
y2 − y1
x2 − x1

and then the third point R has the coordinates

x3 = m2 − x1 − x2
y3 = m(x1 − x3)− y1.

Since the line between P and Q are the same as the line between Q and P , addition
over elliptic curves are commutative.

Case 2. We still assume that P and Q are distinct but here let x1 = x2 and y1 6= y2. This
will give us a vertical line through these points, this line will intersect the curve E
at the point at infinity, ∞. If we reflect this point over the x-axis we will get the
same point,∞. Thus,

P +Q =∞

Here the point Q are the inverse of point P , which we denote P ′.

7



Figure 2.4: Point addition over R where P 6= Q, x1 = x2 and y1 6= y2

Case 3. Now let P = Q = (x1, y1), the line between these points will now be the tangent
line of the curve E at point (x1, y1). In the case where y1 = 0 the sum of P + Q
will again be the point at infinity. If y1 6= 0 the slope m is instead

m =
3x21 + a

2y1

and the coordinates of R are

x3 = m2 − 2x1

y3 = m(x1 − x3)− y1.

This is also called point doubling since we compute the sum P + P = 2P.

Figure 2.5: Point addition over R where P = Q, y1 6= 0.

Case 4. The final case is when Q = ∞. Now we will have a vertical line between P
and ∞, this line will intersect the curve E at some other point namely point P ′.

8



Reflecting this point over the x-axis will again give us P . If we let P =∞ as well,
we have that∞+∞ =∞. This shows why∞ is the identity element of the group
[Was08].

The addition is also associative. Hence, it does not matter if we take (P + Q) + R′ or if
we take P + (Q+R′). A thorough explanation and proof for the associative property can
be found in [Fri17].

We now know that the group E(K) satisfies all the properties needed for a group to
be abelian.

Finite fields. As mentioned earlier, for the remainder of this thesis we will restrict our
curves over the finite field Fp of prime p elements. We have already given a geometrical
explanation for the curves over the field R which does not apply for curves over finite
fields, so we should also provide the reader with a geometrical explanation for this case.

Since this case is analogous to the case over real numbers, we only have to remember
to reduce modulo p when using point addition or elliptic curve scalar multiplication,
where we add a point P to itself multiple times. We will define this algorithm later in this
section.

Thus, all the numbers involved will be integers in the interval [0, p − 1]. This means
that the elliptic curve over a finite field will no longer look like a curve [Ali15].

The addition over a finite field is shown in Figure 2.6.

Figure 2.6: Point addition over the curve E(F127) : y2 ≡ x3 − x+ 3 (mod 127) [Cor19].

In Figure 2.6 the line y ≡ 4x + 83 (mod 127) goes through the points P and Q and
wraps around at the borders until it hit another point. We then mirror this point over the
horizontal line, y ≡ 127

2
(mod 127). This is P +Q = R over the curve E(F127).

Example 2.6. (Point addition) Let us start with taking the curveE(F13) : y2 = x3+2x+5,
where P = (x1, y1) = (2, 2) ∈ E(F13) and Q = (x2, y2) = (4, 8) ∈ E(F13). This curve
has 12 points, namely

∞, (2, 11), (2, 2), (3, 8), (3, 5), (4, 8), (4, 5), (5, 7), (5, 6), (6, 8), (6, 5), (8, 0).
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What we want is to find the sum R = P + Q = (x3, y3). Since P 6= Q we have that the
slope m of the line through these points is m = 8−2

4−2 = 3. The coordinate of R is then

x3 = 32 − 2− 4 ≡ 3 mod 13

y3 = 3(2− 3)− 2 = −5 ≡ 8 mod 13.

We can also try the case when Q = P , then P + P = R where P = {3, 8}. The slope m
is now calculated differently, namely as

m =
3(32) + 2

2 · 1
=

29

16
≡ 3

3
≡ 1 (mod 13).

We now get that the coordinates of R are

x3 = 12 − (2 · 3) ≡ 8 mod 13

y3 = 1(3− 8)− 8 ≡ 0 mod 13.

The groupE(Fp) will be finite over this field since x, y ∈ Fp. To determine the number
of all points on the curve might be useful and one way to do this is to calculate x3 +ax+b
for each possible x ∈ Fp, if this is a quadratic residue mod p; i.e. y2 ≡ x3 + ax + b mod
p, then it is also possible to take its square root mod p and find ±y, and so we get the two
points (x, y) and (x,−y). If x3 +ax+b ≡ 0 mod p, then we have one point namely (x, 0)
and if the equation is not a quadratic residue, y2 6≡ x3 + ax+ b mod p there are no points
on the curve for this x [Was08].

The Legendre symbol for a prime p is defined as

(
x

p

)
=


1 if s2 ≡ x (mod p) and s 6≡ 0 (mod p)
−1 if s2 6≡ x (mod p)
0 if x ≡ 0 (mod p)

This means that we get 1+
(
x3+ax+b

p

)
number of points on the curve for every x ∈ Fp.

This is due since if y2 ≡ x3 + ax + b mod p, using the Legendre symbol we will get the
value 1 but there will be two solutions to the equation.

Summing over all x ∈ Fp and including 1 for∞ yields the formula

1 +
∑
x∈Fp

1 +

(
x3 + ax+ b

p

)
= p+ 1 +

∑
x∈Fp

(
x3 + ax+ b

p

)
.

The number of elements in the group E(Fp), denoted #E(Fp), is called the order of the
group and as long as p is not very large, it can be calculated using this formula.

Example 2.7. We take the curve E(F5) : y2 = x3 + 2x+ 4 and we want to calculate the
number of points on the curve by using the previous theorem. Hence,

#E(F5) = 5 + 1 +
4∑

x=0

(
x3 + 2x+ 4

5

)
=

= 5 + 1 +

(
4

5

)
+

(
2

5

)
+

(
1

5

)
+

(
2

5

)
+

(
1

5

)
=

= 5 + 1 + 1− 1 + 1− 1 + 1 = 7.
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We can also use the following theorem to get a bound for #E(Fp).

Theorem 2 (Hasse’s theorem). Let E be an elliptic curve over Fp. The number of points
in E(Fp) are estimated by

|p+ 1−#E(Fp)| ≤ 2
√
p

Proof. A proof can be found in [Was08, Theorem 4.2].

Elliptic curve scalar multiplication. Except for point addition, we also have the al-
gorithm called elliptic curve scalar multiplication which was quickly mentioned earlier.
Here we add a point P on the curve E to itself multiple times, such as

nP = P + P + P + ...+ P︸ ︷︷ ︸
n times

,

where n is a natural number. If n is a large number, it will take quite some time to compute
nP by just adding P to itself n times [Cor19]. Instead we can use the double and add algorithm
which means that we take the binary expansion of n,

n = nk2
k + nk−12

k−1 + ...+ n02
0

such that
nP = nk2

kP + nk−12
k−1P + ...+ n02

0P.

Here ni is a coefficient which can be either one or zero.

Example 2.8. Say we have the curve E(F19) : y2 = x3 +2x+9, which contains the point
P = (13, 16). We try to find the point Q = 17P by taking the binary expansion of 17.
The binary number of (17)10 is (10001)2, hence

17P = 1 · 24P + 0 · 23P + 0 · 22P + 0 · 21P + 1 · 20P = 24P + 20P

This means that we only need four doublings and one addition to compute 17P , which
will go much faster than adding P to itself repeatedly. Hence, by using the double and
add algorithm we can quickly compute nP for a very large n. Since we work over the
finite field the coordinates will also be relatively small [Was08].

To compute the coordinates of Q we do as follows

P = (13, 16)

2P = (13, 16) + (13, 16) = (4, 9)

4P = (4, 9) + (4, 9) = (3, 17)

8P = (3, 17) + (3, 17) = (5, 7)

16P = (5, 7) + (5, 7) = (6, 16),

and so,
Q = 17P = (13, 16) + (6, 16) = (0, 3).

Since P ∈ E(Fp) it is a generator of a cyclic subgroup of E(Fp) and since this group
is finite 〈P 〉 will also be finite and have the order k. Hence,

〈P 〉 = {nP | n ∈ [0, k − 1]} = {∞, P, 2P, 3P, . . . , (k − 1)P}.

11



Example 2.9. If we take the curve y2 ≡ x3 + 2x+ 3 in F89 and P = (33, 36) then

• 0P =∞

• 1P = (33, 36)

• 2P = (33, 53)

• 3P =∞

This means that the order of the cyclic subgroup over F89 generated by P is 3.

We now know how to find Q = nP by knowing n and P , the question now is if we
can find n by instead knowing P and Q.

Definition 11. Let P and Q ∈ 〈P 〉 be points in the group E(Fp), where the order of P is
k. Then the elliptic curve discrete logarithm problem (ECDLP) is to find n ∈ [1, k − 1]
such that

nP = P + P + P + ...+ P︸ ︷︷ ︸
n times

= Q.

The integer n is called the discrete logarithm of Q to the base P which we denote n =
logp(Q)[HMV04]. It is a special case of the discrete logarithm problem mentioned in
Definition 9.

The security of cryptosystems based on elliptic curves depends on how difficult it is to
solve the ECDLP, to avoid attacks it is necessary that the order of the curve is divisible by
a sufficiently large prime [HMV04]. The orders of the curves we use in our experiments
are primes but not such that we cannot solve the ECDLP.

One exhausting way to solve this problem is to attack it by brute force: try all val-
ues of n until one gives us Q. The running time for this is on average k/2 but in the
worst case k steps, which means that if k is very large, there would be an absurd amount
of computations [HMV04]. Other ways to attack the discrete logarithm problem is the
Pohlig-Hellman algorithm [HPSS08, pp. 86-92], and Pollard’s rho method which we will
focus on for the rest of the thesis.

2.3 Cycle-finding algorithms
Let us start with a finite set G of order k and let

f : G→ G

be a function that behaves randomly, i.e. are good at mixing the elements in G. Then start
with a random element x0 ∈ G and compute the iterations xi+1 = f(xi) for i > 0 such
that we get a sequence x0, x1, x2.... Some element from the set G must appear twice in
the sequence since the set is finite. A diagram of the sequence looks like the Greek letter
ρ, depicted in figure 2.7.

12



Figure 2.7: The sequence {xi} have the shape of ρ. [HPSS08]

The sequence will consist of a tail of length T and an endlessly repeated cycle of length
M , where T is the largest integer in the sequence such that xT−1 appears only once andM
is the smallest integer such that xT+M = xT [HPSS08]. The task of the cycle-detecting
problem is to find T and M .

We could compute xi for all i > 0, store them and then look for duplicates. This is
not to prefer since this will require much storage, around

√
|G|. Instead, we will be using

Floyd’s cycle-finding algorithm which will have more or less the same running time as the
method we just mentioned, but it will only store the current elements computed [Was08].
This algorithm is sometimes called the tortoise and the hare algorithm since we have xi
and x2i moving through the sequence at different speeds.

We will define this cycle-finding algorithm below,

Definition 12 (Floyd’s cycle-finding algorithm). Start with the pair (x0, x2·0). Let i ≥ 0
and (xi+1, x2i+2) be iteratively computed from the previous pair (xi, x2i) until we get a
collision, xm = x2m for some natural number m. The smallest such m lies in the range
T ≤ m ≤ T + M where T and M are the preperiod and the period of the sequence xi
respectively [Knu97, exercise 6, p.7].

Example 2.10. We let f(x) = x2 + 1 be the function and the initial value be x0 = 1. The
finite set G is of order 187.

Index i xi+1 = f(xi) x2(i+1) = f((x2i))

1 2 5
2 5 116
3 26 50
4 116 39
5 180 116
6 50 50

Table 2.1: Floyd’s cycle finding algorithm where T +M = 9, T = 3 and x6 = x12.

We find a collision after 6 iterations and since T + M = 9 and T = 3 we get that
T ≤ 6 < T +M.

The expectations of both the tail of length T and the loop of length M are close to
√

kπ
8

[Pol75]. More interesting might be the expectation of the tail and loop combined, T +M .
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Theorem 3. Let G be a finite set of cardinality k, let x ∈ G be the starting point and
f : G→ G be a map. If the map is sufficiently random, the expected value of T +M is

E(T +M) ≈
√
kπ

2
≈ 1.25

√
k.

Proof. Let n = O(
√
k) andX be the random variable for the number of elements selected

before a duplication. From [HPSS08] and [VOW99] we have that the probability that no
match is found after computing the first n values x0, x1, ..., xn−1 is

Pr(X > n) =
n−1∏
i=1

(
k − i
k

)
=

n−1∏
i=1

(
1− i

k

)
. (2)

The reason we can write it like this is since if the first i elements are distinct, there are
k − i elements that are different from the previously chosen ones. Hence, the probability
to get a new element is k−i

k
.

Since O(
√
k) is approximately

√
k and k is large i

k
will be small for 1 ≤ i < n and

so

Pr(X > n) =
n−1∏
i=1

(
1− i

k

)
≈

n−1∏
i=1

e−
i
k = e−

(1+2+...+(n−1))
k ≈ e−

n2

2k . (3)

The reason we can do these approximations is that firstly 1− t ≈ e−t for small values of
t and secondly

∑n−1
i=1 i = 1 + 2 + 3 + ...+ (n− 1) = n2−n

2
≈ n2

2
. for large n.

We use the formula for expected value

E(X) =
∞∑
n=1

n · Pr(X = n) =
∞∑
n=1

n · Pr(xn is the first match)

which can be expanded to

E(X) =
∞∑
n=1

n · Pr(X = n) =
∞∑
n=1

n
[
Pr(X > n− 1)− Pr(X > n)

]
=

1
[
Pr(X > 0)− Pr(X > 1)

]
+ 2
[
Pr(X > 1)− Pr(X > 2)

]
+ 3
[
Pr(X > 2)− Pr(X > 3)

]
+ ... =

∞∑
n=0

Pr(X > n). (4)

If we substitute (3) into (4) we get

E(X) ≈
∞∑
n=0

e−
n2

2k ≈
∫ ∞
0

e−
x2

2k dx (5)

We can approximate the sum with a integral if k is large and the terms in it are converging.
Now let t = x√

2k
, and then dx =

√
2kdt. Hence,

E(X) =
∞∑
n=0

e−
n2

2k ≈
∫ ∞
0

e−
x2

2k dx =
√

2k

∫ ∞
0

e−t
2

dt =

√
2k

√
π

2
=

√
πk

2
.
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In [Spi68] we have that
∫∞
0
e−t

2
dt =

√
π
2

from the standard definite integral and so∫ ∞
0

e−ax
2

dx =
1

2

√
π

a
.

Hence, the expected numbers of elements chosen before a duplication is
√

πk
2

.

This means that we should be able to get a collision in a small multiple of
√
|G| steps.

Since it says in Definition 12 that the number of iterations will at most be T + M before
the hare and the tortoise collides, we know that if we use a random function, we should
get a collision in at most 1.25

√
k steps. However, remember from Theorem 3 that this

value is an approximation.

2.4 Pollard’s rho method for discrete logarithms
The discrete logarithm problem, mentioned in Definition 9 and the special case for elliptic
curves in Definition 11 is a mathematical problem used in cryptography, and many public-
key cryptosystems, are based on the difficulty to solve this algorithm. As Teske mentions
in [Tes00], the best way to attack it on elliptic curves is by using Pollard’s rho method
which we define in the following way.

Let G be a finite cyclic group whose order k is a prime and h, g be elements in G.
Also, let g ∈ G be a generator of the group.

Partition the group G into pairwise disjoint sets S1, S2, ..., Sr of roughly equal size.
Where Pollard suggests that we use three sets where

v(xi) =


S1 if 0 ≤ xi <

k
3

S2 if k
3
≤ xi <

2k
3

S3 if 2k
3
≤ xi < k

(6)

Let x0 = 1 /∈ S2 be the initial value and the iterating function be defined as

xi+1 = f(xi) =


g · xi if xi ∈ S1

x2i if xi ∈ S2

h · xi if xi ∈ S3

for i ≥ 0. At the same time as we compute xi we also compute the values ai and bi for
all i ≥ 0 satifsying xi = gaihbi . Since x0 = 1 it is understood that a0 = b0 = 0 and for
i ≥ 0,

ai+1 =


ai + 1 mod k if xi ∈ S1

2ai mod k if xi ∈ S2

ai if xi ∈ S3

and

bi+1 =


bi if xi ∈ S1

2bi mod k if xi ∈ S2

bi + 1 mod k if xi ∈ S3

We will now use Floyd’s cycle-finding algorithm to find two group elements xm and x2m
where m ≥ 0 such that we get a collision in the sequence, say xm = x2m. Hence

xm = gamhbm = ga2mhb2m = x2m.
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Rewriting this gives us
ga2m−am = hbm−b2m .

Taking the discrete logarithm on both sides yields

(a2m − am) ≡ (bm − b2m) · logg(h) (mod k).

If gcd(bm− b2m,k)= 1, which is true if bm 6≡ b2m mod k, then we can multiply both sides
with the multiplicative inverse of bm − b2m such that

logg(h) ≡ (bm − b2m)−1(a2m − am) (mod k).

If gcd(bm − b2m,k) > 1 there are more than one solution to this equation, this is only the
case if and only if bm ≡ b2m mod k. This part is omitted from this thesis [HPSS08].

In our experiments we chose k to be a prime, meaning that gcd(bm − b2m,k) would
almost always be 1. We could also get that there were k solutions to the equation if
bm ≡ b2m mod k.

We can divide the group into more than three sets, in fact, Teske mentions in [Tes00]
that 20 sets are a good choice. In [HMV04] Hankerson also mentions 16 sets and 32 sets.
Later in this thesis, we will look at what change we get in the result when we use many
different numbers of sets.

2.5 Pollard’s rho method for elliptic curve discrete logarithm problem
We want to solve the elliptic curve discrete logarithm problem using Pollard’s rho method,
which means that we want to find n where n is an element not higher than the order of
the starting point P , such that nP = Q and where Q ∈ 〈P 〉.

We start by dividing the group, which in our thesis is E(Fp), into three sets just as
in equation (6). Our initial value will now be a point R0 = a0P + b0Q where a0 and b0
are two random integers in [1, k − 1] where k is the number of elements in the subgroup
generated by P , hence |〈P 〉|. Other ways to choose the point is R0 = P , where a0 = 1
and b0 = 0 or letting R0 = a0P where a0 is random.

We will then define a sequence of group elements R0, R1, R2, ... and the iterating
function f is defined as

Ri+1 = f(Ri) =


P +Ri if Ri ∈ S1

2Ri if Ri ∈ S2

Q+Ri if Ri ∈ S3

(7)

for i ≥ 0 [EEA12].
So when the point belongs to the first or third partition we are adding the points, when

it belongs to the second partition we instead double the point using point doubling. Both
are described in section (2.2). This, together with the hash function in equation (6), we
will refer to as Pollard’s original method for the rest of the thesis.

If we get that Ri =∞, this will automatically mean that Ri /∈ S2. In our experiments
we decide that Ri =∞ ∈ S1.

The sequence ai and bi are calculated just as in the previous section,

ai+1 =


ai + 1 mod k if Ri ∈ S1

2ai mod k if Ri ∈ S2

ai mod k if Ri ∈ S3
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and

bi+1 =


bi mod k if Ri ∈ S1

2bi mod k if Ri ∈ S2

bi + 1 mod k if Ri ∈ S3.

We continue with these iterations until a collision of two points occurs,

Rm = amP + bmQ = a2mP + b2mQ = R2m.

Rewriting this gives us
(bm − b2m)Q ≡ (a2m − am)P

and just as for discrete logarithms

n = logP (Q) ≡ (bm − b2m)−1(a2m − am) (mod k).

Pollard’s rho original method for elliptic curve discrete logarithm problem is presented
in pseudo code as two algorithms, the iterating function in Algorithm 1 and Floyd’s cycle-
finding algorithm in Algorithm 2 [EEA12].

Algorithm 1 Iterating function

1: Functions f(Ri) : Ri+1

2: f(ai) : ai+1

3: f(bi) : bi+1

4: if Ri ∈ S1 then
5: Ri+1 ← Ri + P
6: ai+1 ← ai + 1
7: bi+1 ← bi
8: else if Ri ∈ S2 then
9: Ri+1 ← 2Ri

10: ai+1 ← 2ai
11: bi+1 ← 2bi
12: else
13: Ri+1 ← Ri +Q
14: ai+1 ← ai
15: bi+1 ← bi + 1
16: end if
17: return Ri+1, ai+1, bi+1

17



Algorithm 2 Pollard’s rho method

Require: : P ∈ E(Fp) of order k, Q ∈ 〈P 〉 and the sets S1, S2 and S3

Ensure: Integer n where nP = Q
1: a0 ←∈R [1, n− 1]
2: b0 ←∈R [1, n− 1]
3: i← 0
4: Compute R0 ← a0P + b0Q
5: while Ri 6= R2i do
6: {Ri+1, ai+1, bi+1} = {f(Ri), f(ai), f(bi)}
7: {R2(i+1), a2(i+1), b2(i+1)} = {f(f(R2i)), f(f(a2i)), f(f(b2i))}
8: i← i+ 1
9: end while

10: if d = GCD((b2i − bi), k) = 1 then
11: n← (a2i − ai)(bi − b2i)−1 (mod k)
12: end if
13: Return n

Example 2.11. Say we have the curve

E(F659) : y2 = x3 + 416x+ 569

where the point P = (23, 213) is a generator to the subgroup 〈P 〉 of order k = 673
and Q = (150, 25) ∈ E(F659). We partition the elements of E(F659) into three subsets
according to Pollard’s original method.

Our goal is to find n such that nP = Q, and we start with the point R0 = a0P + b0Q
where a0 and b0 are random integers in the inteval [1, k − 1]. Table 2.2 shows the values
of Ri, ai, bi, R2i, a2i and b2i at the end of each run of Algorithm 1. We get that

R14 = R28 = (431, 229),

and we want to use this to find our n. Since the order of 〈P 〉 is a prime number and
b28 − b14 6= 0 we will have one and only one solution to this equation. To find n we
compute

b28 − b14 = 179− 53 ≡ 126 (mod k), 126−1 ≡ 219 (mod k)

and
219 · (a28 − a14) = 454 · 587 ≡ 10 (mod k).

Hence, n = logP Q = 10.
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Index i Ri ai bi R2i a2i b2i

0 (549, 200) 104 488 (549, 200) 104 488
1 (104, 527) 104 489 (109, 495) 105 489
2 (109, 495) 105 489 (400, 613) 107 489
3 (140, 93) 106 489 (637, 476) 428 610
4 (400, 613) 107 489 (409, 158) 429 611
5 (377, 539) 214 305 (435, 631) 186 549
6 (637, 476) 428 610 (598, 274) 373 425
7 (98, 467) 428 611 (431, 229) 73 179
8 (409, 158) 429 611 (330, 269) 146 359
9 (85, 54) 185 549 (68, 385) 584 90
10 (435, 631) 186 549 (301, 380) 586 90
11 (93, 509) 372 425 (644, 230) 500 180
12 (598, 274) 373 425 (435, 631) 501 181
13 (289, 417) 373 426 (598, 274) 330 362
14 (431, 229) 73 179 (431, 229) 660 53

Table 2.2: Every step of the iterating function in Pollard’s rho method.
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3 Methods
This section will give the reader a detailed overview of how the scientific methods were
used to give us the result described in Section 4.

3.1 Research
The research started by finding information about elliptic curves since they are the base
of this report. The books we looked at was mainly [Was08] and [HMV04].

The articles that laid the foundation for the knowledge of Pollard’s rho method was
[Pol75, Pol78], which are the original articles by Pollard. To get some more thorough
knowledge, some chapters of the book [HPSS08] was read.

Now we had information about Pollard’s rho method for discrete logarithm problem.
Since this essay is about Pollard’s rho method for elliptic curve discrete logartihm prob-
lem, other articles and books were of importance, such as [HMV04, EEA12]. Later on,
when the first tests were already done, some articles written by Teske [Tes98, Tes00] were
studied in order to understand the next step in the testing.

3.2 Implementation
The experiments were executed in Wolfram Mathematica because of an interest and
knowledge in this software. The code is original except for some implementations of
elliptic curve functions. What we needed to implement was the Pollard’s rho method that
would look almost the same for all the modifications and the different iterating functions.

3.3 Size of sample space
The performance of Pollard’s rho method might vary a lot between different instances;
this means that we needed to take the variations into account and choose a large sample
space, by sample space we mean the number of ECDLP cases.

Teske recommends using a sample space of size N = 10000 since this produces a
constant average of the factor L (which will be defined later in this section).

Since the execution time for solving the ECDLP when using Floyd’s cycle-finding
algorithm are long over the larger curves, we instead used the sample space of size N =
1000 for every curve. This means that if we do the test two times, the average values of
the L-factor may differ up to 5% [Tes00].

In a test conducted on the side, we ran Pollard’s original method four times. The dif-
ference between the average value for the first comparison of two different performances
was 1.2%, for the other test the difference was 0.3%.

3.4 Generating instances
We chose our primes p and coefficients of the curve such that the curves over Fp have a
prime order. One reason for this is that then we can not use the Pohlig-Hellman algorithm
[HPSS08] to make the problem less hard. What this algorithm does is that it reduces the
DLP in G, which has the order k, to the DLP in groups of prime order q, where q divides
k. Therefore it turns out that the DLP in G is no harder than it is in its subgroups of prime
order. We also chose k to be a prime since then we know that all the elements in E(Fp),
except the point at infinity, will be a generator. Thus, they will all have the maximum
order. This is because, in a finite group, the order of a subgroup always divide the order
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of the group. Hence, if we have a curve of order q, the only possible orders of a subgroup
would be one or q.

We chose to do the experiments using ten different curves over Fp with different val-
ues of p. These curves were generated by first choosing random primes p in the range
[10n−1, 10n] where 3 ≤ n ≤ 9. We then chose random numbers a and points (x, y) within
the range [1, p− 1] and then calculated the numbers b based on these. If the orders of the
curves were prime numbers, we accepted them.

We did the experiments on 1000 distinct, discrete logarithm problems for every curve.
Hence, we did 10000 computations for every modification of the method. To do this, we
decided on a point as a generator for each curve; then we found 1000 distinct points (x, y)
in the subgroup of the generator, which includes, as mentioned before, all the points on
the curve.

This meant that we had a generator P and 1000 distinct points Q ∈ 〈P 〉 such that
nP = Q for every curve.

We wanted to be sure that the result given by choosing only one generator P for
each curve were not going to differ much from the result when choosing a new generator
for every point Q. To find out we conducted an experiment on the original Pollard’s
rho method and we got that the performance did not differ much, and so we chose to
continue with just one generator for every curve. The result can be found in Table A1 in
Appendix A.

3.5 Limitations and constrains
The reason we only used ten curves was because of the amount of time it took to generate
them and to find the number of elements in the group. Trying with more curves would
have meant losing time to spend on implementing and testing more functions. However,
with a better implementation, we would have experimented on more curves. One idea
would have been to generate 1000 different curves and solve one ECDLP case for every
curve, to see if we would have gotten different results.

We also wanted to do the experiments on larger curves, but Mathematica could not
generate larger ones because of the amount of memory they require.

To be able to do some more thorough tests we had to remove the two largest curves
since the amount of time at our disposal. We chose to compute 10000 ECDLP cases for
the eight curves, hence 1250 ECLDP cases for each curve. Doing this enabled us to do
more tests and get more results to compare.

3.6 Measurements
We needed some basis of measurement to be able to compare the performances of the
different functions. We used the number of iterations it took to solve the ECDLP, but then
divided it with the square root of the size of the group to get something we will call the
L-factor,

L :=
Number of iterations before a match is found√

|〈P 〉|
. (8)

We chose this denominator since the expected run-time for Pollard’s rho method is a
multiple of

√
|〈P 〉|, as we showed in Theorem 3, and so this L-factor is a suitable for

comparison.
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We ran the method four times on our 10000 ECDLP cases, and calculated the mean
L-factor for Pollard’s original method to be

Lp = 1.338.

In our experiments we compared our performances against this value. Meaning that if
we got an L-factor with a value lower than this, the performance was better.

3.7 Partitioning of the group
In his original function, Pollard partitions the group into three sets of roughly equal size.
Different rules apply in these sets. If, for example, the point Ri belongs to the set S1,
Ri+1 will be the sum of two points, Ri + P . To determine which partition a given point
(x, y) ∈ E(Fp) falls under, Pollard maps it to a partition number between one and r,
where r in his case was three, using a hash function of the form

v : 〈P 〉 → {1, 2, ..., r}.

In this thesis we used three different ways to partition the group, with one of them being
Pollard’s original mentioned in section 2.4. We also partitioned points by taking the x-
coordinate or the y-coordinate of the pointRi modulo r. Using this technique the partition
of 〈P 〉 into r sets S1, ..., Sr is defined as

v(x, y) =


S1 if x (mod r) + 1 = 1

S2 if x (mod r) + 1 = 2

...

Sr if x (mod r) + 1 = r

(9)

The question is: Does it make any difference in the performance whether we use the
x-coordinate or the y-coordinate when partitioning the points? In Table 3.1 we can see
that there is some difference in the performance when using these two hash functions.
Since we got a better performance when we used the y-coordinate we decided that in
the experiments we would let the hash function be based solely on this coordinate of the
point.

Size of p Pollard’s Original mod x Pollard’s Original mod y
[103 − 104] 1.352 1.311
[104 − 105] 1.399 1.358
[105 − 106] 1.354 1.359
[105 − 106] 1.358 1.317
[106 − 107] 1.336 1.337
[106 − 107] 1.346 1.339
[107 − 108] 1.326 1.337
[107 − 108] 1.376 1.323
[108 − 109] 1.324 1.336
[108 − 109] 1.332 1.285

Table 3.1: The performances of Pollard’s original function together with two different
hash functions.

We also used the hash function mentioned in [Tes98]. It is defined in the following way:
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Let A be a approximation of
√
5−1
2

, with a precision of 2+blog10(pr)c decimal places.
Then define a function

v∗ : 〈P 〉 → [0, 1[

by

v∗(x, y) =

{
Ay mod 1 if (x, y) 6=∞
0 if (x, y) =∞.

where Ay mod 1 will give you a fraction smaller than 1, namely Ay − bAyc. Then we
define

v : 〈P 〉 → {1, 2, ..., r} by

v(x, y) =


S1 if bv∗(x, y) · rc+ 1 = 1

S2 if bv∗(x, y) · rc+ 1 = 2

...

Sr if bv∗(x, y) · rc+ 1 = r.

(10)

Here S1, S2, ..., Sr should be of roughly similar sizes.
According to Teske [Tes98] using the approximation A with sufficiently large preci-

sion, leads to the most uniformly distributed hash values. This is due to the following
theorem in [Knu98, p.518].

Theorem 4. Let Φ be any irrational number. Let {x} = |x| − bxc. When the points
{Φ}, {2Φ},..., {nΦ} are placed in the line segment [0, 1], the points are spread out evenly
between 0 and 1.

Proof. See e.g. [Knu98, p.518]

Just as for the original iterating function, different rules apply in the sets S1, S2, ..., Sr.

Example 3.1. We take the curve E(F19) : y2 = x3 + 2x + 9 and P = (13, 16), with
the number of partitions being r = 20. Hence A is the approximation of

√
5−1
2

with the
precision of 2 + blog10(19 · 20)c = 4 decimal places and so

bv∗(x, y)·rc+1 = b(Ay mod 1)·rc+1 = b(0.6180·16 mod 1)·rc+1 = b0.889·20c+1 = 18

This means that the point P = (13, 16) will be mapped to the set S18.
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4 Result
This section will introduce the iterating functions over elliptic curves that we use in our
experiment, together with the result that will be presented in various ways, such as tables
and graphs.

4.1 Iterating functions
In this subsection we consider the functions we used for our experiments. We have already
talked about the original function proposed by Pollard in Section 2.5 which is an iterating
function that is supposedly random, although there is no proof of this. Teske [Tes98] has
suggested other functions to reduce the number of iterations before a collision occurs, we
will look at them in this section.

Before this, we wanted to see if it made any difference in the performance if we instead
of the hash function suggested by Pollard (6) used the hash function from equation (9)
where we take the y-coordinate of the previous point Ri modulo r. We also wanted to
compare these results with the ones we got if we deliberately let the group be divided into
sets of different sizes. In our experiment we have chose this hash function to be:

S1 if 0 ≤ x < p
2

S2 if p
2
≤ x < 7p

8

S3 if 7p
8
≤ x < p

For all of these experiments we let r = 3 and the rules for S1, S2 and S3 be as in Pollard’s
original function (7).

In Table 4.1 we can see the result of running these functions in our simulation for
1000 ECDLP cases in every curve.

Size of p Poll. original method Poll. function, mod y Poll. function, bad hash
[103 − 104] 1.337 1.311 1.350
[104 − 105] 1.397 1.358 1.432
[105 − 106] 1.335 1.359 1.432
[105 − 106] 1.337 1.317 1.423
[106 − 107] 1.340 1.337 1.414
[106 − 107] 1.340 1.339 1.412
[107 − 108] 1.303 1.337 1.415
[107 − 108] 1.326 1.323 1.411
[108 − 109] 1.325 1.336 1.405
[108 − 109] 1.325 1.285 1.434
Avg. 1.337 1.330 1.413

Table 4.1: The performance of Pollard’s original function together with three different
hash functions.

As anticipated, when we divided the group into sets of different sizes we got a higher
average value of L. Apart from this, the other two versions of the method do not differ
much; performance got a little better when dividing the points in the group depending on
their y-coordinate. Hence, when r = 3 the hash function suggested by Pollard might not
be the best one.
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4.1.1 Modified Pollard’s rho method

This is a function that Teske first wrote about in [Tes98] in 1998, it uses a partition of the
group E(Fp) into three sets just as for Pollard’s original function. In this function we do
not use the same partition of the set as Pollard, but instead, use the hash function found in
(10).

We start by taking random integers m,n ∈ [1, k] where k is the size of the subgroup
〈P 〉. We then make two new points M = mP , N = nQ using scalar multiplication and
define the function f : 〈P 〉 → 〈P 〉 ,

Ri+1 = f(Ri) =


M +Ri if Ri ∈ S1

2Ri if Ri ∈ S2

N +Ri if Ri ∈ S3

(11)

The sequences ai and bi are now calculated in the following way,

ai+1 =


ai +m (mod k) if xi ∈ S1

2bi (mod k) if xi ∈ S2

ai (mod k) if xi ∈ S3

and

bi+1 =


bi (mod k) if xi ∈ S1

2bi (mod k) if xi ∈ S2

bi + n (mod k) if xi ∈ S3

We let the initial point be as in Pollard’s original method, R0 = a0P +b0Q where a0, b0 ∈
[1, k − 1].

In Table 4.2 we compare the results we got from running the method using the mod-
ified version to the result we got from Pollard’s original method where we instead of the
original hash function used the hash function mentioned in (10).

Size of p Pollard’s function, Modified Pollard’s original function, different hash
[103 − 104] 1.345 1.361
[104 − 105] 1.333 1.370
[105 − 106] 1.343 1.382
[105 − 106] 1.346 1.324
[106 − 107] 1.342 1.341
[106 − 107] 1.349 1.322
[107 − 108] 1.308 1.389
[107 − 108] 1.350 1.333
[108 − 109] 1.347 1.344
[108 − 109] 1.292 1.317
Avg. 1.335 1.348

Table 4.2: Performance of the modified version of the method and Pollard’s original
method with a different hash function.

As we can see in the table above, combining the hash function defined in equation (10)
and the original iterating function gave us a higher L-factor than the modified version did.
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The performance is sligthly worse than the performance of Pollard’s original method as
well.

The modified method gave us a decrease of the L-factor by 0.22%, compared to Lp =
1.338. Hence, we can not see any significant difference between these performances.

Therefore, for a small number of partitions, it does not matter which one of the men-
tioned versions of Pollard’s method we use, since their performances are similar.

4.1.2 Adding walks and Mixed walks

We could see in 4.1.1, that changing the iterating function and the hash function did not
make any remarkable difference in the result. These iterating functions all have only
three partitions, which means that in our walk we would only take three different sizes of
steps. This lead to the following question: would we get a change in the performance if
we increased the number of different steps? Since Pollard’s original method uses point
addition and point doubling, this lead to another question: What would happen if our
iterating function only consisted of point addition?

Instead of using the already mentioned iterating functions, Teske studied two types of
functions, one of them being the Adding walk and the other one called the Mixed walk.
With these iterating functions she wanted to see if the performance of the method would
improve with the number of partitions [Tes98].

Adding walk. In adding walk we use r numbers of partitions where each one defines a
point addition that with a high probability is unique. If these additions are unique we will
have r different rules in the iterating function which means that we will have r different
sizes of steps to take in the walk.

In this function we first choose m0,m1, ...,mr, n0, n1, ..., nr ∈ [0, k − 1] where k is
the size of the subgroup generated by P . We define r terms since the hash function has
the form

v : 〈P 〉 → {1, ..., r}.

Hence,
Ms = msP + nsQ where s = 1, 2, ..., r. (12)

This means that all Ms are linear combination of P and Q and therefore it is sometimes
called a linear walk.

We then get the sequence Ri for i ≥ 0 which can be written as

Ri+1 = f(Ri) = Ri +Mv(Ri) where v(Ri) ∈ {1, ..., r}. (13)

So if v(Ri) = 1 we will use the point M1 and we will use the hash function in equation
(10) to see what value v(Ri) is.

The sequences ai and bi are calculated in the following way,

ai+1 = ai +ms (mod k)

bi+1 = bi + ns (mod k).

We can divide 〈P 〉 into how many partitions we want, Teske recommends using r =
20. In our experiments, we used 20 and 32 different partitions.

In Table 4.3 we see the performance of Pollard’s rho method when using the Adding
walk with the values r = 20 and r = 32.
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Size of p r = 20 r = 32

[103 − 104] 1.075 1.075
[104 − 105] 1.063 1.054
[105 − 106] 1.067 1.043
[105 − 106] 1.078 1.041
[106 − 107] 1.063 1.045
[106 − 107] 1.061 1.036
[107 − 108] 1.040 1.027
[107 − 108] 1.050 1.008
[108 − 109] 1.050 1.042
[108 − 109] 1.058 1.083
Avg. 1.061 1.045

Table 4.3: Performance of the Pollard’s rho method using Adding walk, where r = 20
and r = 32.

Partitions L-factor %-diff.from Lp
r = 20 1.061 -20.74
r = 32 1.045 -21.90

Table 4.4: Comparison of the average L-factors from Table 4.3.

The table shows that we get a better performance for the largest partition of r, what might
be of interest now is to know what would happen with the performance for different sizes
of r. This we will look at later in the section.

What we can see is that for these sizes of partitions, the performance is much better
than the performance of the original Pollard’s rho method where r = 3. In Table 4.4 we
can see that the performance is over 20% better than for the Pollard’s original.

One question we might ask is why we get better performance. Might it be because of
the many different sizes of steps we can take in this iterating function?

In section 4.1 we got that taking the hash function from equation (9) where we take
the y-coordinate of the previous point Ri modulo r gave us a sligtly decrease of value L,
we wanted to see how this function works for a group with more partitions. We used the
same rules as for adding walk. In Table 4.5 we see the performance of this function when
r = 20.
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Size of p Adding walk, mod y
[103 − 104] 1.059
[104 − 105] 1.093
[105 − 106] 1.035
[105 − 106] 1.044
[106 − 107] 1.083
[106 − 107] 1.050
[107 − 108] 1.055
[107 − 108] 1.079
[108 − 109] 1.067
[108 − 109] 1.070
Avg. 1.063

Table 4.5: Performance of the Adding walk but with a different hash function.

Comparing this with the result in Table 4.3 we can see that the average number of iter-
ations will almost stay the same no matter which hash function we use. However, for
the rest of the experiments, we used the hash function used in adding walk mentioned in
equation (10).

Mixed Walk. What would happen if we add some doubling steps q to the adding walk?
For mixed walks we use a r + q number of partitions where the function contains r

numbers of point addition operations and q numbers of point doubling operations, so we
have r + q rules. We will use the hash function mentioned in equation (10) and it will
here have the form

v : 〈P 〉 → {1, 2, ..., r + q}.

For partitions 1 to r we will invoke the same rules as for adding walk. We define the
points Ms = msP + nsQ where ms, ns ∈ [0, k − 1] and 1 ≤ s ≤ r, as random elements
in the subgroup 〈P 〉.

But for the partitions r + 1 to r + q we will instead do a point doubling on the term
Ri. Hence, we get that the iterating function will use a combination of point doubling
and point addition operations, explaining why it is sometimes called a combined walk
[Tes98]:

Ri+1 = f(Ri) =

{
Ri +Mv(Ri) if v(Ri) ∈ {1, ..., r}
2Ri if v(Ri) ∈ {r + 1, ..., r + q}.

(14)

Pollard’s rho original method is an example of a mixed walk since we have two adding
steps and one doubling step.

To see if the doubling step makes a difference in the performance we looked at three
cases where r + q = 20.
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Size of p r = 16, q = 4 r = 12, q = 8 r = 10, q = 10

[103 − 104] 1.058 1.118 1.195
[104 − 105] 1.086 1.149 1.197
[105 − 106] 1.064 1.182 1.215
[105 − 106] 1.057 1.125 1.178
[106 − 107] 1.098 1.140 1.207
[106 − 107] 1.075 1.132 1.239
[107 − 108] 1.103 1.147 1.197
[107 − 108] 1.070 1.125 1.208
[108 − 109] 1.078 1.161 1.219
[108 − 109] 1.098 1.118 1.216
Avg. 1.079 1.140 1.207

Table 4.6: Performance of the Mixed walk for three different cases.

Partitions L-factor %-diff.from Lp
r = 16, q = 4 1.079 -19.39
r = 12, q = 8 1.140 -14.84
r = 10, q = 10 1.207 -9.79

Table 4.7: Comparison of the average L-factors from Table 4.6 with Lp = 1.338

The difference in the performance are quite significant for these cases; we can see that
when the number of doubling are getting larger compared to the whole amount of parti-
tions, the values of L gets larger.

So what should the ratio between q and r be to give the best result? To see if we could
find an answer to this question, we had to do some more tests on different values of r and
q; the results are presented in section 4.1.3.

We can not see any signs of improvement when adding doubling steps to a function
with 20 partitions, in fact from the three cases above we can see that the L-factor gets
larger. However, we need to do a more thorough experiment to be able to see if the
doubling step is a good addition to the adding walk.

The values for the L-factor for the cases are around 10%− 19% lower than the value
Lp, this means that the number of doubling steps chosen for these cases might not be
better than the adding walk, but it gives a better performance than the original Pollard’s
rho method does. Keeping in mind that the execution time for the mixed walk when
r = 10 and q = 10 was 61.96% slower than the execution time for the original Pollard’s
rho method. This is probably due to the 50% chance that we must do a doubling when
calculating Ri+1, and the point doubling takes longer time than just adding two points.

4.1.3 More thorough experiment

We wanted to see what would happen with the L-factor if we change the number of
partitions in the adding walk and the mixed walk. In the previous experiment conducted
on the adding walk, we only tried with two different values of r, namely 20 and 32.
We saw that the performance was slightly better when we partitioned the group into 32
subsets than it was for 20 subsets. Does this mean that the performance would be even
better when increasing the number of partitions? And if so, why could that be?
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For the mixed walk we let r + q = 20, and then chose r to be either 16, 12 or 10. We
saw some difference in the performance for these three distributions, but none of them
was an improvement of the performance for the adding walk. Hence, the question: why
add doubling steps?

In this section we will present the result from doing a more thorough experiment,
comparing the adding walk and the mixed walk.

For practical reasons, we only used the curves with at most an 8-digit group order.
This was because the amount of time it took to find a collision for larger curves. We still
used 10000 ECDLP cases but divided over eight curves.

A test we conducted on the side showed that the L-factor was almost the same for the
Pollard’s original method over ten curves as it was over eight curves. Hence, we will still
compare our result to the Lp = 1.338.

Adding walk. In Table 4.8 and figure 4.1 we can see the performance of the Adding walk
for different values of r. A negative number on the percentage difference indicates an
improvement compared to the performance of the original Pollard’s rho method, while
the opposite indicates a deterioration.

This is just the average values for the L-factors, for more detailed tables see Ap-
pendix A.

r Average L-factor %-diff. from Lp

3 2.066 +54.40
4 1.368 +2.20
8 1.119 -16.39

10 1.096 -18.09
20 1.054 -21.22
32 1.045 -21.90
60 1.035 -22.63
80 1.034 -22.75

100 1.026 -23.34
120 1.033 -22.69

Table 4.8: Performance of the adding walk with different values on r.

30



0 10 20 30 40 50 60 70 80 90 100 110 120
1

1.1

1.2

1.4

1.6

1.8

2

Lp = 1.338

Number of partitions(r)

L
-f

ac
to

r

adding walk
Lp = 1.338

Figure 4.1: Performance of the adding walk with different values on r.

In Table 4.3 we saw that the L-factor was lower for r = 32 than for r = 20, this also
holds for the result in Table 4.8. We can see that the performance gets better and better for
every addition of partitions, and as long as r ≥ 8, it is much better than the performance
of Pollard’s original method.

We get a peak of the performance when r = 100 when the L-factor is 23.34% lower
than the L-factor for the Pollard’s original method. For an even larger number of parti-
tions, this value seems to increase.

In Table 4.9 we have the performance from dividing the group into three partitions.
Here we can see that the L-factor increases as the group order gets larger which does not
happen in any other case. This will give us a L-factor that is 54% bigger than the L-factor
we got from the Pollard’s original method. In the worst case, over the group of order 8,
the L-factor is 65% bigger. The only difference between these walks is the doubling step
found in Pollard’s original method.

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.781 1.909 1.986 2.051 2.178 2.200 2.211 2.213

Table 4.9: Performance for Adding walk when r = 3

In section 4.1.2 we compared the performance of the Adding walk for r = 20 to the
performance of the Adding walk with a different hash function. We did not get any
significant difference between the average L-factors. However, we wanted to see what
performance we would get when using a larger number of partition and if it matter which
hash function we use. Hence, in Table 4.10 we can see the average performance of the
Adding walk when r = 100 with the hash function from equation (9) where we take the
y-coordinate of the previous point Ri modulo r. We get a slight increase in the average
L-factor when using this hash function compared to the function described in Section 10.
But overall, both hash functions works for these number of partitions and sizes of the
groups.
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Size of p Adding walk, mod y
[103 − 104] 1.017
[104 − 105] 1.023
[105 − 106] 1.019
[105 − 106] 1.025
[106 − 107] 1.037
[106 − 107] 1.052
[107 − 108] 1.018
[107 − 108] 1.062
[108 − 109] 1.023
[108 − 109] 1.024
Avg. 1.029

Table 4.10: Performance of the Adding walk for r = 100 but with a different hash func-
tion.

Mixed walk. We wanted to see if adding doubling steps made a difference in the perfor-
mance. To test this, we chose seven different values of r all with three different sizes of
doubling steps q. In Table 4.11 we can see the performance of the mixed walk for these
values of r and q. We have also included the result from the adding walk in the table. For
us to easier understand the table, we have plotted a graph of the L-factors against the ratio
q
r

as we can see in Figure 4.2.
This is still just the average values for the L-factors, for more detailed tables, see

Appendix A.
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r q Average L-factor %-diff. from Lp

3 0 2.066 +54.40
3 1 1.237 -7.59
3 2 1.231 -8.01
3 3 1.286 -3.93
4 0 1.368 +2.20
4 1 1.182 -11.70
4 2 1.185 -11.42
4 4 1.261 -5.78
8 0 1.119 -16.39
8 1 1.093 -18.30
8 4 1.129 -15.60
8 8 1.217 -9.05
10 0 1.096 -18.09
10 1 1.087 -18.73
10 4 1.109 -17.09
10 10 1.215 -9.18
20 0 1.054 -21.22
20 5 1.065 -20.39
20 12 1.130 -15.52
20 20 1.195 -10.69
60 0 1.035 -22.63
60 15 1.064 -20.49
60 40 1.127 -15.81
60 60 1.196 -10.64

100 0 1.026 -23.34
100 10 1.037 -22.54
100 30 1.062 -20.67
100 100 1.191 -10.91
120 0 1.033 -22.69
120 12 1.040 -22.21
120 40 1.073 -19.71
120 120 1.191 -10.93

Table 4.11: Performance of the mixed walk for different values on r and q.
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Figure 4.2: Performance of the mixed walk for different values on r and q

From Figure 4.2 we can see that for all the cases the L-factor increases when the ratio q
r

gets closer to 1. This means that we get the worst performance when q = r, and especially
when r = 3. Does this imply that we get better performance when the ratio gets closer
to 0? For some cases we get the best performance when we do not add a doubling step at
all, as we can see in the table, this is true for all the values of r bigger than ten. For the
other cases, adding some doubling steps improves the result. For the values of r smaller
or equal to ten, one doubling step seems to be sufficient to get better performance. Adding
more only degrades it.

What we can see in Figure 4.2 is that we get the best performance for the larger values
of r. The blue and the pink line, followed by the orange line, is lower than the other
curves. The blue and pink line represents the mixed walk where r = 100 and r = 60
respectively.

Comparison between Adding walk and Mixed walk. To make it easier to see the dif-
ference of the performances for the Adding walk and the Mixed walk, we have graphed
the result for the adding walk and the best performances for each r for the mixed walk.
This is depicted in Figure 4.3.
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Figure 4.3: The performance of Adding walk and Mixed walk for different values of r
and q.

As we already mentioned, the Mixed walk will give us the best performance for small
values of r. In the graph and Table 4.12 we can see that the difference between the
performances of the different walks is large when r = 3. For r = 4, r = 8 and r = 10
the performance of the Adding walk gets closer and closer to performance of the Mixed
walk. For larger values of r we can see that the black line, representing the adding walk,
goes below the red line, resulting in lower values of the L-factors. In Table 4.13 we can
see the best performances of the two walks, with the walk without doubling steps being
the fastest one.

Walk Partitions L-factor %-diff. from Lp

Adding walk r = 3 2.066 +54.40
Mixed walk r = 3, q = 2 1.231 -8.01

Table 4.12: Performance of the Adding walk and the Mixed walk when r = 3

Walk Partitions L-factor %-diff. from Lp

Adding walk r = 100 1.026 -23.34
Mixed walk r = 100, q = 10 1.037 -22.54

Table 4.13: Performance of the Adding walk and the Mixed walk when r = 100

Hence, the inclusion of doubling steps gives a great improvement of the performance for
walks with a small number of partitions. But for large number of partitions we should
exclude the doubling step.

4.2 Summary of results
We started by finding an averageL-factor for the original Pollard’s rho method. By chang-
ing the hash function to the one mentioned in equation (9) where we take the y-coordinate
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of the previous point Ri modulo r we got a similar performance and as anticipated when
letting the group be divided into sets of different sizes the L-factor increased.

The modified Pollard’s rho method proposed by Teske [Tes98] did not improve the
performance by much and the change we made where we used the rules from Pollard’s
original method with the hash function mentioned in equation (10) deteriorated the per-
formance.

Hence, changing the iterating rules or hash function when we only have three parti-
tions do not make a significant difference. In Table 4.14 we can see the average L-factor
for all the different modifications of the method.

Walk Average L-factor
Pollard’s original 1.337
Pollard’s original, mod y 1.330
Pollard’s original, bad function 1.413
Pollard’s original, Modified 1.335
Pollard’s original rules, different hash 1.348

Table 4.14: Performance of the different modification of Pollard’s rho method with three
partitions.

When experimenting on the Adding walk, we first saw that an increase in the number
of partitions gave a better performance although we needed more experiments to prove
this. We tried with changing the hash function for the Adding walk and instead took the y-
coordinate of the previous pointRi modulo r. Since this did not alter the performance, we
decided to do more experiments on different sizes of partitions in the Adding walk. When
doing a more thorough experiment, we could conclude that the performance improved
as the number of partitions grew and we got an peak of performance when we used 100
partitions.

For the Mixed walk, we first saw that the larger the ratio q
r
, the worse performance we

got, but since we only tried with q+ r = 20 we wanted to do a more thorough experiment
to be sure of this. We experimented on values of r between three and 120, letting the ratio
go from almost zero, in some cases, to one. For all the cases where the ratio was one, the
performance was poor. Overall, the performance improved when r grew larger.

We compared the adding walk and the mixed walk and found that when r was less
than ten, we got the best performance when adding a doubling step. For larger values of
r, choosing the Adding walk would be to prefer.

For both of these walks, we got better performance than we got from the Pollard’s rho
original method, except for r = 3 and r = 4 for the Adding walk.

In Table 4.15 we have the best and worse result for the Adding walk and the Mixed
walk.

Adding walk Mixed walk
Partitions r = 100 r = 100, q = 10
Best avg. 1.026 1.037
%-diff. from Lp -23.34 -22.54
Partitions r = 3 r = 3, q = 3
Worse avg. L-factor 2.066 1.286
%-diff. from Lp +54.40 -3.93

Table 4.15: Best and worse performance of the Adding walk and the Mixed walk.
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5 Discussion
The purpose of the report was to see if the fastest way to solve discrete logarithm prob-
lems over elliptic curves was by using the original Pollard’s rho method, or if we could
find a modification that would solve them faster. We got an answer to this question by
implementing and running different iterating functions together with their hash functions
in Mathematica, some already proven to be good such as the Adding walk and the Mixed
walk proposed by Teske in [Tes98].

5.1 Reason for improvement
We get a really poor result when the number of partitions are three using the Adding
walk. The reason for this poor performance could be the absence of different sizes of
steps we take for every iteration. We can see in Table 4.8 that this probably is the case
since the more sets we partition the group into, the more different steps we take, the better
performance we get.

In the adding walk we have r different rules, these are all different random sizes of
steps that we can take in the walk. We can also see that when we had 100 different steps,
we would go through the sequence the fastest. Teske instead gets that we should divide
the group into 60 partitions in [Tes00] to get the fastest performance. However, we can
still conclude that many steps of different random sizes gives the best performance. This
might explain why Pollard’s rho original method with only three partitions will not give
a result as good. Still, because of the doubling step, which is quite a large step, it gives a
better result than the adding walk did for three and four partitions.

We can also see in Section 4.1 that when deliberately dividing the group into three
sets of different sizes we get an increase in the average L-factor. When using this hash
function there is a 50% chance that we will add the point P to the current point Ri, which
is the smallest possible step to take, and only 12% chance that we will instead add the
point Q. Hence, the bad performance might have to do with the different sizes of steps as
well.

5.2 Comparison of the L-factor
Teske mentions in her article [Tes98] that if a function is random, we should find a match
after approximately 1.416

√
|G|, so the L-factor should lie around 1.416. Teske also says

that the number of iterations until a collision is much higher than this for Pollard’s original
method and the modified version.

In our tests, all of our iterating functions, with some exceptions, find a match faster
than this. This includes Pollard’s original method and the modified version. The question
we might ask is: Why are the values so much lower for our cases? We have the same aim;
find a match such that we can use it to solve the discrete logarithm problem.

When we are looking for a match, we use Floyd’s cycle-finding algorithm to find a
collision. Instead of this algorithm, Teske uses a generalised method used by Schnorr
and Lenstra [SL84]. In this method, we store eight terms, which is different from Floyd’s
cycle-finding algorithm where we do not store any terms. Instead of doing three oper-
ations, f(Ri), f(f(R2i)) and then comparing these new points, we calculate f(Ri) and
compare it to the stored terms. Then, since we do not want to risk being stuck in a loop
if none of the eight terms is in the cycle, we have to update the terms. A more thorough
explanation can be found in [Tes98].

37



We implemented Teske’s version of their method to see if this was the reason Teske
got such large values of the L-factors. In Table 5.1 and in Figure 5.1 we can see the
performance of the Pollard’s original method after using Teske’s match finding method
and the performance we got by using Floyd’s cycle-finding algorithm.

When using Teske’s match-finding method on Pollard’s original method, we get an
average L-factor close to the approximative L-factor she gets in [Tes98], namely L =
1.807. Here we have to remember that Teske uses another experimental set-up than we do
but we will assume that the average performance would not differ much if some changes
were to be made in the set-up. Hence, the use of different collision finding algorithms is
probably the reason for our different values.

Size of p Floyd’s algorithm Teske’s method
[103 − 104] 1.352 1.888
[104 − 105] 1.399 1.890
[105 − 106] 1.354 1.857
[105 − 106] 1.358 1.800
[106 − 107] 1.336 1.846
[106 − 107] 1.346 1.821
[107 − 108] 1.326 1.847
[107 − 108] 1.376 1.808
[108 − 109] 1.324 1.901
[108 − 109] 1.332 1.853
Avg. 1.337 1.851

Table 5.1: Performances of the method used by Teske and Floyd’s cycle finding algorithm.
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Figure 5.1: Performances of the method used by Teske and Floyd’s cycle finding algo-
rithm.

We get significantly larger values for L when using the method generalised by Teske.
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However, the execution time gets shorter. In our implementation, the execution time when
using Floyd’s algorithm is 19692 seconds, while the execution time is 9866 seconds when
using the other method. The reason for this might be that there are three evaluations and
one comparison for every iteration when using Floyd’s algorithm, in the other case we
only have one evaluation but instead eight comparisons, with the comparisons probably
being faster to run.

Hence, we have now compared the result for Pollard’s rho method when using differ-
ent cycle-finding algorithms. We can see from the result that the choice of this algorithm
affect the amount of iterations but also the execution time.

5.3 Obstacles and instances
Throughout this work, we encountered some obstacles. One of them was for the func-
tions Adding walk and Mixed walk mentioned in section 4.1.2 where the experiment took
three days for Mathematica to execute. The reason for this was that for these functions
we needed to compute many point doublings as seen in equation (12), the execution time
for this operation is long. We solved this by precomputing all the points.

We were not sure that executing Pollard’s original method for only 1000 ECDLP cases
for every curve would give us a reliable result. To test if it were, we experimented with
more ECDLP cases to see if the result would differ.

Hence, we wanted to see the performance of the Pollard’s original method with 10000
ECDLP cases for one curve. We decided to use one of the curves with a 7-digit group or-
der and got a slight increase in the L-factor. We decided to continue the experiments with
1000 ECDLP cases since it required less time to execute. The difference in performance
is found in Table A2 in Appendix A.

We experimented on solving one ECDLP case 10 times, instead of only one time, over
the curve with a 4-digit group order. We did this because we knew that the time it took
to solve an ECDLP might vary depending on the initial point; this point might be in the
beginning of a long tail or maybe the point is already in the loop. We did this for all 1000
ECDLP cases for this curve using Pollard’s original method. We decided to continue with
only solving each ECLDP case one time because of the insignificant change in the per-
formance.

5.4 Larger curves
We mentioned in Section 3.5 that Wolfram Mathematica did not have enough memory
to generate larger curves. Even if it had the required amount of memory, the executing
time for Pollard’s rho with these curves would have been considerable large when using
Floyd’s cycle-finding algorithm. We know this since, for the curves with a 9-digit group
order, the executing time is around 2 hours. But besides the execution time would the
performance be any different if we were able to use larger curves?

In [Tes98] the largest curves have a group order of 13-digits. The reason no larger
curves where used was that if they wanted to use a meaningful sample space they would
have gotten a very long execution time. Hence, if Mathematica had the required memory
needed we would not use larger curves than the ones with a 13-digit group order.
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In Teske’s result we can see that the average value of the L-factor for all the curves
with a group order between 3 and 9 is L = 1.792 for Pollard’s original method, while
for the curves with a group order between 10 and 13 the average L-factor is L = 1.876,
which is a quite significant increase of the value. However, the average value of the L-
factor over all of the curves is L = 1.807, which is not much larger than L = 1.792.
Hence, adding curves of group order 10, 11, 12 and 13 to our experiments would proba-
bbly not give a significant difference in average performance. Keep in mind that Teske
uses another match finding algorithm, numbers of ECDLP cases and number of curves in
her experiments.

5.5 Future research
In this thesis we discussed the Mixed walk proposed by Teske in [Tes98], we concluded
that this walk solved the elliptic curve discrete logarithm problem faster than Pollard’s
original method. However, we only let the ratio between r and q be less or equal to one.
Hence, doing experiments for a ratio large than one would be to consider. Teske claims
that we would get a detoriation of the performance when letting the ratio get bigger than
one, but in her experiments, she uses at most 40 q + r partitions [Tes00]. Hence, it would
be interesting to see what would happen if we used a ratio bigger than one for larger
values of q and r.

We used Floyd’s cycle-finding algorithm in this thesis. There are other options such
as the one proposed by Brent [Bre80] or a modified version of this algorithm found in
[Coh13, Chapter 8.5], both more efficient than Floyd’s algorithm. We also have the al-
gorithm mentioned in [SL84] where we instead save some numbers of values from the
sequence. There are more cycle-finding algorithms, such as the one using a stack [Niv04],
which all could be used together with an iterating function to solve the ECDLP. We could
compare the performance using all of these cycle-finding algorithms, to find which one is
the fastest.

By performing parallel computations proposed by Van Oorschot and Wiener [VOW99],
using the adding walk that gave us the best result, we should be able to improve the per-
formance.

In our thesis we let the curves be defined over the finite field Fp where p is a prime
number. Instead of this field, we could have conducted the experiments on the curves
over the finite field F2m for a positive integer m. Here the elements are binary strings of
length m.
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6 Conclusion
The security of the elliptic curve cryptosystem lies in the difficulty to solve its discrete
logarithm problem. We have not yet found a way to solve this for large curves, but for
sufficiently small curves, the best-known attack to date is the Pollard’s rho method. Our
aim in this thesis was to see if some changes could be made in the method to improve it.

Some suggestions for improvement were tested for 10000 ECDLP cases over ten dif-
ferent curves. These suggestions included some small changes for the original Pollard’s
walk with no significant difference of result. It also included using the Adding walk and
Mixed walk. Teske let the values of the addding step r and the doubling step q be small
in her experiment while we extended it and focused on both small and large values. From
the result, we can see that almost all values of r and q for the Adding walk and Mixed
walk give us better performance than the original Pollard’s rho method. However, when
r = 100 in the Adding walk we get the best improvement of the method.

Since all of these iterating functions mentioned, such as Pollard’s original, Adding
walk and Mixed walk can be used to solve the general discrete logarithm problem, our
result might be of use when studying this algorithm. Furthermore, since the security of
the elliptic curve cryptography lies on the difficulty to solve the elliptic curve discrete
logarithm problem, our result is of use when studying methods to break elliptic curve
cryptosystems.
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Appendices
A Table of results

Size of p Pollard’s rho method
[103 − 104] 1.331
[104 − 105] 1.356
[105 − 106] 1.326
[105 − 106] 1.322
[106 − 107] 1.329
[106 − 107] 1.316
[107 − 108] 1.353
[107 − 108] 1.334
[108 − 109] 1.351
[108 − 109] 1.311
Avg. 1.333

Table A1: Performance of the Pollard’s rho method with 1000 generating points for every
curve.

Number of ECDLP cases 1000 10000
L-factor 1.293 1.339

Table A2: Performance for Pollard’s original method for 1000 and 10000 ECDLP cases
over a curve with a 7-digit group order

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.781 1.909 1.986 2.051 2.178 2.200 2.211 2.213

Table A3: Results for r = 3

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.344 1.366 1.371 1.363 1.382 1.372 1.385 1.360

Table A4: Results for r = 4

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.137 1.095 1.130 1.120 1.113 1.107 1.151 1.098

Table A5: Results for r = 8

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.106 1.092 1.086 1.113 1.100 1.092 1.089 1.090

Table A6: Results for r = 10
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# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.045 1.008 1.055 1.024 1.075 1.062 1.077 1.087

Table A7: Results for r = 20

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.066 1.067 1.043 1.038 1.063 1.041 1.027 1.017

Table A8: Results for r = 32

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.029 1.032 1.036 1.056 1.011 1.057 1.015 1.034

Table A9: Results for r = 80

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.030 1.056 1.036 1.039 1.030 1.019 1.016 1.057

Table A10: Results for r = 60

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.025 1.027 1.018 1.050 1.010 1.026 1.049 1.001

Table A11: Results for r = 100

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.035 1.054 1.032 1.020 1.036 1.045 1.028 1.017

Table A12: Results for r = 120

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.238 1.241 1.215 1.237 1.213 1.228 1.266 1.255

Table A13: Results for r = 3 and q = 1

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.218 1.198 1.256 1.233 1.238 1.228 1.244 1.232

Table A14: Results for r = 3 and q = 2

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.275 1.279 1.317 1.247 1.296 1.293 1.298 1.278

Table A15: Results for r = 3 and q = 3
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# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.195 1.165 1.175 1.188 1.186 1.198 1.150 1.194

Table A16: Results for r = 4 and q = 1

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.188 1.194 1.188 1.189 1.200 1.179 1.178 1.168

Table A17: Results for r = 4 and q = 2

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.265 1.283 1.260 1.247 1.242 1.266 1.251 1.272

Table A18: Results for r = 4 and q = 4

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.101 1.127 1.097 1.080 1.078 1.076 1.099 1.088

Table A19: Results for r = 8 and q = 1

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.134 , 1.137 1.133 1.137 1.116 1.126 1.113 1.138

Table A20: Results for r = 8 and q = 4

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.225 1.211 1.245 1.220 1.210 1.205 1.221 1.201

Table A21: Results for r = 8 and q = 8

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.111 1.062 1.093 1.064 1.088 1.094 1.068 1.121

Table A22: Results for r = 10 and q = 1

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.080 1.112 1.137 1.138 1.121 1.083 1.093 1.112

Table A23: Results for r = 10 and q = 4

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.187 1.226 1.222 1.214 1.217 1.242 1.186 1.228

Table A24: Results for r = 10 and q = 10
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# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.067 , 1.062 , 1.090 1.082 1.057 1.064 1.033 1.067

Table A25: Results for r = 20 and q = 5

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.104 1.144 1.146 1.110 1.149 1.127 1.101 1.162

Table A26: Results for r = 20 and q = 12

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.183 1.220 1.179 1.193 1.187 1.185 1.225 1.190

Table A27: Results for r = 20 and q = 20

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.076 1.032 1.071 1.084 1.077 , 1.064 1.050 1.057

Table A28: Results for r = 60 and q = 15

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.077 1.142 1.110 1.142 1.140 1.113 1.162 1.126

Table A29: Results for r = 60 and q = 40

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.174 1.160 1.177 1.200 1.200 1.200 1.197 1.259

Table A30: Results for r = 60 and q = 60

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.046 1.011 1.045 1.047 1.043 1.030 1.025 1.046

Table A31: Results for r = 100 and q = 10

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.057 1.057 1.073 1.057 1.090 1.070 1.048 1.040

Table A32: Results for r = 100 and q = 30

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.189 1.224 1.209 1.192 1.188 1.178 1.186 1.161

Table A33: Results for r = 100 and q = 100
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# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.057 1.021 1.032 1.039 1.031 1.068 1.051 1.019

Table A34: Results for r = 120 and q = 132

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.065 1.043 1.070 1.085 1.098 1.108 1.051 1.065

Table A35: Results for r = 120 and q = 160

# of digits of p in Fp 4 5 6 6 7 7 8 8
L-factor 1.184 1.196 1.166 1.195 1.195 1.197 1.209 1.183

Table A36: Results for r = 120 and q = 240

B Source code
Elliptic curve generator

RandomElliptic := Module[{p, a, b, x, y, pointP, pointQ},
SeedRandom[];(* Initiate the random number generator *)
p = RandomPrime[{10^3, 10^4}];
(*Select a random prime number having seven decimal digits *)
a = b = 0;
While[Mod[4 a^3 + b^2, p] == 0,
{a, x, y} = RandomChoice[Range[0, p - 1], 3];
b = Mod[y^2 - x^3 - a x, p]
]; (* Generate a random non-singular elliptic curve E : y^2 =

x^3 + a x + b mod p *)
pointP = {x, y}; (* The point (x,y) will lie on the elliptic

curve E *)
pointQ =
MultiplePoint[RandomInteger[Floor[p + 1 + 2 Sqrt[p]]], pointP,

a, b, p];
(* Q is a randomly chosen multiple of P *)
{a, b, p, pointP, pointQ}
]

Order of the elliptic curve

OrderOfCurve[a_, b_, p_] :=
If[Mod[4 a^3 + 27 b^2, p] == 0, Print["The curve is singular!"],
p + 1 + Sum[JacobiSymbol[x^3 + a x + b, p], {x, 0, p - 1}]]
\begin{lstlisting}
OrderOfPoint[{x_, y_}, a_, b_, p_] :=
Module[{candidates},
If[Mod[4 a^3 + 27 b^2, p] == 0, Print["The curve is singular!"];
Abort[]];
If[Mod[y^2 - x^3 - a x - b, p] != 0,
Print["Error: Point not on curve!"]; Abort[]];
candidates = Divisors[OrderOfCurve[a, b, p]];
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Do[
If[MultiplePoint[candidates[[i]], {x, y}, a, b,
p] == {\[Infinity], \[Infinity]}, Return[candidates[[i]]];
Break[]],
{i, Length[candidates]}]
]

Point addition

AddPoints[{x1_, y1_}, {x2_, y2_}, a_, b_, p_] :=
Module[{\[Lambda], x3, y3},
Quiet[
If[Mod[4 a^3 + 27 b^2, p] == 0, Print["The curve is singular!"];
Abort[]];
If[Mod[y1^2 - x1^3 - a x1 - b, p] != 0 ||
Mod[y2^2 - x2^3 - a x2 - b, p] != 0,
Print["Error: Point(s) not on curve!"]; Abort[]];
If[{x1, y1} == {\[Infinity], \[Infinity]}, Return[{x2, y2}];
Break[]];
If[{x2, y2} == {\[Infinity], \[Infinity]}, Return[{x1, y1}];
Break[]];
If[x1 == x2 && y1 == Mod[-y2, p],
Return[{\[Infinity], \[Infinity]}]; Break[]];
If[{x1, y1} == {x2, y2}, \[Lambda] =
Mod[(3 x1^2 + a) PowerMod[2 y1, -1, p], p], \[Lambda] =
Mod[(y2 - y1) PowerMod[x2 - x1, -1, p], p]];
x3 = Mod[\[Lambda]^2 - x1 - x2, p];
y3 = Mod[\[Lambda] (2 x1 + x2 - \[Lambda]^2) - y1, p];
{x3, y3}]
]

Scalar multiplication

MultiplePoint[n_, {x_, y_}, a_, b_, p_] :=
Module[{double, base2, rounds, x2, y2, neg},
neg = n < 0;
{x2, y2} = {x, y};
double = {};
base2 = Reverse[IntegerDigits[Abs[n], 2]];
Do[
AppendTo[double, {x2, y2}];
{x2, y2} = AddPoints[{x2, y2}, {x2, y2}, a, b, p],
{Length[base2]}];
{x2, y2} = {\[Infinity], \[Infinity]};
Do[
If[base2[[i]] == 1, {x2, y2} =
AddPoints[{x2, y2}, double[[i]], a, b, p]],
{i, Length[base2]}];
If[neg, Return[{x2, p - y2}], Return[{x2, y2}]]
]

Generator of points on the curve
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GetPointQ[{k_, A_, B_, p_, P_}] :=
Module[{i, list},
list = {};
For[i = 1, i <= 1000, i++,
AppendTo[list,
MultiplePoint[RandomInteger[Floor[p + 1 + 2 Sqrt[p]]], P, A, B,
p]]];
list
]

One generated curve will be a list {k,A,B, p, P} where k is the order of P . We have
chosen these variables to be global so when we are using a new curve, we need to set
the global variables. The intervals are for Pollard’s rho original method and are just an
example.

setGlobalVariables[curve_] := ({k, A, B, p, P} = curve;
SeedRandom;
S1 =
Interval[{0,
Floor[(p/
3)]}]; (*Floor since we do not want to miss a integer by \
taking (p/3)-1. p/3 will never be a integer in our cases,
so we will take the greatest integer below p/3.*)
S2 = Interval[{Ceiling[p/3], Floor[(2 p/3)]}];
S3 = Interval[{Ceiling[2 p/3], p - 1}];
)

Used to find all solutions to the equation ax = b mod k, where one of the solutions will
give us xP = Q

SolveMod[a_, b_, k_] :=
Module[{d}, (*Finds all solutions(x) to ax=b mod k*)
d = GCD[a, k];
If[Mod[b, d] == 0,
Solve[a*x == b, Modulus -> k] /. C[1] -> Table[i, {i, 0, d -

1}]]
];

Iterating function for Pollard’s rho original method, the sets S1, S2 and S3 are global
variables and can be modified

IterationOriginal[{{x_, y_}, a_, b_, pointQ_}] :=
Module[{x1, y1, a1, b1, pointQ1 },
{x1, y1} = {x, y};
a1 = b1 = 0;
pointQ1 = pointQ;
Which[
IntervalMemberQ[S1, x] || x == \[Infinity]\,
{x1, y1} = AddPoints[{x, y}, P, A, B, p];
a1 = a + 1;
b1 = b,
IntervalMemberQ[S2, x], {x1, y1} =
MultiplePoint[2, {x, y}, A, B, p];
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a1 = 2*a;
b1 = 2*b,
IntervalMemberQ[S3, x], {x1, y1} =
AddPoints[{x, y}, pointQ1 , A, B, p];
a1 = a;
b1 = b + 1
];
{{x1, y1}, a1, b1, pointQ1 } (*Return the new point in the

sequence*)
]

Iterating function when using the hash function where we take the y-coordinate of the
previous point Ri modulo r.

IterationMod[{{x_, y_}, a_, b_, pointQ_}] :=
Module[{x1, y1, a1, b1, pointQ1 },
{x1, y1} = {x, y};
a1 = b1 = 0 ;
pointQ1 = pointQ;
Which[
y == \[Infinity]\),
{x1, y1} = AddPoints[{x, y}, P, A, B, p];
a1 = a + 1;
b1 = b,
Mod[y, 3] == 0,
{x1, y1} = AddPoints[{x, y}, P, A, B, p];
a1 = a + 1;
b1 = b,
Mod[y, 3] == 1,
{x1, y1} = MultiplePoint[2, {x, y}, A, B, p];
a1 = 2*a;
b1 = 2*b,
Mod[y, 3] == 2,
{x1, y1} = AddPoints[{x, y}, pointQ1 , A, B, p];
a1 = a;
b1 = b + 1
];
{{x1, y1}, a1, b1, pointQ1}
]

Iterating function for the modified Pollard’s rho method.

IterationTeskeWalkModified [{{x_, y_}, a_, b_, Q_, goldenMean_,
mAll_, nAll_, multipleP_, multipleQ_}] :=

Module[{x1, y1, a1, b1, q1, u, nAll1, mAll1, multipleP1,
multipleQ1},

{x1, y1} = {x, y};
a1 = b1 = 0 ;
q1 = Q;
u = 0;
mAll1 = mAll;
nAll1 = nAll;
multipleP1 = multipleP;
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multipleQ1 = multipleQ;

If[{x, y} != {\[Infinity]\, \[Infinity]\}, u =
Mod[goldenMean*y, 1], u = 0];(*If not point at infinity, let
u be the fractional part of goldenmean*y*)

Which[
Floor[u*3] + 1 == 1,
{x1, y1} = AddPoints[{x, y}, multipleP1, A, B, p];
a1 = a + mAll1;
b1 = b,
Floor[u*3] + 1 == 2,
{x1, y1} = MultiplePoint[2, {x, y}, A, B, p];
a1 = 2*a;
b1 = 2*b,
Floor[u*3] + 1 == 3,
{x1, y1} = AddPoints[{x, y}, multipleQ1, A, B, p];
a1 = a;
b1 = b + nAll1;
];
Return[{{x1, y1}, a1, b1, q1, goldenMean, mAll1, nAll1,

multipleP1, multipleQ1}]
]

Iterating function used in Adding walk.

IterationTeskeAddingWalk[{{x_, y_}, a_, b_, goldenMean_, ms_,
ns_, Ms_,

sets_}] := Module[{x1, y1, a1, b1, q1, u, ms1, ns1, Ms1, i,
sets1},

{x1, y1} = {x, y};
a1 = b1 = 0 ;
ms1 = ms;
ns1 = ns;
Ms1 = Ms;
sets1 = sets;
u = 0;

If[{x, y} != {\!\(TraditionalForm\‘\[Infinity]\), \
\!\(TraditionalForm\‘\[Infinity]\)}, u = Mod[goldenMean*y, 1],

u = 0];
i = Floor[u*sets1] + 1;
{x1, y1} = AddPoints[{x, y}, Ms1[[i]], A, B, p];
a1 = a + ms1[[i]];
b1 = b + ns1[[i]];
Return[{{x1, y1}, a1, b1, goldenMean, ms1, ns1, Ms1, sets1}]
]

Iterating function used in Mixed walk.

IterationTeskeMixedWalk[{{x_, y_}, a_, b_, goldenMean_, ms_,
ns_, Ms_, sets_, excep_}] :=

Module[{x1, y1, a1, b1, u, ms1, ns1, Ms1, i, exceptions, j,
sets1, excep1},
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{x1, y1} = {x, y};
a1 = b1 = 0 ;
ms1 = ms;
ns1 = ns;
Ms1 = Ms;
u = 0;
exceptions = {};
sets1 = sets;
excep1 = excep;
(* sets1 are the number of partitions r+q and excep1 are the

doubling steps q *)
For[j = (sets1 - excep1), j <= sets1, j++, AppendTo[exceptions,

j]];
If[{x, y} != {\[Infinity]\, \[Infinity]\}, u =

Mod[goldenMean*y, 1], u = 0];
i = Floor[u*sets1] + 1;
If[MemberQ[exceptions, i],
{x1, y1} = MultiplePoint[2, {x, y}, A, B, p];
a1 = 2*a;
b1 = 2*b;,
{x1, y1} = AddPoints[{x, y}, Ms1[[i]], A, B, p];
a1 = a + ms1[[i]];
b1 = b + ns1[[i]];
];
Return[{{x1, y1}, a1, b1, goldenMean, ms1, ns1, Ms1, sets1,

excep1}]
]

Iterating function for the Adding walk but with the hash function where we take the y-
coordinate of the previous point Ri modulo r.

IterationTeskeMod[{{x_, y_}, a_, b_, Q_, ms_, ns_, Ms_,
sets_}] := Module[{x1, y1, a1, b1, q1, u, ms1, ns1, Ms1, i,

sets1},
{x1, y1} = {x, y};
a1 = b1 = 0 ;
q1 = Q;
ms1 = ms;
ns1 = ns;
Ms1 = Ms;
sets1 = sets;
u = 0;

If[x == ‘\[Infinity]\, {x1, y1} = AddPoints[{x, y}, Ms1[[1]],
A, B, p];

a1 = a + ms1[[1]];
b1 = b + ns1[[1]];,
i = Mod[y, sets1] + 1;
{x1, y1} = AddPoints[{x, y}, Ms1[[i]], A, B, p];
a1 = a + ms1[[i]];
b1 = b + ns1[[i]];
];
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Return[{{x1, y1}, a1, b1, q1, ms1, ns1, Ms1, sets1}]
]

Pollard’s rho method for all iterating functions where we do not use the golden mean.

Pollardsrho[Q_,iteratingfunction_] :=
Module[{aj, a2j, bj, b2j, Rj, R2j, j, q1, count, n,

allsolutions},
SeedRandom[];
count = 0;
q1 = Q; (* Setting q1 to Q so we can use it by reference as the

input argument \
to a function is send as read only (By value) *)
aj = a2j = RandomInteger[{1, k - 1}];
bj = b2j = RandomInteger[{1, k - 1}];
Rj = R2j = AddPoints[MultiplePoint[aj, P, A, B, p],

MultiplePoint[bj, q1, A, B, p], A, B, p];(*R0=a0P+b0Q*)
While[

{Rj, aj, bj, q1} = iteratingfunction[{Rj, aj, bj, q1}];
{R2j, a2j, b2j, q1} =

iteratingfunction[iteratingfunction[{R2j, a2j, b2j, q1}]];
count++; (*Count is the number of steps taken before a

collision*)
Rj != R2j

];
allsolutions =
Part[Part[Part[SolveMod[bj - b2j, a2j - aj, k], 1], 1], 2];
If[Length[allsolutions] == 0, n = allsolutions,(*This means

that we only have one solution to a*x=b mod k. If not we
have to go thorugh them all to see which one will solve the
ECDLP*)
For[j = 1, j <= Length[allsolutions], j++,

If[MultiplePoint[Part[allsolutions, j], P, A, B, p] == q1,
n = Part[allsolutions, j];
Break[];

];
];

];
{Rj, R2j, Mod[aj, k], Mod[bj, k], Mod[a2j, k], Mod[b2j, k], n,

count}
]

Pollard’s rho method when the inverse of the golden mean is used in the iterating function.
When we use the iterating function in mixed walk we need to add one parameter called
excep in the iterating function.

PollardsrhoGolden[Q_, msAll_, nsAll_, Ms_, sets_,
iteratingfunction_] :=

Module[{aj, a2j, bj, b2j, Rj, R2j, j, q1, count, n,
allsolutions,

goldenMean, msAll1, ns1, Ms1, sets1},
SeedRandom[];
count = 0;
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q1 = Q; (*
Setting q1 to Q so we can use it by reference as the input

argument \
to a function is send as read only (By value) *)
msAll1 = msAll;
ns1 = nsAll;
Ms1 = Ms;
sets1 = sets;
goldenMean = SetAccuracy[(Sqrt[5] - 1)/2, 2 +

Floor[Log10[p*sets1]+1]];
aj = a2j = RandomInteger[{0, k - 1}];
bj = b2j = RandomInteger[{0, k - 1}];
Rj = R2j =
AddPoints[MultiplePoint[aj, P, A, B, p],
MultiplePoint[bj, q1, A, B, p], A, B, p];
While[

{Rj, aj, bj, goldenMean, msAll1, ns1, Ms1, sets1} =
iteratingfunction[{Rj, aj, bj, goldenMean, msAll1, ns1, Ms1,

sets1}];
{R2j, a2j, b2j, goldenMean, msAll1, ns1, Ms1, sets1} =
iteratingfunction[iteratingfunction[{R2j, a2j, b2j,

goldenMean, msAll1, ns1, Ms1,
sets1}]];
count++;
Rj != R2j

];

allsolutions =
Part[Part[Part[SolveMod[bj - b2j, a2j - aj, k], 1], 1], 2];
If[Length[allsolutions] == 0, n = allsolutions,

For[j = 1, j <= Length[allsolutions], j++,
If[MultiplePoint[Part[allsolutions, j], P, A, B, p] == q1,

n = Part[allsolutions, j];
Break[];

];
];

];
{Rj, R2j, Mod[aj, k], Mod[bj, k], Mod[a2j, k], Mod[b2j, k], n,

count}
]

Pollard’s rho original but the cycle-finding algorithm used in [Tes98].

PollardsrhoOriginalLenstra[Q_] :=
Module[{aj, bj, Rj, i, j, q1, count, n, allsolutions, list, l,

found},
SeedRandom[];
count = 0;
found = False;
q1 = Q;
aj = RandomInteger[{1, k - 1}];
bj = RandomInteger[{1, k - 1}];
Rj = AddPoints[MultiplePoint[aj, P, A, B, p],
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MultiplePoint[bj, q1, A, B, p], A, B, p];

list = {};
For[i = 1, i <= 8, i++, AppendTo[list, {Rj, aj, bj, q1,

count}]];
(*A list with 8 terms, in the beginning they all are the

initial term*)

While[
{Rj, aj, bj, q1} = IterationOriginalLenstra[{Rj, aj, bj, q1}];
count++;
For[j = 1, j <= 8, j++,

If[list[[j]][[1]] == Rj,
found = True;
n =
Part[Part[
Part[SolveMod[bj - list[[j]][[3]], list[[j]][[2]] - aj,

k],
1], 1], 2];
Break[];

];
];

If[found, Break[];];(*If one of the terms in the list is
equal to the latest term we are done.*)

If[count >= 3*list[[1]][[5]],
For[l = 1, l <= 7, l++,

list[[l]] = list[[l + 1]]
];
list[[8]] = {Rj, aj, bj, q1, count};

]; (*Our new point is placed in the 8th position of the
list.*)

count <= 1000000 (*Continue until found=true.*)
];
{n, count}
]

This part can be modified to work with all different Pollard’s rho methods and functions,
this particular one is for the Mixed walk. Here we have chosen a curve and will now solve
all the ECDLP cases for this curve.

averageNumberOfIterations[listOfPoints_, msAll_,
nsAll_, Ms_, sets_, excep_] :=
Module[{list, list2, i, n, iterations},
list = {};
list2 = {};
i = 1;
While[i <= 1000,
iterations =
Timing[Pollardsrho[listOfPoints[[i]], msAll[[i]],
nsAll[[i]], Ms[[i]], sets,
excep]]; (*Sending in one point Q at the time, solving all the

ECDLP cases for one curve*)
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AppendTo[list, iterations[[2]][[8]]];
AppendTo[list2, iterations[[1]]];
(*Then adding the count (number of iterations before a match

for \
that Q) to a list*)
i++
];
Print[N[Max[list]]];
Print[N[Min[list]]];(*Longest and shortest amount of steps

before a collision*)
Return[{N[Mean[list2]],
N[Mean[list]]}](*Taking the mean of the list, with 1000

elements to get the average number of iterations for the
curve*)

]

This can also be modified to work for all functions mentioned. Here we will go through
all the curves one at the time. The input are the 10 curves, all 10000 ECDLP cases for
these curves.

averageAll[curves_, listOfPoints_, sets_, excep_] :=
Module[{list, i, ms, nsAll, Ms},
list = {};
For[i = 1, i <= 10, i++,
setGlobalVariables[curves[[i]]];
{ms, nsAll, Ms} = multiple[listOfPoints, i, sets];
AppendTo[list,
averageNumberOfIterations[listOfPoints[[i]], ms, nsAll, Ms,

sets, excep]];
];
Print[StringForm[
"Number of iterations before a match, for every curve: ‘1‘",
list]];
]

This one is used in the iterating functions for Adding walk, Mixed walk or modified
Pollard’s rho method. In the rules we have that Ri+1 = R+msP +nsQ = R+Ms where
0 ≤ s ≤ sets. So we need sets many of M, m and n for every ECDLP case.

multiple[listOfPoints, h_, sets_] :=
Module[{ms, nsAll, l, r, ns, Ms, list, multiple, j, i, msAll},
SeedRandom[];
msAll = {};

For[r = 1, r <= 1000, r++,
ms = RandomSample[Range[1, k - 1], sets];
AppendTo[msAll, ms]

];(*sets number of random points for every point in
listOfPoints. These we will use in the iterating function
for Adding walk or Mixed walk*)

nsAll = {};
For[l = 1, l <= 1000, l++,
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ns = RandomSample[Range[1, k - 1], sets];
AppendTo[nsAll, ns]

];

Ms = {};
For[i = 1, i <= 1000, i++,

list = {};
For[j = 1, j <= sets, j++,

multiple =
AddPoints[MultiplePoint[Part[Part[msAll, i], j], P, A, B,

p],
MultiplePoint[Part[Part[nsAll, i], j],

Part[Part[listOfPoints, h], i],
A, B, p], A, B, p];
AppendTo[list, multiple];

];
AppendTo[Ms, list];
];
{msAll, nsAll, Ms}
]
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