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Abstract
Regression testing is the process of confirming that a code change did not
introduce any test failure into the current build. One Regression testing tech-
nique commonly used is Regression test selection or RTS. It is the process of
identifying all tests affected by a code change, which are identified by creat-
ing a dependency graph of the project. The selected tests are then executed.
The purpose of RTS is to reduce the development time by lowering the time
for testing. Machine learning has been used as a test selection tool in recent
studies and have shown promising results. Machine learning were used with a
RTS tool to further reduce the number of tests selected. The features are pri-
marily extracted from the dependency graph from the RTS tool. The machine
learning is then used to estimate the probability of a test failure, and the tests
are selected based on the probability of test failure. However, in order to train
a machine learning model, it is essential to have a lot of data, and faulty code
changes are required. Code defects need to be tested with the RTS tool while
extracting data from running the tests. However, for open source projects, ob-
taining a large number of historical code defects is challenging. This paper
presents EALRTS, a predictive regression test selection tool. EALRTS uses
mutation generation instead of historical code defects. The data for the ma-
chine learning model is obtained with the help of STARTS, which is a static
RTS tool. The data extracted comes mainly from two sources: (1) from the
dependency graph that STARTS creates. (2) And from the test result reports.
The data extracted is then used to train a Random Forest algorithm, whose goal
is to predict what test to select. EALRTS managed to reduce the number of
tests selected by 60.3% while finding 95% of all failed tests. The recall rate is
interpreted as the amount of individual test failure found in a test class. The re-
sults show a trade-off between the number of individual test failures found and
the number of tests selected. The trade-off suggests that a machine learning
model can drastically lower the amount of test selected by a slight reduction
in recall rate. The results for EALRTS are based on one case study, 725 test
runs with a project consisting of 808 Java-files.
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Sammanfattning
Regressionstestning är processen för att bekräfta att en kodändring inte in-
förde något testfel för projektet. En regressionstestningsteknik som vanligtvis
används är Regression Test Selection eller RTS. Det är processen att identifi-
era alla tester som påverkas av en kodändring. Syftet med RTS är att minska
utveck- lingstiden genom att sänka tiden för testning. Maskininlärning har an-
vänts som ett verktyg för testval i nyligen genomförda studier och har visat
lovande resultat. Maskininlärning användes med ett RTS-verktyg för att ytter-
ligare minska anta- let utvalda tester. För att träna en maskininlärningsmodell
är det dock viktigt att ha mycket data och kodändringar som har introducerat
testfel. För open- source projekt är det emellertid utmanande att hitta stort antal
kodändringar som ger testfel. Den här studien presenterar EALRTS, ett test-
verktyg som kan förutspå vilka tester som behöver köras. EALRTS använder
mutation gene- ration istället för befintliga felaktiga kodändringar. EALRTS
lyckades mins- ka antalet utvalda tester med 60,3 misslyckade test. Resultatet
antyder att en maskininlärningsmodell kan sänka mängden test som valts ge-
nom en liten minskning av felaktiga test som hittas. Resultaten för EALRTS
är baserade på en fallstudie, 725 testkörningar med ett projekt som består av
808 Java-filer.
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Chapter 1

Introduction

Regression testing is an approach to ensure that a code change has not in-
troduced any regressions. After a code change, A Regression Test Selection,
RTS, tool finds the tests affected by the code change. The tests not affected
should have the same result as in the prior run. A typical regression testing
requires two sources of information – The dependency information, i.e., neces-
sary elements of a program needed to execute a test, and the changed elements
of the program [1–4]. – This approach can be useful to help allocate limited
machine resources, e.g., Google has over 150 million tests running every day
[5]. Hence, reducing the number of tests can lower the lag time between check-
ins and feedback and as a result, reduce the time to production. Öqvist et al.
[1] suggested that safe RTS tools can be combined with other unsafe RTS tools
to reduce the time of production. An RTS tool is said to be safe if it runs all
tests that have been changed as a result of a code change.

In this thesis, we introduce EALRTS, which is a static, and file-level Pre-
dictive Regression Test Selection, PRTS. EALRTS does not require a histor-
ical faulty code change. Instead, EALRTS uses mutation generation for code
defects. PRTS, similar to RTS, identifies the affected test files given a code
change. A PRTS tool estimates the probability of a test failure and tests are
selected based on the probability of test failure, which is calculated by a ma-
chine learning model. EALRTS can be viewed as an unsafe RTS tool. The
reduction of tests comes at a price of safety but hopefully, with a reduction
in the end-to-end the testing time. A safe RTS tool selects all tests that are
affected by a code change.

EALRTS consists of two sub-methods: (1) the data extraction process, (2)
and machine learning as a test selection tool –. The goal with the data extrac-
tion process is to extract data from multiple test runs given that code defects
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2 CHAPTER 1. INTRODUCTION

are inserted into the project. The code defects were, in this case, created with
mutation generation. Multiple mutants are then selected and inserted into a
maven-based java project. The number of mutants is supposed to represent
the changes made by developers. EALRTS then uses STAtic Regression Test
Selection tool, STARTS [3] to run tests and extract data from STARTS’s de-
pendency graph and the test result reports. The extracted data was then used
as input to a machine learning model to predict the probability of a test failure
and then selects what test to run.

The evaluation of EALRTS has been on one maven-based java project, that
is commons-math. When mutants inserted to the project, EALRTS reduced
the selected test by 60.3% with a 95% recall rate, compared to STARTS. The
source code and dataset extracted are available on Github.1

1.1 Problem statement
There is a lot of existing research in RTS [1–4, 6–8]. However, there is less
research in Predictive Regression Test Selection, PRTS [5, 9]. Previous re-
searches in PRTS used historical faulty code changes made by developers [5,
9]. Memon et al.[5] proposed a set of features that were then used by Machal-
ica et al.[9] which extracted data from a basic regression test selection tool
that found every test affected by a code change through static dependencies.
The extracted data was then used as an input to a machine learning model to
predict test failures. However, no approach was presented on how to train a
machine learning model without historical code defects. Also, open source
projects with an appropriate size and with historical code defects are hard to
find. Even when code defects are available, there are usually too few to achieve
statistical significance [8]. This becomes a problem in supervised machine
learning since a lot of training data is required.

In this thesis, the problem we address is two fold. (1) How to address
the issue of missing historical code defects. (2) How to predict what tests to
select given generated data. This resulted in the creation of EALRTS (Erik
Alexander Lundsten Regression Test Selection).

1.2 Novelty
First, there are three aspects of novelty in this thesis:

1https://github.com/kth-tcs/kth-test-selection/tree/master/eal%20predictive%20rts



CHAPTER 1. INTRODUCTION 3

This is the first to report an approach of how multiple code defects can be
generated and inserted into a maven-based java project. Previous research has
only considered using historical code defects created by developers[9]. This
thesis used mutation generation to create code defects and select multiple code
defects to insert into a maven-based java project.

This thesis also presents an approach of how to extract the features, for the
machine learning model, with the help of STARTS. Previous research used
a set of features in different conditions: without using an open source RTS,
used historical code defects, and little information about how to extract the
features [9]. This thesis presents the process of how to obtain the features
from STARTS. More specific, an approach of how the data can be extracted
from multiple tests runs when mutants are inserted into a maven-based java
project.

The thesis is also the first to evaluate the predictive performance of two
machine learning models on the generated dataset. The models are evaluated
in terms of the number of tests selected, AUC roc-curve, and recall. Where
recall explains the number of test failures found compared to STARTS. Then
a comparison between the machine learning models are made and how it com-
pares to STARTS in regards to these metrics.

1.3 Research questions
The research questions are divided into two main areas, which are explored in
this thesis. The areas are data generation and machine learning as a test selec-
tion tool. The distinction is made since machine learning as a test selection
tool is a result of the data generation process.

Data generation

In order to evaluate how to determine how many mutants can be in-
serted into the project, the following research questionwill be answered:

RQ1: What is a good number of mutants to be used for data
generation in EALRTS?
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The features explored in this thesis require data such as minimum dis-
tance, file cardinality, connected file cardinality, and target cardinality.
(1) The minimum distance is how far away a change and a test target
are from each other in terms of dependencies. (2) File cardinality is
how many files changed (3), And connected file cardinality is how
many files given a change transitively depend on a test target. (4)
The test target is how many tests are affected by a given code change.
Moreover, in the context of training a machine learning model, it is
required to have data from multiple test runs, where a test run is the
executed test suite given a code change.

RQ2: How can minimum distance, file cardinality, connected
file cardinality, and target cardinality be extracted from the STARTS
to represent the code changes made?

Machine learning as a test selection tool

The metrics used to explore machine learning as a test selection tool
are recall, selection rate, time to select tests, AUC roc-curve. The
recall says how many of the individual tests targets were found. A
test target consists of one or more test cases. Selection rate is how
many tests were selected by the PRTS tool compared to an RTS, which
is considered the ground truth. Finally, AUC roc-curve is a metric
to distinguish two metrics, which in this case is recall and selection rate.

RQ3: When predicting what test to select with machine learn-
ing, how does Random Forest and XGBoost compare to each other
in terms of recall, selection rate, time to select tests, and AUC-roc
curve?
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As a result of the research question 3, the best performing machine
learning model will be chosen for EALRTS and compare against
STARTS. The following research question will be answered to evaluate
EALRTS:

RQ4: How well does EALRTS improve STARTS in terms of
selection rate, recall, change recall, and time to select tests?

1.4 Structure of the thesis
The thesis explores two different areas, a data generation process and machine
learning for test selection. Chapter 3 presents the theoretical background.
Chapter 4 is an analysis of the state-of-the-art and motivations for the selected
tools used in this thesis. Chapter 5 describes the methodology for EALRTS
and the evaluation methodology. Chapter 6 presents the methodology for ma-
chine learning for the test selection. Chapter 7 presents the results and answers
to the research questions. Finally, Chapter 8 presents the discussion and con-
clusion. Which brings up limitations with this approach and what needs to be
further researched.



Chapter 2

Background

2.1 generation

Figure 2.1: Overview of the mutation generation

Researches in regression testing often require changes to the program with
code defects. However, one issue is that open source projects rarely have this
data available or it does not exist. An approach is to generate data with a
technique called mutation generation, which changes a file to be a defect. The
code defect can represent faults similar to the faults introduced by developers.
Thus, it is useful for reproducible experiments. [8]

Mutation generation is the process of manipulating code in order to intro-

6
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duce defects in the form of small code changes. The change introduced should
result in unexpected behavior which should raise test failures. Mutant gener-
ation is created by applying mutation operation to the original program; these
mutations are syntactic changes. The operators changed often includes[8, 10]:

• Changing constant C to 0,1, -1, (C+1), (C-1)

• Change arithmetic, relational, logical, bitwise logical, increment, decre-
ment, arithmetic-assignment operators by another

• within the same operator-class.

• Negate the decision in "if" or "while" statements

• Delete statement

The mutation occurs at either a source code-level or bytecode-level. Coles et
al.[10] concluded that bytecode-level seems to generate mutants quicker com-
pared to source code-level for java. One way to generate mutations efficiently
is to divide it into two stages. First, a scan of the project is initialized, then
all possible mutants are identified to store a description of the mutant. The
description can then be used to recreate the mutants [10, 11].

Coles et al. [10] developed Pitest that provides a state-of-the-art faulty
test detection which utilizes mutants to see whether a test finds the anomalies
that Pitest creates. However, it can also be used only to generate code defects
or mutants. The created mutants are at a bytecode-level, which resulted in
the mutation generation process is computationally inexpensive. The muta-
tion generation consists of two parts: (1) all classes are examined within the
system under test, and stores the identified mutation points to memory. (2)
At the same time, the mutated bytecode-file are generated during this process
and immediately discarded. This information about the mutation is enough to
recreate all the mutants previously discarded. It also enables Pitest to store
possibly millions of mutants without overloading memory. However, it is pos-
sible to persist mutants to disk via command line options. [10]

Furthermore, the tool was used in a similar work done by Zhang et al. [12],
which used Pitest in order to predict mutation result. Moreover, EALRTS uses
Pitest because of the possibility to generate mutant quickly, persisting mutants
to disk and the active development of the tool. The Pitest will be the mutation
generation tool in this thesis.
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2.2 Regression test selection

Figure 2.2: Diamonds represent source files and circles represent the test target. An arrow is
connected from X –> Y if Y depends on X, or X impacts Y. Two source files are changed in
this picture and are marked red with the number 1 and 2. All files that transitively depend on
the given change are red. Finally, the selected tests are the red circles and are selected given
the code change, i.e., the test transitively depend on the code change.

To retest all tests given a code change is an expensive process which is why
researches have been made to reduce the number of tests that will not fail [1–4,
6–8]. Regression test selection, RTS, is the process of detecting regressions
for a code change. When developers change the code, it is crucial that the
code changed did not introduce any new regressions into the working build.
A typical technique within regression test selection requires two sources of
information [2–4]. First, it needs to compute the dependency information of
the given system under test, these dependencies states what files are affected
given the code changed. Second, it needs to identify what files have changed,
which is done by comparing checksums of the files between two versions of
the program.

Figure 2.2 presents a basic file-level RTS tool, which pictures a project
with dependencies, two changed files, and what test files are affected, i.e., the
red circles. The figure represents a safe regression test selection technique,
i.e., the tool selects every test affected by a code change [1]. RTS can reduce
the time spent by executing only a portion of the entire test suite [6, 13].

Test dependencies can be collected either as static or dynamic. Legunsen
et al. [3] used a static approach to select tests, and Gligoric et al. [2] used
a dynamic approach to select tests. The static approach uses static analysis
to approximate what test to run. In contrast to the dynamic approach that
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uses run-time information in order to determine what tests to run. Further, the
gathered information for both static and dynamic RTS techniques is at different
granularities. Research made have shown that file-level have a less end-to-end
time than a method-level technique even though it can select fewer tests. [2–
4].

2.2.1 Static test selection approach
Legunsen et al. [14] compared two static approaches to test selection, one at
a class-level and another at a method-level. They concluded that class-level
outperformed the method-level and were comparable to the state-of-the-art
dynamic RTS, Ekstazi [2]. Legunsen et al. came up with a class-level Static
RTS or STARTS. It is a tool which uses compile-time information to build
a dependency graph to find the impacted tests. The impacted tests are the
ones that transitively depend on the changed code. They further described
a static approach in five steps: (1) Find type dependencies (2) Construct the
type dependency graph (3) find the code change between two revisions (4)
store checksums for the current revision (5) select tests impacted by the code
change and optionally run the tests [3].

Extraction-based is another static RTS tool that was developed to reduce
overhead costs compared to running all tests. Extraction-based RTS is a test
selection technique that uses static analysis to select tests. This method uses
a dependency graph to select tests and does a minimal extraction of the test
program, i.e., a subset of files that is enough for running the test. Further, it is
also a coarse-grained and incremental method, meaning that the dependency
graph incrementally changes after update to the program is made. Further,
a discussion was made in the trade-off between a safe RTS and reducing the
safety of the RTS tool to select fewer tests. That is, RTS tools can be combined
with RTS methods to reduce the number of tests further[1]. However, the
documentation of the tool is lacking, and already implemented functionality
was limited.

2.2.2 Dynamic test selection approach
Ekstazi is regression test selection tool which is considered state-of-the-art
[1–4, 6, 7]. Ekstazi was developed to be more easily adopted into existing
testing frameworks and build systems. The purpose of the developed tool was
to increase the adoption rate. Ekstazi tracks dynamic dependencies and only
select tests that are affected by these dynamic dependencies for each test class.
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Ekstazi then stores the name and checksums of these classes. The information
stored dependencies for each test class in a separate file. Ekstazi then analyzes
if the checksums remain the same. A test is executed if any file has changed for
a given test class. On average, Ekstazi reduced the end-to-end testing time by
32% compared to running all tests [2]. While it is considered state-of-the-art,
this project was not open source for the more significant part of the time of
this thesis.

2.3 Machine learning

2.3.1 Data preprocessing
Data preprocessing is the technique used to transform data into an understand-
able format for a machine learning model. The technique can manage data
that is incomplete, inconsistent or contains errors. Different techniques exist
to solve such issues [15–18].

Data cleansing is the process of cleaning the data by dealing with miss-
ing values, removing outliers, smoothing noisy data. Missing data can occur
because of collection error or corrupted data. A dataset with relatively low
missing values, the inputs can be removed. If the missing values are high, it
is possible to implement imputation techniques as described by Donders et al.
[15]

Binning is the process to reduce the number of possible values in the data.
An example of a reduction is to introduce categories, or an interval, where
each interval is a category. The reduction will help with problems such as
outliers, minor data errors, and preparation of the data. [18]

Data reduction strategies are used to reduce the number of features with-
out losing its originality. An approach for reducing a smaller set of features
is through a brute-force wrapper method. Traditionally described, a wrap-
per method evaluates the predictive performance for a subset of features. In
practice, the following needs to be defined: (1) How to search for the possible
subset of features (2) How to assess the predictive performance of the machine
learning model (3) The predictor to be evaluated. An exhaustive feature selec-
tion approach uses a brute-force search which is suitable if not the number of
features is too large.[17]

Data transformation is the process of transforming data into another for-
mat. The purpose of data transformation is to enhance the data in such a way
that it increases the likelihood that the machine learning model to find mean-
ingful patterns. Normalization is one such technique where values convert
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into a normalized range. Another approach is one hot encoding where the
categories transform into features with the value one or zero, i.e., true or false.

2.3.2 Gradient boosted decision tree

Figure 2.3: Illustration of the gradient boosted decision tree prediction process

The main idea behind boosting is to sequentially add new weak models, de-
cision trees, to an ensemble that can produce accurate predictions. At each
iteration, a newly trained model tries to minimize the error of the whole en-
semble learned to this iteration. Figure 2.3 is an illustration of the prediction
process of a gradient boosted decision tree.

The goal is to map input features x = {x1, ..., xd} to an output y and to
reconstruct unknown functional dependence x f

Ð→ y with a functional estimate
f̂(x) that minimizes some loss function J(θ) = Ψ(yi, f(xi, θ̂)). For gradient
boosting, each functional estimate is a weak learner that is sequentially fit-
ted on the previous ensemble’s residuals. The minimization of the residuals is
done with gradient descent of the loss functionOJ(θ). This process of adding
weak learners and fitting on the previous ensemble’s residuals is repeated until
the numbers of estimators are reached. [19]
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Gradient boosting algorithm

Initialization
1: Import the data x = {x, y}Nn=1
2: Define the number of iterations
3: Choose a loss-function Ψ

4: Choose a base learner f
Algorithm
5: Make the initial guess f̂0 as a constant
6: For t=1 in range M
7: Calculate the gradient the negative gradient gt(x)
8: train a new decision tree f(x, θt)
9: Calculate the gradient descent step-size ρt

ρt = arg min∑
N
n=1 Ψ[yi, f̂t−1 + ρf(xi, θt])]

10: iterate the function estimate:

f̂t−1 + ρtf(x, θt) Ð→ f̂t

11: end
Note that f(x, θt)is parallel to the negative gradient g(x) [19]
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2.3.3 Random Forest

Figure 2.4: Shows the predictions process of random forest, the green circles represent the
predictions made by each decision tree in a random forest. The final prediction is the result of
the majority voting

The idea of training multiple decision trees in parallel for classification was
first introduced by Ho et al. [20]. Picture in figure 2.4 shows a simple version
of Random Forest, which is an ensemble technique. The ensemble consists
of many decision trees which are trained in parallel and outputs a prediction.
The predictions result in a majority vote, and the class with most predictions
is the final prediction. Each decision tree utilizes something called bootstrap
aggregation, commonly known as bagging. Bagging is the process of selecting
a random subsample of the features with replacement, i.e.,m ∈M where M is
the entire dataset. "With replacement" means that that the other decisions tree
can select the same samples [21].

1: for i=1 to B
2: draw m samples with replacement
3: Grow a tree and recursively repeat the following steps until
all terminal nodes are reached:
4: i) randomly selectmtry of the predictors
5: ii) calculate the best split among themtry variables
6: iii) split the node into two daughter nodes
7: Output: for classification, perform majority vote for all the decision
trees. [21]



Chapter 3

State-of-the-art

This section presents an analysis of the state-of-the-art and the motivation of
the tools and models used in this thesis.

3.1 HyRTS: Hybrid Regression Test Selection
Zhang, L. [4] studied the strengths of dynamic and static RTS and at different
granularity levels. They found a way to combine the strengths of the differ-
ent level of granularities in order to create a Hybrid Regression Test Selec-
tion, HyRTS. The basic technique behind HyRTS is to perform finer-grained
method-level analysis on code changes while performing file-level analysis on
additions, deletions, or class file header changes. It selects tests at a method-
and file-level analysis of the test dependencies. The selected tests are then exe-
cuted, and method-level dependencies are gathered for future revisions. Also,
the file-level dependencies can be derived from the method-level analysis.

HyRTS currently supports maven-based java projects at a test class level.
The three components in HyRTS are (1) change computation, which finds the
changed file by getting the checksums for the bytecode files. Also, HyRTS
tracks method-level changes. (2) dependency collection, the method depen-
dencies are gathered with a java agent. The file-level dependencies can then
be derived from the method-level dependencies. The dependencies are gath-
ered from a test-class level since test methods are hard to find in practice. (3)
Applicationmodes the selected tests can then be derived from the code changes
identified and the collected dependencies.

However, the code of this experiment is not open source and can, therefore,
not be used in this experiment.

14
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3.2 STARTS: STAtic Regression Test Selec-
tion

In a previous study by Legunsen et al.[14] found that Static RTS was compa-
rable to the dynamic state-of-the-art RTS tool, Ekstazi. However, at this time,
static RTS were less precise and could be unsafe. Precise is if it only runs the
failed tests and safe if it contains all the failed tests. The paper also found that
class-level static RTS outperformed method-level static RTS. The conclusion
sparked the idea of STARTS. Legunsen et al.[3] then created STAtic regres-
sion test selection tool, or STARTS, which is a state-of-the-art static RTS tool
for a maven-based java project. STARTS use compile-time information to
select tests, in more depth STARTS builds a dependency graph relating all
types (Classes, interfaces, and enums) and finds impacted tests that depend on
the given change. It builds this dependency graph with the graph tool yasgl1,
STARTS computes the transitive closure for each test and finds all its depen-
dencies. STARTS can determine what files have changed by computing the
checksums for each file and compares it to the checksums of the previous run.
However, STARTS might be unsafe if the paths between tests and changed
files only reach via reflection.[3]

STARTS also brings a variety of options, which makes it easy to work
with, such as only finding what impacted tests that changed since the last run.
STARTS also brings the option to find and run impacted tests. Another critical
option that STARTS brings is the option not to update checksums after a test
run. The test tool can be used not to store the checksums for a version of
the program with inserted mutants. If the original bug-free file then replaces
the mutants, the test tool will notice a change even though this piece of code is
working. The option not to update checksums is, therefore, an essential option
for this thesis. 2

3.3 Features for predictive regression test se-
lection

Memon et al.[5] proposed features that indicated if a file were prone to break-
age. They found that very few tests ever fail, but those that fail are closer to the
code change. With a code based represented as a dependency graph, Memon

1https://github.com/TestingResearchIllinois/yasgl
2https://github.com/TestingResearchIllinois/starts
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et al. found that the test target is within a distance of 10 in terms of edges. Fur-
thermore, other features have frequently modified the code, individual users
and tools cause more breakage and lastly, code recently modified by more than
three developers could indicate that a file is more prone to breakage.

The following features were used in this thesis based onMachalica et al.[9],
andMemon et al.[5] and are further divided into three categories. The change-
level feature consists of features given the code change:

• Change history for files, how many times have a file changed. In order
to identify areas of development which are more prone to breakages.

• File cardinality is the number of files touched by a change. Large changes
are harder to review, and smaller changes are less likely to fail.

• Target cardinality, number of files (test targets) touched by a change. A
widely used particular file might trigger unexpected behavior.

Target level features are the single test target that perhaps needs to be further
tested. These features consist of:

• Failure rates. A measurement of how good the test target performs.

• The number of tests, which is an indication of the code area coverage.

Cross features are features depending on test target and the code change:

• Connected file cardinality, how many files are having a transitively de-
pend on the given a test target.

• Minimum distance, the distance between the changed files, and the se-
lected testing target. A closer distance is more prone to breakage given
a change.

3.4 Model selection for predictive regression
test selection

Model selection for predictive regression test selectionMachalica et al.[9] con-
ducted their experiment at Facebook and based their features on the paper by
Memon et al.[5]. The suggested features were input for a gradient boosted de-
cision tree model. Gradient boosted decision tree is a favorite machine learn-
ing model that works out of the box, requires no normalization, and can deal
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with imbalanced data. Therefore, a gradient boosted decision tree is onemodel
evaluated in EALRTS.

Zhang et al. [12] researched predictive mutation testing, PMT, which aims
to predict mutation testing results without executing the mutants. The model
used in this researchwith the reason is that it is a robustmodel that it is practical
to deal with imbalanced data. Logistic regression is another model used for
classifications tasks. However, Muchlinski et al.[22] suggested that Random
Forest may perform better than logistic regression for imbalanced datasets.
Therefore, Random Forest will be the second model to be compared for this
thesis.

In this thesis, the models used are Random Forest, and gradient boosted
decision tree. These models both have support to handle imbalanced data,
which is why the models are chosen over logistic regression.



Chapter 4

Methodology

This chapter consists of two aspects of the methodology, an approach- and an
evaluation- methodology. The approach methodology explains how EALRTS
works. It consists of two main areas, generating data and selecting tests with
machine learning. The data generated is used as input for a machine learning
model to predict what tests to run. First, code defects, or mutants, were created
with Pitest. Then multiple mutants were inserted into the project and STARTS
found the changed files by comparing checksums with the original project,
i.e., commons-math. STARTS then finds the affected tests by searching the
dependency graph that it creates. At this time, a modified STARTS outputted
data from the dependency graph. Once finished the test run, the project was
reset back to normal, and a new set of mutants was inserted. This process was
then repeated and resulted in a dataset. Each entry in the dataset was a test
target, and the class was whether or not the test failed. The dataset was the
input for a machine learning model. The goal of the machine learning model
was to predict if a test needs to be tested or not.

The evaluation methodology presents the evaluation process of EALRTS.
It consists of the two main areas, the data generation and selecting the machine
learning model. The data generation describes what metrics were extracted to
evaluate the data generation process. The selecting machine learning model
presents the process of how both the models were optimized, and how the
models were evaluated.

18
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4.1 Approach methodology for EALRTS
EALRTS uses generated mutants to extract data from STARTS and then use
the data as input for a Random Forest classifier to predict what test select. Fig-
ure 4.1 presents the process of the entire data generation process. The data to
be extracted is presented in section 4.1.1. The process of generating mutants is
presented in section 4.1.2. Then the process of using mutants to extract data is
presented in section 4.1.3 and finally, the test selection with machine learning
is presented in section 4.1.4.

Project

PiTest

STARTSStore
checksums

Generated
mutants

Insert 1-15
selected mutants

into project

Run STARTS
without storing

checksums

Extract output

Reset the original
project

Do for x
interations

Projects
checksums STARTS

Figure 4.1: Data extraction process of EALRTS

To go into more detail, pseudo-code of the EALRTS is also provided in
algorithm 1. The pseudo-code explains the individual steps of figure 4.1 and
it also includes test selection with machine learning.



20 CHAPTER 4. METHODOLOGY

Algorithm 1: pseudo-code for EALRTS
Result: A selection of tests with machine learning
#Data generation;
Generate mutants with Pitest;
Run STARTS and store checksums for the original project;
int num_runs = number of test runs;
for i in num_runs do

int num_files = random number between 1 and 15;
for j in (num_files) do

Select a random file from original project;
Select a random mutant for the file;
Replace the file with the mutant;

end
Run & extract data from STARTS;
Replace mutants with the original files;

end
#Test selection with machine learning;
Read the extracted data;
split data into evaluation set and a training set;
train a Random Forest model on the training set;
List<float> probabilities = predictions on evaluation set;
for j in (num_files) do

if (probability> (probability cut off)) then
test selected to run;

else
test not selected to run;

end
end

4.1.1 Extracting features
A machine learning model requires input data in order to find patterns for
making predictions. Input data consists of features, and the label is what we
want to predict. The features for this experiment was about the code change,
test target, and cross-dependent features, which are features depending on both
the code change and test target. Moreover, the label is whether a specific test
target failed. A test target is a test class containing tests cases. The extracted
features used in this thesis are based on previous research [9]:
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Code change features:

• File change history is how often each of the changed files been changed
in the past. File changed more often might be more prone to breakage.

• File cardinality, number of files affected by a change. Larger changes
can indicate a file is more prone to breakage

Test target features:

• Failure rates, how often the tests have failed, given all the test runs.

• The number of tests can be an identifier of code coverage.

• Target cardinality, number of tests selected given a change.

Cross dependent features:

• Connected file cardinality, number of files touched by a code change
and have transitive closure to a test target.

• The minimum distance is the shortest distance in terms of edges from a
change to a test target.

4.1.2 Generating mutants with Pitest
The data was extracted with the help of STARTS. By default, STARTS does
not have an option to extract these features, so modification to STARTS was
made in order to extract these features. Although File change history was
obtained through the project’s Github.

For this experiment, the machine learning model requires input from three
sources of information: (1) A code change with defects and (2) test failure
caused by the code change. (3) cross-dependent features between the code
change and the test target that failed[9]. In other words, code defects are re-
quired in order to train a machine learning model. However, finding open
source projects with an appropriate size and with historical code defects are
hard to find. Even when code defects are available, there are usually too few
to achieve statistical significance. When lacking historical code defects, two
approaches are available. Faults can either be introduced by hand or automat-
ically with a mutation generation tool [8]. Also, when a developer makes a
code change, it can consist of multiple files. This experiment recreated this by
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inserting multiple mutants into the code.

Generated mutants

Pitest is a state-of-the-art tool to generate mutations that are seeded into the
project and then run the tests. For this experiment, the mutations were ex-
tracted, and the execution of the tests by Pitest was skipped. The mutants
generated by Pitest are at a bytecode-level, which is more time efficient than
mutants generated at a source-code level[10]. The name of the mutations is
equal to the classpath, which makes it easy to find the changed file. Alongside
the mutants, comes details of what method have changed, what line, and the
operation that changed.

Mutants inserted into the project

EALRTS replaced a randomnumber of fileswithmutants in the original project.
The random number of files to be replaced by mutants have an upper limit,
which is found by analyzing the buildSuccessRate when a certain number of
mutants are inserted. For this experiment, the maximum number of files to be
replaced by mutants was 15, which is further described in section 4.2.2. EAL-
RTS then selected the mutants generated by Pitest and inserted them into the
project. To reduce the sample bias[23]; A file cannot be replaced again until
EALRTS have replaced all files in the project. Once STARTS has finished its
test run, EALRTS replaces the mutants with the original files. Moreover, if the
project failed to compile with the inserted mutants, then the original version
of the project is restored. Also, a new number of mutants are selected instead
in order to reduce the risk of a sample biased dataset.

Another approach to reset the project could be to recompile the project.
Also, mutants could be created generated at a source code-level instead of a
bytecode-level.

However, recompiling the project takes significantly longer than simply
inserting the compiled file again. Also, research suggests that bytecode-level
mutants aremore time-efficient than those generated at a source code-level[10].
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4.1.3 Extracting data from STARTS
Stored checksums

To identify a code change, STARTS compares two versions of the program an
old and a new one by storing the checksums of the two versions. If a checksum
for a file is different between an old version and a new version of the program,
the file is considered as a changed file. The checksums in this experiment are
only stored once; in this case, this would be the original project checksums.
The checksums are only stored once since the removed mutants from the last
iteration, or an old version, caused a difference in checksums. Also, EALRTS
configured STARTS not to store the checksums by default.

Using the graph library Yasgl to find data

By default, STARTS builds a dependency graph, and the test selected is on
a class-level. The dependency graph that STARTS builds is created the help
of Yasgl, yet another simple graph library, where each node is a type.1 Yasgl
is used in STARTS to find the affected test through the changed files.

EALRTS modified STARTS to extract data from the dependency graph
with the utilities that Yasgl brings. For this thesis, Yasgl was a convenient way
to find the data needed, such as minimum distance between changed files and a
test target, and connected file cardinality. A breadth-first search was conducted
on the dependency graph to find the minimum distance and the connected file
cardinality. Also, the file cardinality and target cardinality was already identi-
fied by STARTS and required minor changes to be extracted.

Extracting data

The modified STARTS tool extracted data at run-time, i.e., connected file car-
dinality, file cardinality, target cardinality, minimum distance, and the name
of the tests that failed. Once STARTS finished executing the tests, it outputted
the test result reports with data such as the number of tests and test failures.
EALRTS then combined the test result reports with the data that STARTS ex-
tracted at run-time and saved to the /erik-files directory. Each entry in the
dataset was the result of a single test target,t, and is labeled positive if and
only if t ∈ FailedTests(c) where c is a changed file. If the test target has
failed, it is labeled true; otherwise, it is labeled false. Once the data is com-

1https://github.com/TestingResearchIllinois/yasgl
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bined, EALRTS resets the project to its original version and deletes the test
result reports in the surefire-reports.

There are two benefits of deleting the surefire-reports thatmodified STARTS
outputs. (1) The 725 test runs outputted 82437 individual data points or 82437
test result reports, which takes up much memory. (2) The reports output the
same name, by deleting the previous test reports makes it easier to track what
test result report belongs to a specific test run. Note that these values are for
the commons-math project.

4.1.4 Selecting tests with machine learning
A Random Forest model was then trained on the data extracted from the mod-
ified STARTS. The model was trained on all features described in section
4.1.1 except the file cardinality. The features were selected with a method
called a brute force wrapper-method[17], which is further described in section
4.2.5. The trained model then outputted a probability of a test failing. A test
is said to be failing if the probability of failing is above a probability threshold
probability > probabilityCutOff , where probabilityCutOff is the proba-
bility threshold. The tests that had a probability over the threshold are then
selected to be tested. The model could then be compared against STARTS in
terms of selection rate and recall.

4.2 Evaluation methodology
Figure 4.2 presents an overview of the elements that were required to get eval-
uation results from the two machine learning models. First, descriptive evalu-
ation statistics about the inserted mutants and data extraction are presented in
section 4.2.2 and section 4.2.3. Then the data had to be preprocessed in order
to be used as input for the machine learning models. Hyperparameters were
then tuned with Bayesian optimization, which is described in section 4.2.4.
Optimized hyperparameters increase the model’s predictive performance and
are required to make a fair comparison between the models. Then a feature
selection was conducted to remove noisy features, presented in section 4.2.5.
Finally, the model is trained, and the evaluationmetrics can be obtained, which
is explained in section 4.2.6
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Figure 4.2: Overview of the machine learning process

4.2.1 Evaluation metrics
Build success rate

buildSuccessRate =
SuccessfulBuilds

SuccessfulBuilds + FailedBuilds

Where SuccessfulBuilds is the number of test runs successfully compiled
with insertedmutants, and if the compiling failed, it is considered asFailedBuilds.
This metrics tries to capture success rate of compiling a project, where a higher
success rate is generally better.

Recall, change recall and selection rate

Evaluation metrics for predictive regression test selection have been proposed
by previous research[9]. The suggested metrics are used in this paper to eval-
uate a machine learning model are recall, change recall, and selection rate.
These metrics are defined as:

Recall =
selectedtests ∩ failedtests

failedtests

The selected tests are the test selected by the PRTS tool and failed tests
are all the failed test found by the RTS tool, i.e., STARTS. Generally, a higher
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recall is better, and it means that the model finds more individual test failures.
That is it finds test failures in a test target.

SelectionRate =
selectedtests ∩ nonFailedtests

nonFailedtests

The selected tests are the test selected by the PRTS tool and non-failed tests
from the RTS tool. The selection rate is the comparable metric that says how
well the PRTS model performs in comparison to a test selection tool. A lower
selection rate is better, which means that the model select fewer tests that pass.

Changerecall =
selectedtests ∩ Failedtests ≠ ∅

Failedtests ≠ ∅

Change recall describes if at least one test failure was found in a test suite by
the PRTS. It describes a models performance to find at least one test failure
per test run. A higher change recall is better since it means that the model
can find at least one test failure per test run. Therefore, a higher probability of
capturing faulty changes.

AUC-ROC curve is another technique which uses a two-dimensional depic-
tion of a classifier’s performance at various thresholds. Traditionally the two
dimensions consist of recall and precision. The area under the ROC curve then
indicates how well the two-performance metrics separate from each other[24].
The two dimensions can be replaced, and for this experiment, recall and se-
lection rate was used as the evaluation metric for the AUC ROC-curve.

4.2.2 Evaluating the inserted mutants
Since mutants are traditionally inserted one at a time. Inserting multiple mu-
tants into a project meant a risk of the project not compiling successfully.
Therefore, an analysis of the buildSuccessRate had to be made. For this
thesis, 30 iterations were made at various thresholds. The results were then
presented in a table. The analysis was the trade-off between the number of
mutants and buildSuccessRate.
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4.2.3 Evaluating data extraction process
When the modified STARTS detects code changes, it finds the affected tests
through a dependency graph. The code change was multiple mutants inserted
into the project, and a set of mutants cannot be guaranteed to compile success-
fully. Therefore, the average file- and target cardinality was extracted from
STARTS to see how inserting multiple mutants affects the data extraction pro-
cess. Then the average failure rate was extracted from STARTS. The average
time for build failure, i.e., time for a set of mutants not to compile was also
extracted from STARTS.

4.2.4 Tuning hyperparamters
The hyperparameter tuning used in this thesis is Bayesian optimization which
is an efficient way to find the hyperparameters.2 In contrast to random or grid-
searches, keeps tracks of historical evaluations of the model and creates a pos-
terior distribution of a function that is will be optimized. The function to
be maximized is the mean AUC-score of 5-fold cross-validation. The cross-
validation is used with early stopping to reduce the risk of overfitting. Once
finished, the best score will be that the parameter will be the parameters for
the model. The final hyperparameters will be presented in tables for Random
Forest and XGBoost.

The model was then further explored by removing the feature and see how
it affects the relativeAUC-scorewhich is defined as AUC−score (all features)

AUC−score (one removed feature) .

4.2.5 Measuring feature importance
A brute force wrapper-method is an approach for reducing a small set of fea-
tures. Traditionally described, a wrapper method evaluates the predictive per-
formance for a subset of features. In practice, the following needs to be de-
fined: (1) How to search for the possible subset of features (2) How to assess
the predictive performance of the machine learning model (3) The predictor
to be evaluated[17].

A brute-force search was used in this thesis since the feature set consisted
of seven features. The predictive performance measured was the AUC-score
and the logarithmic loss. The logarithmic loss penalizes classifiers that are too
confident about a prediction. Predictor used was presented in section 4.1.1.

2https://github.com/fmfn/BayesianOptimization
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The brute-force wrapper removes one feature at a time and is evaluated
with 5-fold cross-validation. The model outputs a score in terms of the se-
lected metrics’. If the model performs better without the metric for both the
logarithmic loss and AUC score, the feature is removed.

4.2.6 Selecting machine learning model
The machine learning models used for test selection are Random Forest, and
a gradient boosted decision tree model, XGBoost. These models both have
properties that are suitable for this use-case: They are both robust, no normal-
ization is required, it does not require high-end hardware and have support to
handle unbalanced data.

The evaluation metrics used to compare the machine learning models were
AUCROC-curve, recall, selection rate, and change recall. The recall threshold
used for comparison was based on previous research by Machalica et al.[9],
which used a 95% recall. Also, this thesis will look at recall thresholds be-
tween as 96% to 99% recall threshold to explore the difference in selection
rate between the models.

Both Random Forest and XGBoost returns a probability, which is the esti-
mated probability of a test target failing. If probablity > probablityCutOff
the test will be selected to run. Also, by trying different probablityCutOff
which will result in an AUC-roc curve. The two models could then be com-
pared to each other in terms of AUC-score and roc-curve.

The predictive performances were further explored by comparing the two
machine learning models to a random test selector. The random test selection
approach used failure rates to select what test to select. If a failure rate were
above a threshold, the test was selected. Doing this for different thresholds
resulted in a roc-curve which could be compared to the two machine learning
models.



Chapter 5

Results and analysis

This chapter presents the results and analysis of the results in two sections.
First, the result of the data generation and an analysis are presented in section
5.2. Second, the result of the machine learning as a test selection tool and anal-
ysis is presented in section 5.3. The analysis answers the research questions
stated in this thesis.

5.1
Table 5.1 presents information about the dataset. Similar research used all
mutations for predictive mutation testing [12]. The data was collected over
two weeks. During that time, a total of 1323 set of mutants were inserted into
the project, 725 of those could be compiled and executed successfully, i.e., 725
test runs. A test run is an execution of a set of tests targets given a code change.
The dataset consists of 82437 entries where each entry is a test target, which
is a test class. The number of test targets in commons-math is 497. 11.66%
of the test targets in the dataset failed, which fails as a result of the inserted
mutants. The average time it took for one test run was 176 seconds. The set
of mutants that could not successfully be compiled were discarded.

29
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Data generation information Values
Number of java-files in commons-math 808 files
Number of unique test targets for commons-math 497 test targets
Number of entries in dataset 82437 entries
Number of successful test runs in dataset 725 test runs
Total number of test runs in dataset 1323 test runs
Average failure rate in dataset 11.66%
Average test run time 176 seconds

Table 5.1: Presents general information about the dataset. It also presents the information of
the project size.

5.2 Data generation
This section presents the answer to research question one and two. The ques-
tions are also presented with results to support the answers to the questions.
The questions are answered in section 5.2.1 and 5.2.2.

5.2.1 Answer to RQ1
Build success rate
Table 5.1 shows the buildSuccessRate when a number of mutants were in-
serted into the project which are gathered over 30 test runs. The dotted line is
the average build success rate over the entire dataset.

Figure 5.1: build success rate
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RQ1: What is a good number of mutants to be used for data generation
in EALRTS?

Lacking faulty code changes is typical for open source projects. This thesis
presents an approach of how to insert multiple code defects into a project. This
approach tries to replicate the number of file changes made by developers by
inserting one or more mutants into the compiled version of the project. EAL-
RTS uses Pitest to generate bytecode mutants, and the tool supports maven-
based java project. Mutants generated at a bytecode-level are more efficient
than the mutants generated at a source code-level [10].

EALRTS generates a random number of files between 1 and 15 in the
project, commons-math. Then mutants from the same class are randomly se-
lected to be inserted into the project, commons-math. Once EALRTS selects
a file, it cannot be selected again until EALRTS selected all files.

Figure 5.1 shows the build success rates of various thresholds of mutants.
The maximum number of mutants chosen for this experiment is 15. The num-
ber is chosen by analyzing the buildSuccessRate at a different number of
mutant thresholds. The chosen threshold was 15 mutants, which had a 30.0%
buildSuccessRate. Increasing the maximum number of mutants drastically
lowered the buildSuccessRate. As shown in figure 5.1, when inserting 20
mutants into commons-math, it has only a 10% build success rate.

The maximum inserted mutants used in this experiment is 15, due to the
drastic decrease in build success rate over 15 mutants. In order to have a more
extensive variety of code changes, 15 mutants are chosen over ten mutants
as well due to a relatively small trade-off in terms of build success rate. By
lowering the build success rate increases the time to retrieve the dataset. Every
time a set of mutants fails to compile or build, this takes time. For this thesis,
the average fail time was approximately 9 seconds.

Further, by increasing the mutants also causes sample bias[23]. If the
buildSuccessRate is low, this means that there is a small chance that the build
will succeed. The case could be that certain Java classes are more robust to in-
serted mutants and therefore create a sample bias. However, precautions were
taken by not further lowering the build success rate, and therefore 15 mutants
were selected.
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RQ1: What is a good number of mutants to be used for data generation
in EALRTS?

Answer: This thesis presents an approach to creating code de-
fects with mutation generation. The mutants are created with Pitest,
and multiple mutants are then inserted into the project. Successfully
compiling the project is a challenge when inserting multiple mutants.
This buildSuccessRate has to be analyzed to determine how many
mutants that can be inserted. For this thesis, 15 mutants were inserted,
which had a 30% buildSuccessRate.

5.2.2 Answer to RQ2

Data generation information Values
Average test failure rate 11.66%
Average time for build failure 8.92 sec
Average file cardinality 5.9 mutant files
Average connected file cardinality 1.4 mutant files
Average target cardinality 130.8 test targets
Average minimum distance 3.0

Table 5.2: average failure rate = the number of test targets that failed, average time for
build failure = average time when the project failed to compile with mutants, average file
cardinality = the average number of mutant files inserted into the project, average target
cardinality = the number of test targets identified by STARTS given a code change

RQ2: How can minimum distance, file cardinality, connected file cardinal-
ity, and target cardinality be extracted from the STARTS to represent the
code changes made?

EALRTS integrated amodified STARTS into its data extraction process, which
is presented in section 4.2.3. First, the modified STARTS stores the check-
sums for all files once, which is for the original project. The checksums of
the project with inserted mutants are not stored. This is necessary because
STARTS will otherwise detect changes caused by the removed mutant. When
the new set of mutants is inserted, they are instead compared against the orig-
inal version of the project and not the previous run. This causes the features
to better represent the actual code change made.
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Then STARTS were modified to extract minimum distance and connected
file cardinality. The extraction from STARTS was done by using the depen-
dency graph that it creates and then conduct a breadth-first search to find the
features. This approach of extracting data from STARTS dependency graph
represents the possible faulty code changes.

Table 5.2 presents the average connected file cardinality, which is 1.4 mu-
tant files. A larger connected file cardinality can indicate whether a file is more
prone to breakage. In other words, the machine learning model will be trained
on an average of 1.4 connected file cardinality for commons-math.

Table 5.2 also presents information, such as the average target cardinality,
file cardinality, and an average failure rate. The average file cardinality was
5.9 files and given that the same files cannot be updated two test runs in a
row, this number would effectively double if the checksums were stored af-
ter each test run. Because the next iteration would detect the changes made
by the removed mutants, selecting more files for STARTS would cause more
tests to be selected. The additional tests selected would also be the cause of
time inefficiency, and it would not represent the actual possible faulty code
change made. Also, by adding more non-failing tests could be selected, and
the average failure rate would therefore decrease. Therefore, adding more tests
would create a noisy dataset. The file cardinality can also be an indication of
how many files should be changed to make optimal predictions for the learned
model. Since this number is 5.9, it can suggest that the model is overfitted on
smaller changes.

Further, Memon et al. [5] suggested that the distance in terms of edges in
the dependency graph is an indication of a test target failing. Files closer to a
test target is, therefore, more prone to breakage. If a developer changes a file
close to a test target, it suggests that the test target is more likely to fail.

RQ2: How can minimum distance, file cardinality, connected file
cardinality, and target cardinality be extracted from the STARTS to
represent the code changes made?

Answer: The checksums of STARTS are stored once for the original
project. When a set of mutants are tested, the checksums are not
stored. This will reduce the amount of non-faulty affected tests to be
found. The features found because of the code change, i.e., minimum
distance, connected file cardinality, and target cardinality, can then be
extracted with the help of STARTS dependency graph. The features
are extracted by conducting a breadth-first search on the graph.
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5.3 Evaluation of machine learning models
for test selection

This section presents results and analysis for the machine learning as a test
selection tool. First, hyperparameters are presented in section 5.3.1. Then the
feature importance is presented in section 5.3.2. Once, result and answer to
research, question 3 is presented in 5.3.3. Finally, the research question 4 is
presented in section 5.3.4.

5.3.1 Hyperparameters
The hyperparameters were set with Bayesian optimization. The hyperparam-
eters used are explained in the two subsections below. Then the values are
presented in table 5.3 and 5.5 followed by feature importance.

Random Forest hyperparameters

The parameters modified for the Random Forest model: model1:

• Max depth increases the depth of the decision tree.

• The number of estimators is the number of trees to fit.

• Max features are the ratio of the number of features when looking for
the best split

• Min sample split the minimum number of samples required to split an
internal node

Parameter Value
Max depth 24
Number of estimators 750
Max features 0.04804
Min sample split 0.32508

Table 5.3: Final hyperparameters for the Random Forest model

Table 5.4, shows the importance of the hyperparameters. If the value is
over one the feature increases its predictive performance. Since all features

1https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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have a value above one, the features increased the learned model predictive
performance.

Parameter Parameter importance
Max depth 1.002
Number of estimators 1.540
Max features 1.042
Min sample split 1.331

Table 5.4: hyperparameters importance for Random Forest. The parameter importance is a
relative AUC-score compared to when all features are present. All values are above one shows
that the value improves the predictive performance.

XGBoost hyperparameters

Table 5.5 presents the final parameters used in the XGBoost model. The pa-
rameters modify the XGBoost model in the following way2:

• Max depth increases the depth of the decision tree.

• The number of estimators is the number of trees to fit.

• Gamma is the minimum loss reduction required to make a further par-
tition on a leaf node

• Column sample ratio by tree is the ratio of features used for each tree.

• The scale of positive weight is the balancing of positive and negative
weights.

Parameter Value
Max depth 20
Number of estimators 100
Gamma 0.7592
Column sample ration by tree 0.6823
Scale of positive weight 1

Table 5.5: Final hyperparamters for XGBoost.

Table 5.6, shows the importance of hyperparameters. If the parameter impor-
tance is over one, the feature increases its predictive performance. Since all

2https://xgboost.readthedocs.io/en/latest/python/python_api.html
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features have a value above one, the features increased its predictive perfor-
mance.

’

Parameter Parameter importance
Max depth 1.006
Number of estimators 1.014
Column sample ration by tree 1.010
Gamma 1.010
scale pos weight 1.007

Table 5.6: hyperparameters importance for XGBoost. The parameter importance is a relative
AUC-score compared to when all features are present. All values are above one shows that
the value improves the predictive performance.

5.3.2 Feature importance
Random Forest

Table 5.7 suggested that file cardinality performed better when it was removed.
This feature was therefore removed for Random Forest.

Features AUC-score Log loss
File cardinality 0.98 0.93
Target Cardinality 1.01 1.00
Minimum distance 1.08 1.21
Number of tests 1.01 1.04
Connected file cardinality 1.02 1.00
Change history 1.05 1.02
Failure rate 1.09 1.13

Table 5.7: Feature importance for Random Forest measured with an exhaustive wrapper
method. A score below 0 suggests that it performs better without the feature. Mesured for
log loss and AUC-score

Feature importance for XGBoost

Table 5.8 suggests that file cardinality performs better when it is removed.
This feature was therefore removed for XGBoost.
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Features AUC-score Log loss
File cardinality 0.99 0.98
Target Cardinality 1.01 1.00
Minimum distance 1.10 1.01
Number of tests 1.00 1.06
Connected file cardinality 1.01 1.06
Change history 1.01 1.10
Failure rate 1.07 1.20

Table 5.8: Feature importance for XGBoost measured with an exhaustive wrapper method.
A score below 0 suggests that it performs better without the feature. Mesured for log loss and
AUC-score.
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5.3.3 Answer to RQ3
Recall, change recall and selection rate

Table 5.9 shows the selection rate at various recall rates for both Random
Forest and XGBoost. It also shows the selection rate and the difference in
selection rate between the models.

10% evlation set split
Recall Selection rate(xgb) Selection rate(rf) Change recall(xgb) Change recall(rf) diff
95% 43.7 % 39.7 % 99.95 % 99.95 % 4.0 %
96% 46.7 % 43.9 % 100.00 % 99.95 % 2.8 %
97% 51.7 % 49.0 % 100.00 % 99.95 % 2.7 %
98% 56.0 % 56.4 % 100.00 % 100.00 % −0.4 %
99% 66.0 % 68.8 % 100.00 % 100.00 % −2.8 %

Table 5.9: Data shown in the table is the average over 30 unique evaluation sets, with the evaluation set
being 10% of the total data, 10% evaluation set split. RF = Random Forest, XGB = XGBoost, and diff =
difference in selection rate the models (diff=xgboost-random forest)

Recall Selection rate diff, 10% evaluation set Selection rate diff, 25% evaluation set
95% 4.0 % 5.1 %
96% 2.8 % 6.1 %
97% 2.7 % 5.8 %
98% −0.4 % 2.8 %
99% −2.8 % −0.2 %
Average: 1.3 % 3.9 %

Table 5.10: The difference in selection rate between XGBoost and Random Forest at different
recall rates, diff= xgboost-random forest



CHAPTER 5. RESULTS AND ANALYSIS 39

AUC roc-curves

Figure 5.2: XGBoost vs. Random Forest. AUC score for XGBoost is 0.86, and Random
Forest is 0.89

RQ3: When predicting what test to select with machine learning, how
does Random Forest and XGBoost compare to each other in terms of recall,
selection rate, and AUC-roc curve?

Figure 5.2 presents the AUC ROC-curve, where the x-axis is the selection
rate, and y-axis are the recall. Random Forest has a higher AUC-score than
XGBoost. The score suggests that Random Forest performed slightly better
than XGBoost. To make a more thorough comparison, Figure 8 presents a roc-
curve comparison between XGBoost and Random Forest. The plotted curves
suggest that Random Forest seems to select fewer test than XGBoost as the
recall lowered, which is the gap between the curves.

Table 5.9 presents how well the Random Forest performs compared with
XGBoost. It suggests that Random Forest outperforms XGBoost, in terms
of selection rate, as the recall threshold lowers from 99% to 95%. The data
in table 5.9 used a 10% evaluation set. The selection rate for a 95% recall
threshold, Random Forest selected 39.7% of the tests while XGBoost selected
43.7% of the tests, with a difference between the learned models of 4.0%.
Random Forest still has a lower selection rate for 96% and 97% recall where
the difference is 2.8% respectively 2.7%. When increasing the recall threshold
to 98%, the difference between Random Forest and XGBoost has lowered to
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-0.4%. Finally, XGBoost performs better than Random Forest when the recall
rate is 99%.

Figure 5.2 also suggests that the models should perform roughly as equal
for higher recall rates. However, as the gap increases between the curves, the
Random Forest model performs better than XGBoost. The increased gap is
the cause of a higher AUC-score for the Random Forest.

Table 5.10 suggests that Random Forest performs better when lowering the
threshold from 99% to at least 95%. Also, RandomForest seems to outperform
XGBoost when the recall is lowered. Table 5.10 shows that an increase in
the dataset could reduce the predictive performance of the models. However,
the average selection difference is higher, which suggests that Random Forest
performs better with a reduction in data.

Machalica et al. [9] achieved a reduction of tests by a factor of two and had
a change recall of 99.9% while maintaining a recall rate of 95%. They also
used historical code defects made by developers as input, had a multilingual
repository, and consisting of multiple projects. They tested used it on one
repository, which was Facebook’s mobile application.

In this thesis, the best reduction of selection rate was 60.3% with a change
99.97% recall when using a 95% recall rate. The failure rate in this thesis
was 11.66%. The failure rate is the result of code changes that only consists of
mutants, which are supposed to generate test failures. A higher failure rate triv-
ially increases the chances of finding at least one test failure per test run, i.e., a
high change recall. However, the failure rate was not disclosed by Machalica
et al.[9].

However, there are some differences between Machalica et al. [9] and this
thesis. Machalica et al. used a multilingual repository consisting of multi-
ple projects. In this thesis, a single project was used with only one language.
Further, Machalica et al. used historical code defects made by developers. In
this thesis, one main contribution was to find a solution to this problem by
instead using mutation generation. Similar results were achieved in this thesis
as Machalica et al., however, they had to deal with multiple languages and a
more complex repository.
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RQ3: When predicting what test to select with machine learning, how
does Random Forest and XGBoost compare to each other in terms of
recall, selection rate, time to select tests, and AUC-roc curve?

Answer: For a 95% recall rate, Random Forest has a 4.0% lower
selection rate compared to XGBoost. For 96% and 97%, Random For-
est has a 2.8% respectively, 2.7% lower selection rate than XGBoost.
Then both models perform roughly equal for 98% recall rate with a
difference of -0.4%. For 99% recall rate, XGBoost performs better
than Random Forest with a 2.8% difference. Random Forest generally
seems to perform better than XGBoost. Also, Random Forest performs
better in terms of AUC-score.
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5.3.4 Answer to RQ4
Time to select test

STARTS took 22.88 seconds to select tests. While the time it took for Ran-
dom Forest to select tests was 0.01 seconds and XGBoost selected tests in
0.002 seconds. The time is estimated for the machine learning model to select
a test for an entire test run given an already trained machine learning model.

ROC-curves
The simple test selector selects tests depending on the failure rates.

Figure 5.3: Random Forest vs. simple test selector

RQ 4: How well does EALRTS improve STARTS in terms of selection
rate, recall, change recall, and time to select tests?

EALRTS is a tool that uses STARTS to further reduces its tests selected. The
purpose of EALRTS is to further reduce the amount of tests from an already
existing RTS tool, or STARTS. This means that EALRTS cannot find any new
test failures that STARTS do not detect. EALRTS is, therefore evaluated on
how well it optimizes STARTS in terms of selection rate, recall, change recall,
and time to select tests.

Furthermore, the evaluation was made on one case study since a differ-
ent project would require training on a different dataset. And the feature fail-
ure rate cannot be transferred between case studies. Also, generating another
dataset is computationally expensive. Therefore, EALRTS was only evaluated
on one project, i.e., commons-math.
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The selected recall used in EALRTS is the same used by Machalica et
al.[9], which used a 95% recall rate. From the analysis made for research ques-
tion 3, Random Forest seemed to outperform XGBoost. Therefore, Random
Forest is the model used in EALRTS. Also, the analysis showed that EALRTS
could significantly reduce selection rate while maintaining a high recall and
change recall. EALRTS could reduce the selection rate by a factor of two,
when using a 95% recall rate. Also EALRTS found at least one test failure in
99.97% of the different samples.

Furthermore, to show the predictability of EALRTS, it is compared to a
simple test selection tool which chooses a test based on failure rate. Figure 5.3
shows that the Random Forest performs significantly better than the simple test
selection tool. It suggests that Random Forest can classify what tests to select
better than random.

Once STARTS identified the selected tests, EALRTS took an additional
0.01 seconds per test run. The time it took for STARTS to identify tests was
22.88 seconds. This study, based on one use case and insertion of mutants,
suggests that machine learning is also time efficient to reduce tests selected.

RQ 4: How does the EALRTS compare STARTS in terms of selection
rate, recall, change recall, and time to select tests?

Answer: EALRTS had a selection rate of 39.7% while maintain-
ing a 95% recall rate. EALRTS also found at least one test failure
in 99.97% of the test runs from STARTS. The results also showed
that EALRTS could find patterns in data extracted from STARTS to
perform significantly better than at random. Random Forest takes 0.01
seconds to select tests while XGBoost takes 0.002.
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Discussion

In order to use machine learning as a test selection tool, or PRTS, it requires
different sources of information from selecting and running the tests affected
by the code defects. Each source of information is a small indication ofwhether
a test should be executed or not. The purpose of PRTS is to use an RTS tool
and further reduce the number of test with machine learning. However, lack-
ing code defects made by developers is a common problem for open source
projects. In this thesis, EALRTS is presented, which uses multiple mutants to
insert into a project instead of historical code defects. This thesis demonstrated
that it is possible to learn from inserting multiple mutants into a maven-based
java project. The learned model has shown promising predictive performance,
but the result should be approached cautiously, which is further discussed in
6.1 and 6.2

6.1 Limitations
There are some limitations to EALRTS. The number of mutations inserted
increases the chance of build failure, and for 15 mutants, the build success
rate is 30%, and by 25 changes, the build success rate is 5%. This thesis does
not explore what set of mutations that causes build failures or why it fails.
EALRTS is also limited to the number of mutants possible to insert into a
project.

Also, EALRTS does not control that a particular mutant introduces a test
failure since testing all mutants for larger projects is computationally expen-
sive,e.g., 37674 mutants for commons-math. The mutants were instead ran-
domly selected, which resulted in compilation failures.

Further, the entire dataset used for training and evaluating the machine
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learning model consisted of 4277 different mutations over 725 test runs.
Previous research by Zhang et al.[12] used the entire mutation set gen-

erated by Pitest for nine projects of different sizes. They used nine different
projects and generated mutants over multiple versions for each project. E.g.,
for commons-lang, they generated between 22,762 and 23,118 over seven dif-
ferent versions. However, they had access to a more powerful machine re-
source. Since generating the dataset with EALRTS is computationally expen-
sive, the number of test runs was as many as could be gathered 4 hours a day
over two weeks. Also, there is a possibility that more data can improve the
results.

EALRTS never compared the predictive performance of faulty changes
made by developers. Therefore, the interpretation of the results does not sug-
gest that the selection rate can be reduced to 39.7% for changes made by de-
velopers. The result suggests that it is possible to reduce the number test with
Random Forest and XGBoost when multiple mutants inserted into a project.

Also, this approach does not take flaky tests into account. Although possi-
ble, the machine resources used for this experiment were limited, and testing
for flaky tests was no possibility in the given time frame. Machalica et al. [9]
found that flaky testing can reduce the predictive performance of the machine
learning model.

6.2 Threats to validity
Internal validity

EALRTS randomly selected what mutants to insert into the project. This
technique made it hard to compile the project, and the average file cardinal-
ity was 5.9 for this experiment. The more mutants inserted, the lower the
buildSuccessRate. In other words, there is a possibility that EALRTS is bi-
ased towards smaller changes, which is caused by the random insertion strat-
egy that EALRTS uses.

External validity

Although the reduction of selection rate by 60.3% while maintaining a 95%
recall seems good at first glance. The dataset averages 5.9 changes per test
run; there is a risk that the model has overfitted for smaller changes. Cautions
were taken to reduce overfitting, such as the usage of cross-validation and ran-
domize a new number of mutants if a build fails, to make sure that particular
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combination of files has a higher chance of build success.
Also, the reduction in selection rate does not reflect changes made by de-

velopers. The evaluation was only made on the dataset gathered from the in-
serted mutants. Therefore, no conclusion can be made of how well the model
performs outside the context of this work. Also, it was only conducted on
one project since the data gathering process of EALRTS was computationally
expensive.
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Conclusion

7.1 Summary
This thesis introduced EALRTS, a predictive regression test selection tool.
EALRTS introduced a way to extract a set of features from STARTS when
no historical code defects are available. EALRTS used mutation generation to
create code defects, which were inserted into a maven-based java project. Fea-
tures were then extracted from STARTS and resulted in a dataset. A machine
learning model trained on the dataset and EALRTS used a Random Forest
model to predict what tests to select. The results showed that Random Forst
outperformed XGBoost.

This thesis evaluated EALRTS on one project, that is commons-math. The
reason is that machine resources were limited and EALRTS is computation-
ally expensive for generating the dataset. This resulted in EALRTS was only
evaluated one project. The project that EALRTS was evaluated on resulted
had a selection rate of 39.7% with a 95% recall and a 99.97% change recall.

7.2 Future work
The area of predictive regression test selection is an area with many possibili-
ties. Many areas for future research were identified during this thesis. For the
data generation process, it was found that more research can be made to in-
crease the build success rate by having a better strategy than to insert mutants
at random. Also, more research is required of why a particular set of mutant’s
cause builds to fail. Do certain mutant operations have a higher chance of
build failure? Does it matter were in the project mutants are inserted? Also, it
would be interesting to see if mixing non-faulty changes with mutants could

47
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make the model more robust and if it is beneficial to predicting errors made
by developers.

The results shown suggested that a larger dataset increased the predictive
performance of the machine learning models. The dataset was limited to how
many test runs could be executed for two weeks. Therefore, it would be inter-
esting to see a performance difference with a larger dataset or an even larger
repository.

EALRTS did not take flaky tests into account. It would be interesting to
see how this approach is affected by flaky tests. The number of flaky tests can
be reduced by re-testing the failing tests. If a test fails for all the re-tests, it can
be considered non-flaky. Then the learned model can be trained on the dataset
without flaky-tests.

EALRTS were also never tested on real changes made by developers. It
would be interesting to see how well it performs on actual changes made by
developers. Then evaluate how well it performs on these changes.

It would also be interesting to investigate different or more features for this
approach. Also, it would be interesting to see the benefits of different ma-
chine learning models. An evaluation of more sophisticated machine learning
models that could yield a better result.
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Appendix A

Github repository

This is an open source project available on github.1 The repository contains
a Readme, modified STARTS, data generation program, the machine learning
program and, the generated data.

Readme

The readme contains instructions of how the installation and usage of the pro-
gram as well as pictures of how the program works. It also contains the results
achieved in this thesis.

modified STARTS

The modified STARTS tool is named starts-starts-1.3.zip and installation and
usage of the tool can be found in the readme.

data generation program

The data generation program can be found in the eal_generateData folder.
This contains a pom.xml file in order to make it easier to build. Then in /src/-
main/java there are four files. ReplaceCompiledFiles.java replaces then com-
piled mutants into the project and run STARTS. RetrieveData.java combines
the data from the test result reports and the data that is extracted from STARTS
at runtime.

AddChangeHistory.java and change_file.sh are used to add change history
if a file history exists.

1https://github.com/kth-tcs/kth-test-selection/tree/master/eal%20predictive%20rts
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machine learning program

TheMachine learning folder consists of a Preprocessing.py file, which is used
to preprocess the data. And Training.pywhich is used select features, train and
evaluate themachine learningmodel. Instructions can be found in the readme.

A.1 Usage of data generation
The usage of the data collection process consists of three sections. Section
A will describe how to generate the mutants; Section B will describe how to
use the modified STARTS to store checksums of the original project; Section
C will describe the implementation of data generation in EALRTS. A more
extensive installation of the tool can be found at this thesis’s Github.2 Further-
more, this thesis investigated apache commons math.3

Project

PiTest

STARTSStore
checksums

Generated
mutants

Insert 1-15
selected mutants

into project

Run STARTS
without storing

checksums

Extract output

Reset the original
project

Do for x
interations

Projects
checksums STARTS

              B

A

C

Figure A.1: Data extraction process of EALRTS divded into three sections, A, B, and C.

A. Implementation of PiTest

PiTest includes a maven plugin which is available from maven central and
the installation can be found at the project’s github4.To generate mutants, the
following command was executed in the directory of the project:

2https://github.com/kth-tcs/kth-test-selection/tree/master/eal%20predictive%20rts
3https://github.com/apache/commons-math
4https://github.com/kth-tcs/kth-test-selection/tree/master/eal%20predictive%20rts
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$ mvn −Df e a t u r e s =+EXPORT org . p i t e s t : p i t e s t −maven :
mu t a t i onCove r age

The command will cause Pitest to generate mutants and persist the mutants to
disk.

B. Implementation of STARTS

Install the modified starts from this thesis’s Github and Run the following com-
mand in the project directory:

$ mvn s t a r t s : s t a r t s −DupdateRunChecksums=True

This command will cause starts to store the checksums for the given project.

C. Implementation of data generation in EALRTS

The following command was executed to run the data generation in EALRTS:

$ mvn exec : j a v a −Dexec . ma inCla s s=Rep l a c eComp i l e dF i l e s

This command will insert mutants into the project, run the modified STARTS
version without storing the checksums, and finally extract the data from the
starts and the test runs.

Once the process has finished, then run the "change_file.sh" script in the
/src/main/java directory of the project:

$ Chmod +x c h a n g e _ f i l e . sh

$ . / c h a n g e _ f i l e . sh

This command will output a log.log file which contains change history for
the files. The data can be combined with the data extracted from starts with
the following command:

$ mvn exec : j a v a −Dexec . ma inCla s s=AddChangeHis tory
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