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Abstract

The purpose of this thesis is to highlight the history and properties of
random recursive trees. Recursive trees were first studied in 1967 by Tapia
and Myers where they introduced it as node-weighted trees. Recursive
trees have since been used to study pyramid schemes, amongst others.
A random recursive tree is a recursive tree chosen uniformly at random
amongst all recursive trees of order n. Using Pólya urns we can study
the degree distribution and with the help of harmonic numbers we can
find the expected insertion depth. These kind of trees also exhibit the
small-world phenomenon.
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1 Introduction

1.1 Introduction to recursive trees

In this thesis, we discuss the history and properties of random recursive
trees. We begin by defining a graph. A graph is a collection of vertices
(also known as nodes) connected by edges. A tree is a connected graph
with no cycles, and a rooted tree is a tree with one vertex labelled the
root. A recursive tree is a tree with vertices labelled from 1 to n ,where
1 is the root of the tree and n ∈ N is the number of vertices in the tree.
The labels on all paths away from the root are strictly increasing. The
number of vertices in a recursive tree is its order and a recursive tree of
order n is denoted by tn. A random recursive tree is a recursive tree which
is chosen uniformly at random amongst all recursive trees of order n (see
section 2.3).

The neighbour of a vertex on the path towards the root is called its parent
and all the other neighbouring vertices are called children. The vertices
with no children are called leaves and the rest of the vertices are called
internal vertices. The number of children a vertex v has is the outdegree
of said vertex and is denoted by outdeg(v). The degree of a vertex is the
number of neighbours of v, so a leaf would have degree 1.

Recursive trees were first studied in 1967 by Tapia and Myers [17], where
they called it concave node-weighted trees. In their paper, the root is
labelled n and the vertices are labelled in decreasing order.

Recursive trees have been used, amongst others, when studying pyramid &
chain letter schemes [9], which was initially developed for attorneys faced
with prosecuting promoters of such activity. It was also used to study the
spread of contamination from a single source within some organism [15].

1.2 Network science

Network science, which dawned in the beginning of the 21st century, is
the study of networks, like the power grid, trade networks, social net-
works, neural networks etc. Random graphs are used to model real world
networks. The properties of random graphs are studied and compared
to those of real world networks. See [2] for an overview. Two properties
often studied are distances and degree distributions.

Definition 1.1. Distance. The distance between two vertices is the num-
ber of edges in the shortest path between them.

Definition 1.2. Degree distribution. The degree distribution P(K) is
the probability distribution defined as the proportion of vertices with degree
K.

1.2.1 Small-world phenomenom

Abbas Mehrabian [14] wrote about using random recursive trees to prove
the small-world phenomenon in several other random graph models. The
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small-world phenomenon, also known as “Six degrees of separation”, goes
back almost a hundred years and was first discussed by Frigyes Karinthy
[12] in a short story called Chain-links. He started it as a game where
he and his friends tried to connect any two persons through five or less
individuals. The premise behind this “game” is that the amount of people
you can contact grows exponentially with every individual you go through.
Karinthy played this game plenty and although he couldn’t prove the phe-
nomenon, he also could not find any two persons who couldn’t be con-
nected through no more than five links. Travers and Milgram [18] did
a study on this where they asked 296 arbitrary individuals in Nebraska
and Boston to generate acquaintance chains to target a specific person
in Massachusetts. From the study, 64 chains succeeded in reaching the
target person and the mean number of links were 5.2.

In recent studies, small-world networks are usually defined to be networks
where the distance is on the order of ln n as the number of vertices n in
the network goes to infinity (see [2]). A more precise definition is given in
[19], definition 1.7.
Let (Gn)∞n=1 be a sequence of graphs, and let Dn be the typical distance
between any two vertices in Gn, i.e.,

Dn = dist(u, v)

where u and v are two vertices chosen uniformly at random from Gn, and
dist(u, v) is the distance between these two vertices. Then we have the
following definition:

Definition 1.3. The graph sequence (Gn)∞n=1 is small world if there exists
a finite number K such that

lim
n→∞

P(Dn ≤ K lnn) = 1.

1.3 Outline

First we study the combinatorial properties of recursive trees, including
the number of recursive trees and its relation to permutations. We define
random recursive trees. Next, we look at degree distribution and finally
we study distances, including depth and height in random recursive trees.

2 Combinatorial properties of recursive
trees

2.1 Number of recursive trees

Proposition 2.1. The number of recursive tress of order n is given by
(n− 1)!

Proof. Let rn be the number of recursive trees of order n.
Base case: r1 = 0! = 1
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Induction step: For every recursive tree of order k − 1, there are k − 1
options to be the parent of the k-th vertex, so

rk = (k − 1)rk−1 = (k − 1)(k − 2)! = (k − 1)!

2.2 Relation to permutations

There is a bijection between recursive trees and permutations, see for
example [7]. Permutations can be written in many ways but in this thesis
we will only consider the cycle decomposition. Consider the following
permutation π of the numbers 1 through 8.

π =

(
1 2 3 4 5 6 7 8

7 3 2 6 1 4 8 5

)
which has the cycle decomposition

π = (1, 7, 8, 5)(2, 3)(4, 6)

These permutations can easily be modified by either adding or removing
objects in the permutation. If we remove n we get a new permutation
π̃. If n belonged to a cycle of length 1 we just remove that cycle. If n is
included in a cycle of length greater than 1 then there exist i and j such
that π(i) = n and π(n) = j. By deleting n we set that π̃(i) = j. For the
example above we get

π̃ =

(
1 2 3 4 5 6 7

7 3 2 6 1 4 5

)
and the cycle decomposition becomes

π̃ = (1, 7, 5)(2, 3)(4, 6)

If we instead add n to π̃ we can either include n by creating a new cycle
containing only n, or we can include it in an already existing cycle. By
adding n to a cycle of size k we have k possible ways to add it which
means that there are a total of n − 1 possible ways to include object n
into the already existing cycles in π̃.

Recursive trees grow in a similar manner as permutations in cycle no-
tation. To show that we first need to change the labels on the trees by
starting with 0 instead of 1. We begin by adding a vertex labeled 1 to the
root and at the same time creating the permutation (1). The next steps
are to continue adding vertices, either to the root or to another vertex. If
the k-th vertex is added to the root then we create a new cycle (k). If it
is added to a non-root vertex i then we consider the cycle that i belongs
to and place k in between i and the vertex that i was mapped to. This
process continues until all vertices have been added (see figure 1 for a few
examples).
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Figure 1: Recursive trees with root 0 and their corresponding cycle decomposi-
tions
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2.3 Random recursive trees

A random recursive tree Tn is a recursive tree chosen uniformly at random
amongst all recursive trees of order n, so for a particular tree tn, P(Tn =
tn) = 1/(n − 1)!. We can also obtain Tn by starting with the root and
adding vertices 2,3, . . . , n one at a time such that every vertex k chooses
a parent uniformly at random among the k − 1 vertices in the tree. In
this way we see that we get the same distribution,

P(Tn = tn) =
1

1
· 1

2
· 1

3
· ... · 1

n− 1
=

1

(n− 1)!

3 Degree distributions

3.1 Number of leaves in a recursive tree

We start by looking at leaves. The number of trees of order n with k
leaves can be expressed by Eulerian numbers, defined by the recursion〈

n

0

〉
=

〈
n

n− 1

〉
= 1,

〈
n

k

〉
= (n− k)

〈
n− 1

k − 1

〉
+ (k + 1)

〈
n− 1

k

〉
(1)

Proposition 3.1. The number of trees of size n with k leaves is given by

p(n, k) =

〈
n− 1

k − 1

〉
(2)

Proof. Let p(n, k) be the number of trees with n vertices and k leaves.
We can see immediately that

p(1, 1) = 1, p(2, 1) = 1, p(3, 1) = 1, p(3, 2) = 1.

We can also see that there is only one tree with n vertices and 1 leaf (the
path with n vertices) and there is also only one tree with n vertices and
n − 1 leaves (the star where vertices 2, 3, . . . , n are children of the root).
In other words,

p(n, 1) = 1 and p(n, n− 1) = 1 (3)

For all other k, with 1 < k < n − 1, n ≥ 4 we have that trees with n
vertices and k leaves can be built from trees with n − 1 vertices. There
are two ways we can get k leaves when we add a vertex to a tree tn−1.
The first scenario is when the new vertex is added to an internal vertex
and a new leaf is created. For this to happen there has to be k− 1 leaves
in tn−1 and there are n− k internal vertices in tn−1.
The second way is when the new vertex gets attached to an already ex-
isting leaf, and the number of leaves is unchanged. There are k leaves in
tn−1. We therefore get that the total number of trees with n vertices and
k leaves is given by:

p(n, k) = (n− k) · p(n− 1, k − 1) + k · p(n− 1, k) (4)
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This recursion is very similar to the Eulerian numbers (see eq. 1). Since

p(n, n− 1) =

〈
n− 1

n− 2

〉
= 1

p(n, 1) =

〈
n− 1

0

〉
= 1

and p(n, k) follows the same recursion as
〈
n−1
k−1

〉
, we see that the numbers

are the same.

The probability that the tree Ln has k leaves is then

P (Ln = k) =
p(n, k)

(n− 1)!
=

1

(n− 1)!

〈
n− 1

k − 1

〉

since there are (n− 1)! trees of order n.

Since the Eulerian numbers are symmetric, i.e,〈
n

k

〉
=

〈
n

n− k − 1

〉

we get that p(n, k) = p(n, n− k) from which we conclude that

E[Ln] =
n

2
.

We now know the number of vertices of degree 1 (leaves). We also want
to study the distribution of vertices with degrees > 1. To do that we first
look at Pólya urns.

3.2 Pólya urns

Pólya urns were first discussed by George Pólya and Florian Eggenberger
back in early 1900s [8]. They considered an urn containing 1 white ball
and 1 black ball. When a ball is drawn, replace the ball with an additional
ball of the same colour. This is a model for contagious diseases.

Now consider a random recursive tree as introduced in section 1.1. We
introduce a new type of Pólya urn. Let’s say that the white balls represent
the leaves and the black balls represent internal vertices. If a white ball
is drawn from the urn, it is placed back with one additional black ball,
i.e a leaf is chosen and that leaf turns into a vertex of outdegree one and
a new leaf gets attached to that vertex. If a black ball gets drawn, it is
placed back with one additional white ball since when an internal vertex
is chosen, it remains an internal vertex while a new leaf is added.

In figure 2, at step 6 we had three black balls and three white balls in our
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Figure 2: Example of a black ball drawn in simple Pólya urn represented by a
recursive tree

urn. The ball was randomly chosen at step 7 and we end up with an urn
containing four white balls and three black balls. If we want to look at
the distributions of vertices of higher degrees than leaves we have to add
more colours to represent the different outdegrees of the vertices in the
tree.

We consider a class of generalized Pólya urns (also known as generalized
Pólya-Eggenberger urn or generalized Friedman urn) as follows:

• There are m types (or colours) of balls, labelled 1, 2, . . . ,m.

• For each type j = 1, . . . ,m, we associate a (column) vector Aj =
(A1,j , A2,j , . . . , Am,j)

T such that Ai,j is a non-negative integer for
i 6= j, and Aj,j is an integer greater than or equal to −1.

• Let Xn = (Xn,1, . . . , Xn,m), where Xn,j is the number of balls of
type j in the urn at time n.

• The urn starts with a given vector X0.

• At each step n, a ball is chosen uniformly at random amongst all the
balls in the urn. So the probability of choosing a ball of type j is

Xn,j∑m
i=1Xn,i

.

• If a ball of type j is chosen at step n, then it is replaced with Ai,j

balls of type i for each i. In other words, Xn+1 = Xn +AT
j .

• The replacement matrix of the urn is defined to be the matrix

A =


A1,1 A1,2 · · · A1,m

A2,1 A2,2 · · · A2,1

...
...

. . .
...

Am,1 Am,2 · · · Am,m


Svante Janson [11] showed that under certain conditions,

Xn − nµ√
n

d−→ N (0,Σ)
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for some vector µ and some matrix Σ. The notation N (0,Σ) describes
a multivariate normal distribution. We can explicitly calculate µ and Σ,
although Σ is quite complicated to calculate. As for µ, this is an eigen-
vector of A, and we will see later what eigenvector explicitly.

For the convergence stated above to hold, one of the conditions needed is
that the urn has to be irreducible.

Definition 3.2. An urn process is irreducible if starting with any ball of
type j, it is possible that the urn eventually has a ball of type i.

Suppose that A has a simple (algebraic multiplicity 1) real eigenvalue λ1

such that λ1 > Re(λ) for all other eigenvalues λ, where Re(λ) is the real
part of a complex number.

Finally, let v = (v1, . . . , vm) be the eigenvector of A associated with the
eigenvalue λ1 such that v1 + · · ·+ vm = 1. Since λ1 is simple, v is unique
since the eigenspace associated with λ1 has dimension 1.

We then have the two following theorems; a law of large numbers, and a
central limit theorem:

Theorem 3.3 ([1, Section V.9.3], [11, Theorem 3.21]). Suppose an urn
process (Xn)∞n=1 = (X0, X1, X2, . . .) as described above is irreducible.
Then

Xn

n

a.s.−−→ λ1v1

as n→∞.

Theorem 3.4 ([11, Theorem 3.22], see also [10, Theorem 3.1]). Suppose
an urn process (Xn)∞n=1 = (X0, X1, X2, . . .) as described above is irre-
ducible with replacement matrix A, and suppose further that λ1 > 2Re(λ)
for all other eigenvalues λ of A. Then

Xn − nλ1v√
n

d−→ N (0,Σ)

as n→∞.

3.3 Degree distributions of vertices with degree
>1

We can describe the vertices in a random recursive tree as balls in an urn.
Let d be a positive integer: this will correspond to the largest degree we
wish to look at. Suppose we grow a sequence of random recursive trees
T1, T2, T3, . . . , Tn, . . ., and for each i = 1, . . . , d we let Nn,i be the number
of vertices of degree i in the tree Tn. Consider an urn process (Xn)∞n=1

with d + 1 types of balls, where for each Xn = (Xn,1, . . . , Xn,d, Xn,d+1),
the number Xn,i is the number of vertices of degree i in Tn for i = 1, . . . , d
(so Xn,i = Nn,i), and Xn,d+1 is the number of vertices whose degree is
greater than d.
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We see that the urn process has the following (d+1)×(d+1) replacement
matrix:

A =



0 1 1 · · · 1 1 1
1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 0 0
0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 0


Consider when a vertex of degree k gets chosen as the parent of a new
vertex. That vertex becomes a vertex with degree k + 1 when the leaf
gets attached. In the urn scenario, this means that the ball representing
a vertex of degree k gets removed and a ball representing a vertex of de-
gree k + 1 is placed inside the urn along with a ball representing a leaf.
When an internal vertex is chosen, a new ball representing a leaf is added,
while the numbers of balls representing leaves is unchanged when a leaf
is chosen. The last column in A only contains a 1 at A1,d+1 and zeros
everywhere else since we classify all vertices with a degree higher than
d as the same colour. So that means when a vertex of degree k ≥ d is
chosen, the ball representing it gets placed back in the urn along with an
additional ball representing a leaf.

This matrix is irreducible because as the urn grows, the number of different
degrees gets higher and higher and therefore we will probably eventually
get a ball of the desired degree (see definition 2.1).

Now to calculate the eigenvalues of A. The following argument is a simpli-
fied version of the proof of Lemma 3.2 in [4]. The characteristic polynomial
of the matrix A is given by

det(A−λIn×n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1 1 · · · 1 1 1
1 −1− λ 0 · · · 0 0 0
0 1 −1− λ · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1− λ 0 0
0 0 0 · · · 1 −1− λ 0
0 0 0 · · · 0 1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The determinant of a matrix is unchanged by adding a multiple of a
row to another row or by subtracting a multiple of a column to another
column. Therefore, consider subtracting column d+ 1 of A− λI from all
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other columns. Then

det(A−λIn×n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ− 1 0 0 · · · 0 0 1
1 −1− λ 0 · · · 0 0 0
0 1 −1− λ · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1− λ 0 0
0 0 0 · · · 1 −1− λ 0
λ λ λ · · · λ 1 + λ −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
In the matrix above, add row i to row d+ 1 for all i = 1, . . . , d. Then

det(A−λIn×n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ− 1 0 0 · · · 0 0 1
1 −1− λ 0 · · · 0 0 0
0 1 −1− λ · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1− λ 0 0
0 0 0 · · · 1 −1− λ 0
0 0 0 · · · 0 0 −λ+ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
From here, by expanding along the bottom row, we see that

det(A−λIn×n) = (1−λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ− 1 0 0 · · · 0 0
1 −1− λ 0 · · · 0 0
0 1 −1− λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1− λ 0
0 0 0 · · · 1 −1− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
What remains is a lower triangular matrix, the determinant of which is
the product of the diagonal entries. Therefore,

det(A− λIn×n) = (1− λ)(−λ− 1)d

The roots of the characteristic polynomial are the eigenvalues of A. So
we see that the eigenvalues of A are 1 with multiplicity 1 and −1 with
multiplicity d.
Next, the eigenvector v = (v1, . . . , vd+1) associated with λ1 such that
v1 + · · ·+ vd+1 = 1 is given by

v =

(
1

2
,

1

4
, . . . ,

1

2i
, . . . ,

1

2d
,

1

2d

)
.

To see this, look at

Av =



0 1 1 · · · 1 1 1
1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 0 0
0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 0





1
2
1
4
1
8
...
1

2d−1
1
2d
1
2d


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The first row gives

1

4
+

1

8
+

1

16
+ · · ·+ 1

2d
+

1

2d

And since
n∑

i=1

1

2i
= 1− 1

2n
,

we get that
1

4
+

1

8
+

1

16
+ · · ·+ 1

2d
= 1− 1

2d
− 1

2
.

So the first row gives

1− 1

2d
− 1

2
+

1

2d
=

1

2
.

For rows 2 ≤ i ≤ d we get

1

2i−1
− 1

2i
=

1

2i
,

since 1
2i

is always half of 1
2i−1 . The last row, d + 1, only gives 1

2d
. The

new vector then becomes 

1
2
1
4
1
8
...
1

2d−1
1
2d
1
2d


We can therefore use Theorem 3.3 to see that

Xn

n

a.s.−−→
(

1

2
,

1

4
, . . . ,

1

2i
, . . . ,

1

2d
,

1

2d

)
,

and use Theorem 3.4 to see that

Xn − nv√
n

d−→ N (0,Σ),

both results were proved by Janson [10]. In particular, by letting d→∞,
we get a law of large numbers and a central limit theorem for the number
of vertices of degree i in random recursive trees;

Nn,i

n

a.s.−−→ 1

2i
,

and
Nn,i − n

2i√
n

d−→ N (0, σi)

for some variance σi [10].
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4 Distances

For a vertex v, let d(v) be the depth or distance from the root to vertex
v. First, a few random variables need to be defined:

• In : the insertion depth of vertex n. This is the distance from the
n-th added vertex vn to the root of the tree (so d(v)). Since the first
vertex is the root, I1 = 0, and since the second vertex is a child of
the root, then I2 = 1.

• TPn : the total path length of a random recursive tree Tn with n
vertices. This value is the sum of the depths over all vertices v in
Tn.

• Hn : the height of a random recursive tree with n vertices. This is
the maximum value over all depths of the vertices in the tree Tn, i.e
the longest distance away from the root.

Let’s begin with In, the insertion depth. Let hn =
∑n

i=1 1/i be the n-th
harmonic number. In the following proof, we’ll use the following fact:

n∑
j=1

hj = (n+ 1)hn − n. (5)

We can prove this by induction. The base case for n = 1 is

1∑
j=1

hj = h1 = 1 = (1 + 1)h1 − 1 = 2(1)− 1 = 1

so (5) holds for the base case. For the inductive step, suppose

k∑
j=1

hj = (k + 1)hk − k

for some positive integer k. Then

k+1∑
j=1

hj =
k∑

j=1

hj + hk+1

= (k + 1)hk − k + hk+1

= (k + 1)

(
hk+1 −

1

k + 1

)
− k + hk+1

= (k + 1)hk+1 − 1− k + hk+1

= (k + 2)hk+1 − (k + 1)

which concludes the inductive step.

Theorem 4.1 (See [5]). Let In be the insertion depth of the n-th vertex.
Then E[I1] = 0 and for all n ≥ 2, E[In] = hn−1.
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Proof. We prove this by using strong induction. For the base cases,
E[I1] = 0 and E[I2] = 1 since I1 = 0 and I2 = 1 (see discussion above).
Now suppose that for k ≥ 2, we have that E[Ij ] = hj−1 for all 2 ≤ j ≤ k.
When we add the k + 1-th vertex vk+1, we first choose a vertex vi uni-
formly at random (with probability 1/k). If vi is chosen, then the depth
of vk+1 will be Ii + 1. Therefore, given the tree Tk,

E[Ik+1|Tk] =

k∑
j=1

1

k
(Ij + 1).

By the law of total expectation (E[X] = E[E[X|Y ]]),

E[Ik+1] = E[E[Ik+1|Tk]] = E

[
k∑

j=0

1

k
(Ij + 1)

]
.

Then by linearity of expectation, the induction hypothesis, and eq 5,

E[Ik+1] = E

[
k∑

j=1

1

k
(Ij + 1)

]

=

k∑
j=1

1

k
E[(1 + Ij)]

=
1

k

(
(1 +E[I1]) +

k∑
j=2

(1 +E[Ij ])

)

=
1

k

(
(1 + 0) +

k∑
j=2

(1 + hj−1)

)

=
1

k

(
k +

k−1∑
j=1

hj

)

=
1

k
(k + khk−1 − (k − 1))

= hk−1 +
1

k

= hk.

This completes the induction hypothesis, and therefore the proof of the
theorem

One fact we know about the harmonic numbers hn is that they closely
resemble the area underneath the curve 1/x between 1 and n, which is
lnn. As a consequence, we have the following convergence:

E[In]

lnn
→ 1

as n→∞.
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For the insertion depth, we have from Devroye [5] and Mahmoud [13]
that

In − lnn√
lnn

d−→ N (0, 1).

For total path length, by using linearity of expectation and eq. 5, we have
that

E[TPn] =

n∑
i=1

E[Ii] =

n−1∑
i=1

hi = nhn−1−(n−1) = nhn−
n

n
−n+1 = nhn−n.

Therefore,
E[TPn]

n lnn
→ 1.

Mahmoud [13] showed the following:

TPn − n lnn

n

d−→W,

for some non-degenerate random variable W . Dobrow and Fill [6] showed
that W does not have a normal distribution.

As for the height, Pittel [16] showed that

Hn

lnn

a.s.−−→ e.

This means that the height is not much further from the expected depth
of any vertex as n→∞.

4.1 Small-world phenomenon in random recur-
sive trees

Recall the definition of small world graph sequence, definition 1.3. Let’s
consider our graph sequence (Tn)∞n=1 as a sequence of random recursive
trees where Tn is grown from Tn−1 as usual. The distance between two
vertices u, v is at most the sum of the distances from u to the root and v
to the root, i.e., the sum of the depth of u and the depth of v. The depth
of these vertices is at most the height Hn of the tree, so dist(u, v) ≤ 2Hn.
Therefore, using the convergence in probability for height given above,

P(Dn ≤ K lnn) ≥ P(2Hn ≤ K lnn)

= P(2Hn/ lnn ≤ K)

= P(2Hn/ lnn− 2e ≤ K − 2e)

≥ P(|2Hn/ lnn− 2e| ≤ K − 2e)

The last line tends to 1 as n → ∞ for any K > 2e since Hn/ lnn
a.s.−−→ e

(and so Hn/ lnn
p−→ e as well). Therefore, from definition 1.3, random

recursive trees exhibit the small-world phenomenon. This property of
random recursive trees (and generalizations for random recursive trees) is
exploited to prove that the small-world phenomenon holds in other types
of random networks (see for example [3] and [14]).
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