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Abstract

Docking maneuvers are a relevant part of the modern space mission, requiring precision and
safety to ensure the success of the overall mission.
This thesis proposes using a non-linear Model Predictive Control (MPC) as a controller with
various constraints to ensure safe docking maneuvers for a satellite. This was done in MATLAB
using as a model for the satellite the Sliders used by the Robotics Lab at Lule̊a University of
Technology (LTU). The controller was tested first on the MATLAB model and then briefly on
hardware.
The main objective of this thesis is to develop and implement an MPC-based control strategy
to achieve safe docking maneuvers between two satellites. Great attention has been paid to
implementing constraints, such as collision avoidance, and hardware constraints, such as thrust
limits, to ensure the safety and reliability of the process.
Through the MATLAB simulations, it was possible to indicate that the introduced constraints
contribute significantly to the safe execution of docking maneuvers, preventing collisions, and
optimizing fuel usage. The controller successfully adapts to unforeseen disturbances and uncer-
tainties in real-time, showcasing its robustness and reliability in dynamic space environments.
The hardware simulations have shown that the controller operates as expected but needs further
tuning to adapt to the hardware uncertainties.
In conclusion, this thesis comprehensively explores MPC-based control strategies with con-
straints for space docking maneuvers. The positive results underscore this approach’s potential
to ensure the safety and reliability of future space missions, opening avenues for further research
and application in autonomous space systems.
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1 INTRODUCTION

1 Introduction

Rendezvous and Docking Manoeuvres (RDM) are a set of operations that allow an active
spacecraft (Chaser) to approach and capture a second one (Target). These operations are
crucial for many space missions, such as In-Orbit Servicing (IOS). These space from refueling
and maintenance of spacecraft to orbital debris removal and periodical missions to the ISS.
The first RDM has been performed by the Gemini VIII mission on March 16th of 1966 and
was performed entirely manually [1]. Nowadays, these maneuvers are performed almost entirely
by computers thanks to the advent of new technologies and due to the complexity of new
spacecraft. A good example is the cargo spacecraft such as the latest SpaceX Dragon, HTV,
and Progress that are able to perform autonomously the RDM with ISS thanks to advanced
control strategies.
These kinds of maneuvers are vital for actual space missions and will be even more relevant in the
future. For example, more complex structures, such as the ISS, are being developed, requiring
modular design. This construction method requires an extensive use of docking maneuvers to
connect the various modules one to another. Furthermore, the issue that is receiving more
and more attention from the space industry is space debris. The increase of human activity in
orbit has increased their amount to a level that could lead to a chain reaction that will fill the
entire LEO region [2] with so many small particles and fragments that any further operations
become unfeasible [3]. This scenario is called Kessler Syndrome [4]. There are two types of
strategies to remove space debris: active and passive. While the latter is used for small-sized
debris, the former is aimed at bigger debris and is more related to the work presented here.
This is because they involve docking maneuvers to grab the debris and de-orbit it. A detailed
explanation of the latest state-of-the-art strategies can be found at [5]. Therefore, the hardest
challenge these strategies encounter is how to properly approach and dock to the debris, which
demands developing highly reliable autonomous docking systems.

Performing RDM represents a highly intricate task for a spacecraft, demanding exceptional
precision and the synchronization of various onboard systems. Every mission requires a dif-
ferent level of automation and precision, and its complexity varies based on the operational
context and the spacecraft’s environment. For example, missions such as manned expeditions
or those involving non-cooperative targets demand a significant degree of precision and control
effort. Therefore, different sets of Guidance, Navigation and Control (GNC) systems must be
appropriately selected for each mission. This is challenging when selecting the control strate-
gies. Different instruments are used to improve the robustness and reliability of the controllers,
by providing more data and information to the controller. Some use vision-based navigation
systems [6] and other radio-based ones.

1.1 Docking maneuvers control strategies

The most critical phase of the RDM is the last one when the Chaser and Target are just a few
meters of distance from each other. In fact, the Chaser has to keep its motion synchronized
with the Target until it docks to it. These maneuvers at such short distances demand high
precision, and therefore, the margin of error is reduced. An effective control strategy is needed
to ensure the success of the docking phase.
Different control laws are used to define a controller, and each of them can be tuned to optimize
a certain aspect of the mission, from fuel consumption to the time allowed to perform the RDM.
Controller based on Linear Quadratic Regulator (LQR) and Proportional Derivative (PD) have
been studied and verified in [7] without time constraints. In [8], The authors compare different
guidance trajectories using the control laws from [7], analyzing important parameters such as
time and fuel consumption without investigating the optimality of the results. In [9], a solution
is presented based on MPC without including attitude control. A similar approach has been
studied in [10], but a Pulse Width Pulse Frequency (PWPF) modulator has been integrated into

1



1.2 Testing Platforms 1 INTRODUCTION

the model. A different approach in which polynomial functions have generated the trajectory
components has been used in [11]. Another type of controller that has been studied is the MPC.
This controller has the ability to handle constraints on state vectors. The authors in [9] used a
MPC to control the maneuvers of a spacecraft capturing a non-rotating and a rotating target
in a planar environment.
The choice between these controllers depends on the specific application and system dynam-
ics. Each one of them has their own strengths and weaknesses. PD are simple and effective
for systems where quick response to changes is required but struggle with complex dynamics.
Proportional Integrative Derivative (PID), thanks to the integral term, are suitable for a wide
range of systems, especially those with unknown or variable disturbances. The downside is
that they require the linearization of the system and are focused on reducing error rather than
optimizing a cost function, which is the focus of this work. LQR are more suitable for nonlinear
systems, and using a space state representation, they aim to minimize a cost function. This
makes this type of controller more robust and efficient compared to the PID. MPC controllers
predict future system behavior based on a dynamic model and optimize control actions over a
finite prediction horizon. This is the main difference with LQR. They optimize the new solu-
tion for a finite time window rather than the whole simulation time. This approach is more
robust and versatile and can handle both linear and nonlinear systems and constraints on inputs
and states. MPC are commonly used in advanced process control, robotics, and autonomous
systems. Given the nonlinear nature of the system used in this paper, the choice goes to the
NMPC controller, a nonlinear version of MPC. According to previous research on similar case
scenarios, the most stable and efficient controller for GNC systems in autonomous vehicles is
the MPC. The works supporting this choice can be found in [12] and [13].

1.2 Testing Platforms

Ensuring the robustness and reliability of these systems requires extensive testing that has to be
performed in a microgravity environment. This process, though, represents a challenge since it
must be kept cost-effective and low-risk. In fact, recreating the frictionless environment found
in space is critical and needs to be replicated in hardware in the loop test benches. This has
led to the development of different techniques: from parabolic flight [14] to drop towers [15]
and from underwater facilities [16] to counterweight ones [17]. All of these are affected by dif-
ferent constraints that make them suitable only for very restricted applications. For example,
parabolic flights and drop-towers are limited by flight/drop time and are expensive. Underwater
facilities are not suited for satellites and counterweight systems introduce disturbances in the
system.
Therefore, the planar air-bearing platforms are the most suitable systems for cost-effective and
low-cost simulations. Their only limitation is that only 3 Degree of Freedom (DOF) simulations
can be conducted on them. The air-bearing platforms allow not only to validate GNC systems
software but also their hardware implementation. Different space companies and research in-
stitutes have developed their own systems. NASA, for example, developed SPHERES that can
be both used on floating platforms and directly in orbit on the ISS [18]. ESA has the ORBIT
platform in which several tools can be used [19]. DLR developed the EPOS platform [20]. A
comprehensive list of them can be found at [21].

1.3 Sliders and floating platform

In this thesis, it will be used the floating platform Figure 1 that is situated in Kiruna at the
LTU Space Avionics Lab [22]. The spacecraft will be simulated using a slider, which is a robot
developed by the Robotics Lab at LTU [23]. Hence, the work will be performed in a 2D envi-
ronment with 3 DOF.

2



1.3 Sliders and floating platform 1 INTRODUCTION

The advantage of using this kind of platform is that even though limited to only 3 DOF it
can recreate the micro-gravity conditions present in the space environment. The planar and
frictionless environment can be used to replicate the majority of scenarios for space operations
and thus, rigorously validate software and relative hardware-based implementations.
The frictionless bench is an epoxy-topped table that has a 4 × 4 m area but considering the
sliders’ dimensions and safety constraints, it reduces to an effective working area of 3 020mm
× 3 015mm in which the sliders can operate.

Figure 1: Floating platform at LTU Kiruna Space Campus. Sliders on the bottom right corner.

The model representing the satellite used both in the software and hardware simulations was
based on the floating platform developed by the LTU Robotics Department called Slider (Fig-
ure 2). Its dynamics are represented by the Equation 1. This platform, integrated with sensors
and actuator units, can accurately simulate the friction-less motion of a spacecraft in the space
environment. It is supported by three air bearings that allow it to levitate on the table. It
moves on the surface by using the 8 thrusters mounted on 4 different brackets. They operate
in an on-off mode to simulate the mono-propellant thrusters which are commonly used for the
satellites’ attitude control corrections. In-depth information about the Slider can be found at
[23]. Two of these sliders have been used and their parameters are the following:

Parameters Values

Mass 4.436 kg

Moment of Inertia 1.092 kg
m2

System Propagation time step 0.01 s
Minimum on time of thrusters 0.01 s
Thrust force interval 0-0.7N

Table 1: Slider parameters

3



1.4 Thesis aim 1 INTRODUCTION

Figure 2: Slider platform

1.4 Thesis aim

The present thesis will investigate a control strategy based on a NMPC controller to optimize
fuel consumption for a satellite approaching and docking with another one. The optimization
problem will focus on reducing the amount of thruster activations by reducing a cost function.
This is presented in 2.5. The problem has been divided into two main parts: one in which the
Target was stationary and one in which it was moving.
The first part consisted of only one case in which the Target was fixed in one position, and
the Chaser had to reach it and dock to it. The second part consisted of three cases where the
Target moved and/or rotated. This has been done to simulate some of the possible scenarios in
which a spacecraft might find itself when docking with another one.
Throughout the thesis, it will be described which challenges occurred while defining such a
problem and how they have been overcome. The challenges found while defining the controller
were to properly define the mathematical model of the Slider and state the proper constraints
to make the maneuvers as safe as possible.
In fact, it is crucial to have a mathematical model of the system as accurate as possible to
allow the NMPC to predict the behaviour of the system as accurately as possible. The other
challenge that had to be faced was defining the correct constraints inside the controller to ensure
the Chaser was safely docked to the Target.

1.5 Thesis structure

The thesis is structured as follows:
Section 2 will introduce the experiment platform and the problem the thesis aims to solve.
Section 3 will explain how the problem has been solved, i.e., how the controller has been
designed.
Section 4 will show how the problem has been formulated on MATLAB and then executed both
on software and hardware.
Finally, the results are discussed in section 5.

4



2 MODELLING AND PROBLEM FORMULATION

2 Modelling and Problem formulation

The thesis is based on two main things: the platform in which the simulations and tests are per-
formed and the type of controller. As mentioned in 1.3, the model of the system has been based
on the characteristics of the Sliders. The model will be described in detail in subsection 2.1.
After reviewing many papers seen in subsection 1.1, the controller selected for this paper is the
NMPC. Its functioning and how it has been set for this work will be described in subsection 2.2

2.1 Model of the system

Based on the work done in [23] the equations that describe the system dynamics are:

ẋ = Vx cos θ − Vy sin θ

ẏ = Vx sin θ + Vy cos θ

θ̇ = r

V̇x = Vyr +
fx
m

V̇y = −Vxr +
fy
m

ṙ = τ
Izz

(1)

where ẋ and ẏ are the velocities along the x and y axis, τ is the torque, fx, fy and m are the
forces produced by the thrusters and the slider’s mass. Izz is the Slider’s inertia along the z-axis.

The Slider’s actuation unit is equipped with eight small thrusters and its control action. i.e.
forces (fx, fy) and torque τ components, is modeled as:

fx =
∑8

k=1 Tk cosβk

fy =
∑8

k=1 Tk sinβk

τ =
(∑8

k=1

(
Tkr

y
Tk

cosβk − Tkr
x
Tk

cosβk

)) (2)

where Tk is the constant thrust magnitude, ryTk
and rxTk

are the position of the kth thrusters
in the XBYB plane (Figure 4) and βk is the thrusters orientation with respect to the XB axis.
The complete thrusters’ logic and actuation are represented in Figure 3.

Figure 3: Representation of the thrusters’ activation logic.

5



2.2 Nonlinear Model Predictive Controller (MPC)2 MODELLING AND PROBLEM FORMULATION

Figure 4: Sliders’ reference frames

A thruster selection logic is necessary to determine which set of thrusters has to be activated
in order to provide the necessary commanded thrust and torque. Due to the on-off nature of
the thrusters, a Pulse Width Modulation (PWM) technique had to be incorporated. The PWM
generates a sequence of pulses in such a way that the average thrust produced by each thruster
closely matches the required magnitude Tk.
The optimization problem is shown in Chapter V of [23].

2.2 Nonlinear Model Predictive Controller (MPC)

The MPC is a class of algorithms that compute a sequence of manipulated variable adjustments
to optimize the future behaviour of the plant. In fact, it is based on iterative, finite-horizon
optimization of a plant model (Figure 5). At time t the current plant state is sampled and a
cost-minimizing control strategy is computed (via a numerical minimization algorithm) for a
relatively short time horizon in the future. This is defined as an open-loop optimal sequence
of control moves. Only the first step of the control strategy is implemented, then the plant
state is sampled again and the calculations are repeated starting from the new current state,
yielding a new control and new predicted state path. The prediction horizon keeps being shifted
forward and for this reason MPC is also called receding horizon control. Due to the repeated
optimization, MPC is considered a closed-loop approach.

6



2.2 Nonlinear Model Predictive Controller (MPC)2 MODELLING AND PROBLEM FORMULATION

Figure 5: MPC Discrete scheme

A NMPC is a variant of the MPC that is used when the system dynamics are not linear,
such as the one in this thesis, meaning that their behavior cannot be accurately represented by
linear models. Due to the nonlinearities, it is necessary to use more complex numerical methods
to solve the optimization problem. This makes the NMPC more computationally demanding
than the MPC but, at the same time, the only controller capable of handling nonlinear inputs
and constraints such as thruster saturation or collision avoidance limits.
In this thesis, due to the nonlinear nature of the system dynamics (1), the NMPC will be used to
optimize the slider’s thrusters’ activation while reaching and docking to a second slider. In fact,
the controller will find the most efficient way to move from point A to point B while considering
several constraints.
The constraints that the controller has to take into account are several: obstacle positions,
thruster activation rate, and collision avoidance. These will be explained in detail in the sub-
section 2.3
Following the notation used in Figure 6, the NMPC control loop has been set in the following
way:

• Inputs:

– Reference: Target docking door coordinates and orientation (xT ,yT and θT ).

– Feedback: Chaser position and orientation after thruster activation (xC ,yC and θC).

• Constraints:

– Thrusters thrust and torque (ub. lb).

– Collision avoidance (Cardioid coordinates).

• Output:

– Control Moves: Thrusters’ activation control input (fx, fy and τ).

7



2.3 Constraints 2 MODELLING AND PROBLEM FORMULATION

Figure 6: MPC Control Loop

2.3 Constraints

The role of the constraints inside the controller is to set rules that have to be followed while
performing the optimization problem. This allows to have parameters optimized within certain
limits and therefore, have more control on the optimization process. Sometimes they are nec-
essary to just give the controller information that cannot be described simply by the model of
the system. The constraints that has been taken into account in this paper can be grouped into
3 different areas:

• Platform and Slider’s limitations

• Motion planning

• Collision avoidance

2.3.1 Platform and Slider’s limitations

The controller does not know the characteristics of the platform in which the simulations hap-
pens and therefore, it is necessary to provide the physical limitations that the floating platform
and the slider have. The first one is the limited space, as said in subsection 1.3, the area in
which the slider can move is limited and therefore that has to be taken into account in the
NMPC.
The second one is the slider performances, especially regarding the activation thruster rate and
the amount of thrust and torque they can produce. Those have been included in the NMPC:
the first one when selecting the sampling time dt and the second one by including a lower and
upper bound (ub. lb) in the cost function J .
Finally, since the sliders can store a limited amount of propellant, there is a limitation of time
in which the simulation can run. Hence, a limit of 2 minutes has been set for the simulation
running time.

2.3.2 Motion planning

Two different motion planning strategies have been studied to ensure the Chaser properly
approaches the Target. This meant having the Chaser always moving at a safe distance from
the Target and, at the same time, arriving in front of the docking port in both the right direction
and orientation. The strategies that have been investigated are the following:

• Polynomial trajectory

• Cardioid area

8
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Polynomial trajectory

The first strategy consisted of creating a set of waypoints and then connecting them with
a polynomial trajectory. This will generate a set of points that can be used as a reference
trajectory for the controller. This ensured that the Chaser would follow a trajectory that
brought it towards the Target docking port from the right direction and, at the same time avoid
any collision with the Target.
This strategy is based on knowing beforehand the Chaser’s initial and final position and the
Target orientation. Given this information, the other value that had to be given to the algorithm
was the duration of the simulation (∆t) and the Chaser’s initial and final velocity. With that,
the waypoints were generated.
The waypoints have been generated so that the final one would correspond to Chaser’s final
position and would bring it at 2 cm from Target’s docking port. This is to ensure a safe distance
when approaching the target.
Once all the waypoints have been generated the trajectory has been generated using a quintic
polynomial trajectory defined by the following equations:

x(t) = at5 + bt4 + ct3 + dt2 + et+ f

ẋ(t) = 5at4 + 4bt3 + 3ct2 + 2dt+ e

ẍ(t) = 20at3 + 12bt2 + 6ct+ 2d

(3)

The difficulty encountered while using this strategy was that depending on the initial Target
position and Chaser orientation the number of waypoints could change. In fact, by manually
selecting the number of waypoints the shortest trajectory could have been ensured in each case.
By design choice, the number could vary from 3 to 5. This strategy has shown consistent
results, as can be seen in subsection 3.2. Still, after a few simulations, it was clear that it was
unsuitable for a non-collaborative and moving target. In fact, if the Target was moving, a new
set of waypoints and, consequently, a new trajectory had to be calculated at each iteration,
making the computational load very high. Furthermore, with the introduction of obstacles on
the trajectory, ensuring the free-from-collision approach with the moving Target was impossible.

Cardioid area

For the second strategy used in this paper, instead of generating a reference trajectory through
waypoints and polynomial equations, the controller had assigned the final point that the Chaser
had to reach and a designated area in which the Chaser was prohibited from entering. This area
has been defined by a cardioid whose shape ensures that the slider keeps a safe distance from
the slider and, at the same time, approaches the target’s docking port in the correct direction
[24]. In fact, the cardioid has been designed in a way where its origin will coincide with the
final point that the Chaser has to reach. This will ensure that the Chaser follows the cardioid’s
edges and positions itself in the right spot. The following equation defines the cardioid area

(x2 + y2 + 2bx)2 = 4b2(x2 + y2) (4)

where b is the cardioid radius and determines the area it will cover.
Therefore, the cardioid as a safe barrier function has been implemented in the controller by
defining it as a non-linear constraint inside the fmincon function. The nonlinearity of the
constraint is due to the time-dependent variable on which the constraint itself is defined. It has
been implemented in the controller by defining the cardioid as a nonlinear constraint with the
following equation,

4b2
(
(x− x0card)

2 + (y − y0card)
2
)
−
(
(x− x0card)

2 + (y − y0card)
2 + 2b(x− x0card)

)2 ≤ 0 (5)
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where x0card and y0card are the cardioid’s origin coordinates and x and y define the Chaser
position. As said in the previous subsection, for safety reasons the final point has to be a point
at 2 cm from Target’s docking port. Hence, the cardioid’s origin corresponds to that point.

This strategy has been found suitable for every case studied in this paper. It ensured that
the Chaser always approached the Target in the right direction, especially when the Target was
moving and rotating. Furthermore, it didn’t interfere with the obstacle avoidance constraint.

2.3.3 Collision avoidance

A collision avoidance system is crucial to prevent the chaser from crashing into the target while
moving towards it and avoid any obstacles the chaser could encounter. Since it is impossible
for the controller to have any information regarding obstacles and how to avoid them from the
model of the system, it is necessary to define a robust strategy that will work in any case. In
this case, the proper strategy would be the one that ensures that the Chaser does not collide
with both the Target and obstacles and that the Chaser approaches the Target in the right
direction. The collision avoidance with obstacles has been defined separately from the one to
approach and avoid the collision with the target correctly. In fact, for the first one, a simple
constraint in which a safe distance has been introduced, while for the second one, the motion
planning strategy shown in subsubsection 2.3.2 has been implemented. The collision avoidance
constraint has been implemented in the fmincon function to prevent the Chaser from hitting
any obstacles along the way. The constraint is simple and sets a certain distance at which the
slider needs to keep from the obstacle. It is formulated in the following form

h(t) = ||x⃗Chaser − x⃗obs||2 > d (6)

d = robs + rslider + dsafe (7)

where, xChaser is the chaser position, xobstacle is the obstacle position, robs is the obstacle’s
radius, rslider is the slider’s radius and dsafe is a safety margin to avoid any contact between
the slider and the obstacle.

2.4 Upper and Lower boundaries

Another constraint that had to be implemented in the optimization process is the maximum
and minimum thrust (fx, fy) and torque (τ) that the onboard thrusters can produce. Therefore,
the NMPC optimization loop will have to comply with the following constraint

lb ≤ u ≤ ub (8)

The lb and the ub mean lower and upper bounds, respectively. Both contain the values of fx,
fy and τ . These will help the controller in its model prediction and return input control values
according to Sliders’ physical capabilities. The values selected for these constraints can be seen
in subsection 3.1.

2.5 Optimization control problem

The aim of the optimization control problem is to minimize the thruster activation while the
Chaser approaches and docks to the Target. This has been done by minimizing the following
cost function

J = (x− xref )
T Q (x− xref ) + (u− uref )

T Ru (u− uref ) + (u− uold)
T Rd (u− uold) (9)

where

• x and xref : vector containing respectively the state prediction (x) and the state references
for each prediction step (xref )

10
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• u and uref and uold: vector containing respectively the system inputs of every prediction
step (u), references for each prediction step(uref ) and the previous command input (uold)

• Q: matrix containing state penalties

• Ru: matrix containing input penalties

• Rd: matrix containing delta input penalties

This has been implemented in the controller using the fmincon MATLAB function.

Matrices Q, Ru and Rd play a vital role in the optimization problem because they are es-
sentially the tuning parameters for the control design.
Matrix Q quantifies the importance of minimizing the error between predicted and reference
states. The higher the values, the more responsive the controller will be.
Matrix Ru quantifies the deviation between the system inputs and the desired ones. Hence, it
ensures the correct amount of inputs are sent to the thrusters, minimizing the deviation.
Matrix Rd quantifies the cost incurred due to changes in the control inputs from one step to
the next. It ensures smoothness in the control inputs, aiming to minimize abrupt changes or
activations of thrusters.

2.6 MPC problem formulation

With all written above, the MPC non-linear problem can be mathematically defined in the
following way

minimize
x, u

J =
1

2

N∑
k=0

(xk − x∗k)
T Qk (xk − x∗k)

+
1

2

N∑
k=0

(uk − u∗k)
T Ruk (uk − u∗k)

+
1

2

N∑
k=0

(∆uk −∆u∗k)
T Rdk (∆uk −∆u∗k)

subject to x0 = xrefk k = 0, . . . , N − 1,

xk+1 = f(xk, uk) k = 0, . . . , N − 1,

g(xk, uk) < 0 k = 0, . . . , N − 1,

h(xk, uk) > d k = 0, . . . , N − 1,

umin ≤ uk ≤ umax k = 0, . . . , N − 1

(10)

where J is cost function shown in subsection 2.5. The first two constraints ensure that the
predicted state is consistent with the system equations 1. The third constraint refers to the
cardioid area, which is shown in more detail in subsubsection 2.3.2. The fourth constraint is
relative to the collision avoidance explained in subsubsection 2.3.3. The last one is relative to
the range of values the input u can have and has been explained in subsection 2.4.
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3 Simulations Results

The simulations were set on MATLAB and divided into two main parts; the first consisted of
having the Target fixed in one position and the second one moving in a circular trajectory. The
Target would be fixed or rotating along its axis in both parts. This brings the simulations to
investigate four different scenarios. Before the simulations could be performed, the controller
had to be set up. The process will be shown in subsection 3.1. The simulations with the fixed
Target will be discussed in subsection 3.2, and those with the moving Target will be discussed
in subsection 3.3.

3.1 Controller setup

As mentioned before, the controller used for this work is the NMPC, and there are different
values and constraints that must be set to have the simulations running. These are the following:

• Positioning of the Chaser, Target and obstacles

• ∆t simulation time

• Weight matrices Q, Ru and Rd

• Constraints

– Upper and lower boundaries

– Polynomial trajectory

– Cardioid

• N prediction horizon

• dt controller sample time

Chaser, Target, and obstacles positioning

Throughout all the simulations, the initial position of both the Target and Chaser has been kept
the same. Instead, the two obstacles’ positions have been kept the same for all the simulations
but moved randomly in some cases to show the validity of the controller’s Collision Avoidance
System (CAS). These cases can be seen in Figure 8, Figure 17 and Figure 21. The coordinates
can be found at Table 2

x y θ
(m) (m) (rad)

Chaser -1 -1.5 π
2

Target 0 0 π
6

Obstacle 1 -0.5 -1 -
Obstacle 2 -0.7 -0.5 -

Table 2: Chaser, Target and obstacles positioning

The coordinates for the final point that the Target has to reach have been calculated based
on the orientation of the Target plus a safety margin dsafe of 0.02m with the following equations:{

xf = xTarget + dsafe · cos (θTarget)

yf = yTarget + dsafe · sin (θTarget)
(11)
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∆t simulation time

The choice of the overall duration of each simulation has been set at 120 s. This was to give the
maximum time that the actual Slider could run due to its limited amount of fuel that could be
stored.

Weight matrices Q, Ru and Rd

The values of these matrices have been kept constant for all the MATLAB simulations and
then modified for the practical test. The values for the MATLAB simulations can be found at
Table 3 while the modifications done for the practical test can be found at Table 20.

Q Ru Rd

diag(0.5 0.5 1 0.5 0.5 1) diag(0.03 0.03 0.15) diag(0.02 0.02 0.2)

Table 3: Weight matrices Q, Ru and Rd values for MATLAB simulations

Constraints

As mentioned in subsection 2.3, the constraints used inside the controller are three:

1. Lower and Upper bounds

2. Polynomial trajectory

3. Cardioid area

4. Obstacle avoidance

The first constraint is related to the physical characteristics of the model used in the simulations,
i.e., the Slider. The values have been provided following the schematics on [23] and are the
following:

fx fy τ
(N) (N) (Nm)

lb -1.4 -1.4 0.518
ub 1.4 1.4 0.518

Table 4: Upper and Lower bounds

The following two constraints are related to the objective of having a safe approach and docking
in any scenario.

The polynomial trajectory has been used just for the fixed Target scenario, and it has been
defined by the Equation 3. The method consisted of defining a reference trajectory using these
equations. These were solved by defining some waypoints and solving the problem Ax = b.
The number of waypoints could vary depending on the initial position of the Chaser and the
Target orientation.

13
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The cardioid area has been defined to solve the issues encountered with the polynomial tra-
jectory and, hence, provide an alternative technique to ensure a safe approach and docking
in every scenario. The cardioid area is defined by Equation 4, and its radius has been set to
be 0.25m. By implementing this barrier function, the controller automatically calculates the
area’s inclination according to the Target’s rotation and its docking port orientation, making it
suitable for each scenario used in this work. Then, at each iteration, it calculates the distance
between the Chaser and the cardioid area and ensures that the next step won’t bring the Chaser
inside the area.

The last constraint has been implemented into the controller to avoid the obstacles. The
principle behind it is to let the controller calculate the distance between the Chaser and the
obstacle at every step (Equation 6) and avoid the Chaser getting closer than a certain margin
to the obstacles. That margin has been named dsafe and its value is 0.02m.

N and dt parameters

These parameters must be carefully tuned to work correctly in each scenario the Sliders will
encounter. Several values have been considered and are shown in Table 5. The challenge
here is to get the best values by balancing computational efficiency, controlling performance,
and ensuring stability. In real-time applications, a longer prediction horizon N can increase
computational complexity and enhance the controller’s robustness. However, it can be a big
concern for real-time implementation and responsiveness. On the other hand, a shorter sampling
time dt allows the controller to be more reactive but can lead to an overly aggressive one.
Furthermore, when adding constraints different parameter values can let the system run into
minimums that let the system stuck in one point and invalidate the simulation.

N dt
(s) (s)

5 0.1
10 0.2
15 0.5
20 1.0

Table 5: N and dt parameters values that have been considered to set the controller

After several simulations two different sets of values have been chosen. The first one is for the
first Fixed Target scenario while the second one is for the second Fixed Target scenario and the
Moving Target ones. The final values that have been chosen are the following

N dt
(s) (s)

Fixed Target (Case 1) 10 0.5
Moving Target/Fixed Target (Case 2) 5 0.5

Table 6: N and dt parameters values used for the simulations
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3.2 Fixed Target

Two tests have been performed for the Fixed Target case. Both are point-to-point navigation
cases where in the first one, the Target is fixed both in position and orientation, while in the
second one, the Target is fixed in position but is rotating along its axis. For the first case,
two approaches have been followed: one in which the reference trajectory is generated with
the polynomial trajectory. In contrast, the second one has the final point as a reference value.
Table 8 display the initial and expected final position of the Target. Note that the target’s final
orientation is rotated 180◦ so that the two docking ports face each other.

Case 1 Case 2

Position Fixed Fixed
Rotation None Rotating
Reference trajectory Polynomial trajectory and final point Final point

Table 7: Characteristics of the two different cases for the Fixed Target simulations

x y θ
(m) (m) (rad)

Chaser -1 -1.5 π
2

Target 0 0 π
6

(a) Chaser and Target Initial positions

x y θ
(m) (m) (rad)

Chaser 0.3204 0.1850 7
6π

Target 0 0 π
6

(b) Chaser and Target Final positions

Table 8: Chaser and Target Initial and Final positions for Case 1

Case 1

As mentioned, the first test used a trajectory generated by a polynomial function. To do so, 4
waypoints have been manually defined and can be seen at Table 9. Based on those, the trajectory
has been generated. In Figure 7, the cardioid has been added to show that in both strategies,
this one and the one with the cardioid, a safe approach is guaranteed. The simulations shown in
Figure 8 show that the CAS inside the controller works when the Slider encounters an obstacle
along its path and quickly sticks back to the reference trajectory.

x y θ
(m) (m) (rad)

Waypoint 1 -1 -1.5 1
2π

Waypoint 2 0.375 -0.6495 7
6π

Waypoint 3 0.7048 0.2565 7
6π

Waypoint 4 0.3204 0.1850 7
6π

Table 9: Selected waypoints for Case 1
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Figure 7: Slider trajectory when using the polynomial trajectory as reference
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Figure 8: Slider trajectory when using the polynomial trajectory as a reference with an obstacle
on the trajectory
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(a) X component of the Slider trajectory

(b) Y component of the Slider trajectory

(c) Slider’s orientation θ

Figure 9: Trajectory and orientation analysis of the case shown in Figure 7
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In the second test, the reference was just the final point, and the collision avoidance integrated
the cardioid and the obstacles. This results in having the Slider that has to reach the reference
point as quickly as possible, and as we can see in Figure 10, that ends with a straight line
between the initial and final points. The CAS and the controller manage to bring the Slider to
the desired position, respecting all the constraints given.

Figure 10: Slider trajectory when using the final point as reference
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(a) X component of the Slider trajectory

(b) Y component of the Slider trajectory

(c) Slider’s orientation θ

Figure 11: Trajectory and orientation analysis of the case shown in Figure 10
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Case 2

In this case, the Target is rotating along its axis at a constant speed of 0.01 rad/s. The CAS
has been implemented, and since the target is rotating, the reference final point is updated
accordingly. Table 10 display the Target’s initial and expected final position. Note that the
Target’s final orientation is rotated 180◦ so that the two docking ports face each other.

x y θ
(m) (m) (rad)

Chaser -1 -1.5 π
2

Target 0 0 π
6

(a) Chaser and Target Initial positions

x y θ
(m) (m) (rad)

Chaser -0.0563 0.3656 4.8652
Target 0 0 1.7236

(b) Chaser and Target Final positions

Table 10: Chaser and Target Initial and Final positions for Case 2

Here are the results. In Figure 12, the first settings for N and dt as shown in Table 6 have
been used, while the second ones have been used in Figure 13. It is noticeable that a shorter
prediction horizon removes all the oscillations when the Slider is close to the final point. In fact,
as we can see in Figure 13, the Slider’s trajectory is way smoother than the one in Figure 12.

Figure 12: Slider trajectory when the target is rotating on its axis in a fixed position
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Figure 13: Slider trajectory when using N =5 s
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(a) X component of the Slider trajectory

(b) Y component of the Slider trajectory

(c) Slider’s orientation θ

Figure 14: Trajectory and orientation analysis of the case shown in Figure 12
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3.3 Moving Target

The second part of the simulation focused on having the Target moving in a controlled behavior
across the plane. As subsection 3.2, this part has been divided into two cases: one having the
Target fixed in its orientation while moving and the other rotating along its axis. In both cases,
the Target follows a circular trajectory centered in (0,0) with a radius of 0.6m at a constant
speed of 0.02 rad/s.

Case 3 Case 4

Position Moving Moving
Rotation None Rotating
Reference trajectory Final point Final point

Table 11: Characteristics of the two different cases for the Moving Target simulations

Case 3 Case 4
(rad/s) (rad/s)

Circular trajectory 0.02 0.02
Rotation None 0.02

Table 12: Speed values of the Target in the Moving Target simulations

Case 3

As mentioned above, this test was performed by having the Target move in a circular trajectory
while keeping its orientation fixed all the time. Table 13 shows the Chaser’s initial and expected
final positions.

x y θ
(m) (m) (rad)

Chaser -1 -1.5 π
2

Target 0 0 π
6

(a) Chaser and Target Initial positions

x y θ
(m) (m) (rad)

Chaser -0.7153 0.6652 7
6π

Target -0.4424 0.4053 π
6

(b) Chaser and Target Final positions

Table 13: Chaser and Target Initial and Final positions for Case 3

Figure 15 shows that using a value of 10 s for the N makes the Target’s position oscillate close
to the final point. This is more detailed in Figure 18 where the trajectory components have been
separated. X and Y values oscillate close to the reference values without reaching them, while
the orientation θ stays constantly fixed to the reference value. As it can be seen in Figure 16,
by reducing the value of N from 10 to 5 s a more stable and closer to the reference values
trajectory can be obtained. Figure 17 shows that the CAS implemented into the controller
allows the Slider to avoid the obstacles in its way even in this scenario.
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Figure 15: Slider trajectory when the Target is moving in a circular trajectory with fixed
rotation
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Figure 16: Slider trajectory when using N =5 s
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Figure 17: Slider trajectory when using N =5 s and obstacles on it way
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(a) X component of the Slider trajectory

(b) Y component of the Slider trajectory

(c) Slider’s orientation θ

Figure 18: Trajectory and orientation analysis of the case shown in Figure 16
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Case 4

In this simulation, the Target moves in a circular trajectory as in Case 3.3 and rotates on its
axis. The Target’s revolution around (0,0) and rotation speeds are matched so the docking port
always faces the outside of the circular trajectory. This has been done to ease the controller’s
effort when controlling the Slider in this scenario by reducing the computational effort.

Figure 19 shows that using a value of 10 for the N makes the Target’s position oscillate close
to the final point. Looking at Figure 22, it can be seen more in detail by analysing the single
components of the trajectory. X and Y values oscillate close to the reference values without
reaching them while the orientation θ stays constantly fixed to the reference value.
In Figure 20, it can be seen that reducing the value of N to 5 allows the controller to stabilize
the Slider to the reference final point.
Figure 21 demonstrates that the controller can also make the Slider avoid the obstacles in the
Slider’s way.

x y θ
(m) (m) (rad)

Chaser -1 -1.5 π
2

Target 0 0 π
6

(a) Chaser and Target Initial positions

x y θ
(m) (m) (rad)

Chaser -0.7153 0.6652 5.5416
Target -0.4424 0.4053 2.9236

(b) Chaser and Target Final positions

Table 14: Chaser and Target Initial and Final positions for Case 4

Figure 19: Slider trajectory when the Target is moving in a circular trajectory and rotating
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Figure 20: Slider trajectory when using N =5 s
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Figure 21: Slider trajectory when using N =5 s and obstacles on its way
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(a) X component of the Slider trajectory

(b) Y component of the Slider trajectory

(c) Slider’s orientation θ

Figure 22: Trajectory and orientation analysis of the case shown in Figure 19
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3.4 Results’ analysis

Looking at the graphs above, the controller and the safety constraints handle the task very well.
The Slider never crushes into any obstacle and follows the trajectory with little to no deviation.
In the fixed Target cases, the controller allows the Chaser to follow the reference trajectory,
avoid obstacles, and avoid entering the cardioid area whether the Target is rotating or not. it
is worth mentioning that a shorter prediction horizon (N) makes the controller more precise
in following the reference trajectories. The simulations for the moving Target cases showed
similar behavior and, therefore, good results. The oscillations in the trajectory for the cases in
which the Target is rotating and/or moving have been removed by simply lowering the N values.

All of this can be seen in the trajectory analysis graphs shown in Figure 9, 11,18,14,22.
Another way to demonstrate the controller’s accuracy is to show the difference between the
Chaser’s expected final position and orientation and the actual ones achieved in the simula-
tions. This is shown in the following tables, where the error has been calculated as

Error =∥ x− x∗ ∥ (12)

where x represented the value obtained from the simulation and x∗ the expected value.

Case 1

As we can see in Table 15, the controller is accurate enough to keep the error below the cm
scale. Noticeably, the choice of using just the final point as a reference reduces the error. In
fact, as it can be seen in Table 15b, the Target reaches the final position with just a deviation
of just one millimeter and with the correct orientation.

x y θ
(m) (m) (rad)

Expected 0.3204 0.1850 3.6652
Result 0.3225 0.1978 3.6763
Error 0.0021 0.0128 0.0111

(a) Case 1 error in final positioning

x y θ
(m) (m) (rad)

Expected 0.3204 0.1850 3.6652
Result 0.3221 0.1860 3.6652
Error 0.0017 0.001 0

(b) Case 1 error in final positioning with final point

Table 15: Case 1 error in final positioning

Case 2

In this case, the results in Table 16 show similar errors between two cases, but it is noticeable
from Figure 12 and Figure 13 that the overall precision in following the path and reaching the
final position is higher in the case with N =5. This is why the error on the y coordinates is high
for Table 16a than for Table 16b.

x y θ
(m) (m) (rad)

Expected -0.0563 0.3657 4.8652
Result -0.0625 0.4552 4.8493
Error 0.0062 0.0895 0.0159

(a) Case 2 error in final positioning with N =10

x y θ
(m) (m) (rad)

Expected -0.0563 0.3656 4.8652
Result -0.0433 0.3672 4.8525
Error 0.013 0.0016 0.0127

(b) Case 2 error in final positioning with N =5

Table 16: Case 2 error in final positioning
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Case 3

Case 3 shows almost identical behavior of the Chaser and similar positioning errors. The
controller manages to achieve the exact orientation needed for this case, but there is a small
error in achieving the exact final position.

x y θ
(m) (m) (rad)

Expected -0.1220 0.5903 3.6652
Result -0.0788 0.6285 3.6652
Error 0.0432 0.0382 0

(a) Case 3 error in final positioning with N =10

x y θ
(m) (m) (rad)

Expected -0.1220 0.5903 3.6652
Result -0.0828 0.6281 3.6652
Error 0.0392 0.0378 0

(b) Case 3 error in final positioning with N =5

Table 17: Case 3 error in final positioning

Case 4

In the last case, the controller does not achieve the same precision in positioning the Chaser in
the right final position. This is due to the higher complexity of the scenario, but nonetheless,
the error is really small, lower than 4 cm. As seen in the previous cases, the lower value of N
increases the smoothness of the Chaser trajectory.

x y θ
(m) (m) (rad)

Expected -0.7153 0.6552 5.5416
Result -0.7461 0.7416 5.5247
Error 0.0308 0.0864 0.0142

(a) Case 4 error in final positioning with N =10

x y θ
(m) (m) (rad)

Expected -0.7153 0.6552 5.5416
Result -0.6764 0.6920 5.5161
Error 0.0389 0.0368 0.0255

(b) Case 4 error in final positioning with N =5

Table 18: Case 4 error in final positioning
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4 Experimental Results

To demonstrate the effectiveness of the controller with its constraints, four tests were conducted
in the Kiruna test bed. In this section, two sets of tests have been performed using one Slider.
Firstly, three tests with point-to-point navigation were used to test and verify that the Slider
and controller could perform well inside the Kiruna test bed environment. Finally, a single
test was performed to test that the controller could handle the constraint of the cardioid. The
control model was implemented into MATLAB SIMULINK, and the communications between
PC and Sliders were performed through Wi-Fi and ROS systems. The detailed communication
process can be found at [25].
It is worth mentioning that the results are very limited and lack precision due to the limited time
in which the laboratory was available and the hardware available during the time of tests. In
fact, the real-time feedback necessary for the control algorithms could be provided only by the
Intel real sense tracking camera T265. Its sensor technology allows fairly accurate localization
and velocity (transnational and rotational) of the Slider but not enough to provide smooth
linear trajectories expected for this kind of test. Nonetheless, it was possible to perform some
tests.

4.1 SIMULINK Model

As mentioned before, the MATLAB model had to be implemented into SIMULINK. First, a
software simulation has been run with the PWM implemented. A schematic representation of
it can be seen in Figure 23. Secondly, the ROS was implemented in it to make it work on Slider
hardware.

Figure 23: Simulink model scheme
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Figure 24: Simulink model scheme with ROS

4.2 Case 1: Point-to-Point Maneuver

As said above, the first part of the testing consisted of three small tests in which a point-to-point
maneuver was performed. This maneuver simulates a docking scenario to test the controller
and see the differences between the software and hardware simulation. The final position had
to be intended as the final position the Chaser must reach to dock to the Target. Therefore, the
focus was on position and orientation. In this set of tests, the CAS and the cardioid constraint
were not implemented in the MPC.
In the simulation scenario, the Slider started resting and hence, its initial state was X0 = [06×1]

and then, it was sent to another position which was Xf =
[
0.3204, 0.1850, pi

6 , 01×3

]T
for

the first test and Xf = [0.3, 0.3, 0, 01×3]
T for the last two. Noticeably, the Slider’s initial

positioning was never exactly (0,0). This is because of the initialization process the Slider’s
hardware had to perform at the beginning of each simulation and the random placement of
the Slider on the table. The values of matrices Q and R used in the three tests are shown in
Table 20 while the final positions and orientations that the Slider had to reach in each test are
displayed in Table 19. In the following sections, the trajectory of the Slider will be analyzed.

x y θ
(m) (m) (rad)

Test 01 0.3204 0.1850 π
2

Test 02 0.3204 0.1850 0
Test 03 0.3 0.3 0

Table 19: Chaser final positions and orientations
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Parameters Matrix Q Matrix R Orientation
Symbol Qk Rk θ

Test 1 [5, 5, 10, 50, 50, 10]× I6×6 [0.3, 0.3, 0.15]× I3×3
π
6

Test 2 [5, 5, 0.005, 50, 50, 0.005]× I6×6 [0.1, 0.1, 0.5]× I3×3 0
Test 3 [5, 5, 0.005, 50, 50, 0.005]× I6×6 [0.1, 0.1, 0.5]× I3×3 0

Table 20: Weight matrices Q and R values

4.2.1 Trajectory

In the following images, the overall trajectory of the Slider in each test is shown with a detailed
comparison at the end in Figure 28. In Test 01 and 02, the Slider always starts near position
x0 = (0, 0) and tries to reach the final position xf = (0.3204, 0.1850) while in Test 03 it tries to
reach xf = (0.3, 0.3).
As can be seen in Figure 25 and Figure 28, in Test 01, the trajectory and orientation are not
stable. This showed that the controller was not tuned correctly for hardware application. To
solve this, the matrices Q and R have been modified, making the controller less responsive and
reducing the thruster’s activations. Their values can be found in Table 20.
Making significant changes in orientation is always challenging if the controller is not tuned
perfectly. Therefore, in Test 02, it has been decided to keep the orientation constant at 0◦.
Figure 26 shows that the Slider has a way more stable behavior and oscillates close to the final
point.
In Test 03, a different final position has been set to test the controller even more. Figure 27
shows that the MPC allows the Slider to reach a stable oscillation to a final point close to the
reference one.
As mentioned before, the trajectories are not smooth due to several factors. These can be from
the thrusters’ ON-OFF mode nature, which always introduces some oscillations and the low
accuracy of the sensors available at the time of the simulations. The latter explains the offset
between the reference final point and the actual final point that the Slider tends to reach.

Analyzing in detail the trajectory and orientation data from Figure 28 and Figure 29 shows
that Test 01 presents a highly unstable behavior. This confirms that the controller set up from
the MATLAB simulations is unsuitable for the hardware. Meanwhile, the Slider has a way more
stable behavior (Test 02 and 03) after the controller values have been tuned. In fact, it can be
seen that the Slider reaches a stable oscillation close to the reference values.
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Figure 25: Slider trajectory test 01
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Figure 26: Slider trajectory test 02
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Figure 27: Slider trajectory test 03
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Figure 28: Slider trajectory components comparison Test 01, 02 and 03

Figure 29: Slider trajectory components comparison Test 02 and 03
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4.2.2 Thrust activation

The following graphs show the activation of each of the 8 thrusters in each test after the MPC
sends the optimized signals to the Sliders. By comparing Figure 30 with the other two figures
(31,32), it is noticeable that there is no correlation between a stable behavior and frequency of
activation. In fact, even after tuning the MPC to make it less reactive towards the thrusters’
activation, the number of activations didn’t decrease noticeably.

Figure 30: Slider thrust activation for test 01

Figure 31: Slider thrust activation for test 02
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Figure 32: Slider thrust activation for test 03
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4.3 Case 2: Cardioid Constraint

The last test involved applying the cardioid constraint to evaluate the Slider’s behavior. The
settings for this test were the same as the previous one, particularly test 03. The specific values
can be found in Table 22. The Slider’s initial state was X0 = [06×1] and the final one was

Xf =
[
−0.3, 0.5, pi

6 , 01×3

]T
(Table 21).

The cardioid has been set to have inclination zero and with origin in (-0.3,0.5). The dimensions
are the same as the ones used in the software simulations in section 3.

x y θ
(m) (m) (rad)

Test Cardioid -0.3 0.5 0

Table 21: Chaser final position and orientation

Parameters Matrix Q Matrix R Orientation
Symbol Qk Rk θ

Test Cardioid [5, 5, 0.005, 50, 50, 0.005]× I6×6 [0.1, 0.1, 0.5]× I3×3 0

Table 22: Weight matrices Q and R values

The results are shown in Figure 33, and it can be seen that the Slider’s trajectory follows
a particular pattern. In fact, it show that the MPC can handle the cardioid constraint and
keep the Slider close to the cardioid edges, but the trajectory is still not as smooth as the one
obtained in the software simulations. As mentioned before, this is due to the low accuracy in
the positioning system and the implementation of the PWM.
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Figure 33: Slider trajectory with cardioid constraint
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5 Conclusion and future work

This thesis has shown the feasibility of using a MPC controller to ensure both the reliability
and safety of autonomous docking maneuvers applied to Sliders robots.
It has been found that by optimizing the MPC, it was possible to ensure that the controller
could let the Chaser safely reach the Target. This was done by adjusting the N , dt, and weight
matrices. It has also been found that the maneuvers could be achieved in safety by introducing
the right constraint, i.e., cardioid limit function and obstacle avoidance.
Analyzing the results as shown in subsection 3.4 shows that for the fixed Target case, the MPC
was very accurate with little error, while for the moving Target one, the error slightly increased.
This difference is due to the controller settings requiring more tuning. The objective of the
thesis has been achieved in both the fixed and moving Target cases of the software simulations.
A small hardware simulation has shown that the strategy used for the software simulations is
correct but needs further development and optimization. In fact, low accuracy affected the
results of the hardware simulations. A more accurate positioning system can solve the problem
and make the trajectory more accurate and similar to the ones obtained in the software simu-
lations.

The work done in this thesis can be improved by developing further the hardware simulations
by using a more accurate positioning system and tuning the controller accordingly. In fact, the
first hardware tests demonstrated that the software simulations’ settings were unsuitable for
the hardware ones. This is caused by many factors and requires more time to find the best
values for the perfect tuning of the controller. Furthermore, a visual or radar-based navigation
system can be implemented in the software simulation to represent a real-case scenario better.
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