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ON THE CONVERGENCE OF THE ESCALATOR BOXCAR TRAIN∗

ÅKE BRÄNNSTRÖM†, LINUS CARLSSON‡ , AND DANIEL SIMPSON‡

Abstract. The Escalator Boxcar Train (EBT) is a numerical method that is widely used in
theoretical biology to investigate the dynamics of physiologically structured population models, i.e.,
models in which individuals differ by size or other physiological characteristics. The method was
developed more than two decades ago, but has so far resisted attempts to give a formal proof of
convergence. Using a modern framework of measure-valued solutions, we investigate the EBT method
and show that the sequence of approximating solution measures generated by the EBT method
converges weakly to the true solution measure under weak conditions on the growth rate, birth rate,
and mortality rate. In rigorously establishing the convergence of the EBT method, our results pave
the way for wider acceptance of the EBT method beyond theoretical biology and constitutes an
important step towards integration with established numerical schemes.
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1. Introduction. The population dynamics of ecological and biological systems
are often described by an ordinary differential equation of the form

1

N

dN

dt
= β(N)− μ(N),

where N = N(t) is the total population size at time t, β(N) is the birth rate, and
μ(N) is the mortality rate, both of which depends on the population size. The key
assumption in this type of model is that every individual in the population is identical.
This is clearly unreasonable in many situations, including cases where the gap between
birth size and reproductive size is important. A more accurate description of the
population dynamics can be given by physiologically structured population models
(see, e.g., [25]). In these models, the birth rates, death rates, and growth rates of
individuals depend on their physiological state x ∈ Ω, where Ω is the set of admissible
states. In general, these states can represent any aspects of individual physiology such
as age, size, mass, height, or girth. For the purpose of this paper, we will work with a
one-dimensional state space that we think of as representing individual size, but other
interpretations are possible and, as we note in the concluding discussion, we expect
that our results can easily be extended to higher-dimensional state manifolds.

In order to specify a physiologically structured population model, we need explicit
representations for the mortality, growth, and fecundity rates of individuals as well
as the initial population structure. We assume that these rates are, respectively, on
the forms μ(x,Et), g(x,Et), and β(x,Et), where x is the size (or, more generally,
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3214 ÅKE BRÄNNSTRÖM, LINUS CARLSSON, AND DANIEL SIMPSON

the state) of the individual and Et is the environment that individuals experiences
at time t. The environment is a key factor in the formulation of physiologically
structured population models and can, for example, represent the total amount of
nutrient available at time t or the size-specific predation rate; see, e.g., [25, 8]. While
the environment is often low-dimensional, it could potentially be infinite-dimensional
as would, for example, be the case for the shading profile in a forest. Finally, we
assume that all new individuals have the same birth size xb. With these assumptions,
one can show (see, e.g., [8]) that the density u(x, t) of individuals of state x at time t
is given by the first order, nonlinear, nonlocal hyperbolic partial differential equations
with nonlocal boundary condition

∂

∂t
u(x, t) +

∂

∂x
(g(x,Et) u(x, t)) = −μ(x,Et)u(x, t),(1.1a)

g(xb, Et)u(xb, t) =

∫ ∞

xb

β(ξ, Et)u(ξ, t) dξ,(1.1b)

u(x, 0) = u0(x),(1.1c)

in which we assume that xb ≤ x <∞ and t ≥ 0. Note that the nonlocality arises not
only from the boundary condition, but also from the dependence of the coefficients on
the experienced environment Et. We assume Et = u(·, t), which makes the equation
nonlinear and implies that the growth rate, birth rate, and mortality rate at time t
are all dependent on the solution u(·, t) at that very instant of time. The nonlocal
dependence on the solution in both the equation and the boundary condition compli-
cates the mathematical analysis of physiologically structured population models, but
major advances in the theory of structured population models have nevertheless been
made over the last two decades [15, 13, 10, 12, 11, 14, 18].

The first numerical method designed specifically for solving physiologically struc-
tured population models was the inventively named Escalator Boxcar Train (EBT) [7].
Rather than approximating the solution directly, it approximates the measure induced
by the solution. This technique has been used for several decades in computational
physics and forms the basis for a class of numerical schemes known as particle meth-
ods (see, e.g., [6, 21, 24, 27, 28]), though there is every reason to believe that the
EBT method was invented independently. The EBT method differs from traditional
particle methods in that newborn individuals need to be introduced recurrently as
new particles, in a process known as internalization (see section 2). The accuracy
of the numerical approximation thus depends on both a good approximation of the
initial data and on sufficiently frequent internalizations.

The EBT method is commonly used in theoretical biology, with representative
studies including [3, 17, 26, 29]. A likely reason for its widespread use in theoretical
biology is that the components of the numerical scheme can be given a biological in-
terpretation: the state-space is partitioned into initial cohorts and, for the ith cohort,
the EBT method tracks its size Ni(t) and the location of its center of mass Xi(t).
The solution measure dζt := u(t, x) dx is then approximated by

(1.2) dζt ≈ dζNt ≡
N∑

i=B

Ni(t)δXi(t),

where δx is the Dirac measure concentrated at x. The dynamics of the functions Ni

and Xi will be defined in section 2. The boundary cohort corresponding to i = B
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is treated differentially from the other cohorts to account for newborn individuals.
In the original formulation [7], this includes terms correcting for changes in the average
mass arising from the inflow of newborn individuals. For completeness, we consider
the original definition of the boundary cohort in section 4.

The convergence of the EBT method has remained an open question since the
method was first introduced in 1988. The most successful analysis was performed
by de Roos and Metz [9] in 1991. They studied how well the EBT method approxi-
mates integrals of the form

∫
Ω
ψ(x)u(x, t) dx for smooth functions ψ, assuming that

cohorts are not internalized. The result does not assert the convergence of the EBT
method but rather, in the language used by de Roos and Metz, that the EBT method
consistently approximates integrals of the solution to (1.1). One reason for the lack
of progress is that the usual analytical techniques for analyzing finite element and
finite difference schemes are not immediately applicable to the measure-valued case.
Furthermore, the nonconservative nature of the underlying problem gives rise to fun-
damental difficulties when one tries to apply classical techniques from the literature
on particle methods. First, the particle approximation (1.2) is not a solution to prob-
lem (1.1). Errors will accumulate due to the birth of new individuals, as described by
the integral boundary condition, (1.1b). To keep these errors small, the EBT method
requires the frequent internalization (addition) of new particles. Estimates of the
accumulated errors must, therefore, be derived in terms of both the approximation
of the initial data and the frequency of internalizations. A further difficulty arises
from the nonlinear transformation that is used for internalizations, which we consider
in section 4. Second, it is not generally possible to follow a characteristic curve of
(1.1a) back to the initial data at time t = 0. Instead, one typically arrives at the
boundary, x = xb, at which the accuracy of the boundary value is difficult to assess as
a consequence of the nonlocal dependence in the boundary condition, (1.1b). Thus, it
is difficult to apply any analytical technique that depends on following characteristic
curves back to the initial data.

The aim of this paper is to rigorously prove the convergence of the EBT method.
We show that the EBT method converges under far weaker conditions on the growth,
death, and birth functions than the conditions assumed by de Roos and Metz [9]. Our
arguments build on theoretical developments by Gwiazda, Lorenz, and Marciniak-
Czochra [18], specifically on their rigorous definition of measured-valued solutions of
physiologically structured population models. In the following section, we describe
the EBT method in full detail, define weak convergence of measures, and define weak
solutions to the physiologically structured population model (1.1). Readers who are
familiar with particle methods will recognize the main elements of the EBT method,
but might still want to pay attention to the process of internalizations. In section 3
we prove the convergence of the EBT method with dynamics of the boundary cohort
as introduced in this paper. Our convergence result is then extended to the original
definition of the boundary cohort in section 4. We conclude by placing our results
into context and by highlighting promising directions for future work. Theorems 3.9
and 3.11 are the main results of this paper.

2. The escalator boxcar train. The EBT method is a numerical scheme for
solving physiologically structured population models (PSPMs; see, e.g., [25]). While
there are many possible formulations of PSPMs, several of which are described in
the excellent book by Metz and Diekmann [25], we consider the numerical solution
of the one-dimensional PSPM with a single birth state xb defined by (1.1a), (1.1b),
and (1.1c). The EBT method determines an approximate measured-valued solution
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ζNt to the PSPM as a linear combination of Dirac measures,

ζNt ≡
N∑

i=B

Ni(t)δXi(t).

Each of the terms in the approximation can be interpreted biologically as a cohort
composed of Ni individuals with average individual state (e.g., size) Xi at time t. As
individuals give rise to offspring with state xb at birth, we need different definitions
for internal cohorts and the boundary cohort.

The internal cohorts are numbered i = B+1, . . . , N . These cohorts are chosen at
time t = 0 so that ζN0 converges weakly to the initial data u0(x)dx as N → ∞. This
is always possible since finite linear combinations of Dirac measures are dense in the
weak topology [2, Volume II, p. 214]. Thus, we need not restrict ourselves to initial
data prescribed by a function u0(x), but can extend our analysis to general positive
Radon measures ν0. Without loss of generality, we will assume that the total mass
ζN0 ([xb,∞)) = ν0([xb,∞)) for all N . The boundary cohort is the cohort with the
lowest index B. At time t = 0, B = 0 and we assume that N0(0) = 0 and X0(0) = xb.
As time progresses, additional cohorts with negative index will be created through
the process of internalization described further below.

The dynamics of the internal cohorts are given by

dNi

dt
= −μ (Xi, ζ

N
)
Ni,(2.1a)

dXi

dt
= g

(
Xi, ζ

N
)
,(2.1b)

where we have assumed a direct dependence of the vital rates on the solution measure,
ζN = ζNt , to represent environmental feedback. Similarly, but in contrast to the
original formulation of the EBT method by de Roos [7], the dynamics of the boundary
cohorts follow:

dNB

dt
= −μ(XB, ζ

N )NB +

N∑
i=B

β(Xi, ζ
N )Ni,(2.2a)

dXB

dt
= g(XB, ζ

N ),(2.2b)

where the sum is taken over all cohorts including the boundary cohort. This sum
reflects the offspring produced by the total population. In line with their biological
interpretations, we henceforth assume that all vital rates, the mortality rate μ, the
fecundity rate β, and the growth rate g, are nonnegative.

With the EBT method defined as above, both the width and the number of in-
dividuals in the boundary cohort will increase over time which eventually introduces
an unacceptably large approximation error. For this reason, the boundary cohort
must be internalized sufficiently often. This implies that the number of cohorts will
increase following internalization. The new boundary cohort is at the time t of the
internalization given by NB(t) = 0 and XB(t) = xb, where B equals the index of the
old boundary cohort decremented one step. At the same instant, the previous bound-
ary cohort becomes an internal cohort. To prevent the number of internal cohorts
from exceeding computationally acceptable bounds, internal cohorts may be removed
when the number of individuals has declined sufficiently. Removal of internal cohorts
is important for numerical implementation but will not be considered in this paper.
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The EBT method differs from traditional numerical schemes in that it aims to
approximate the solution as a measure of point masses. Before we can discuss the
convergence of the EBT method, it is necessary to extend the classical concept of a
weak solution to measures. This extension builds on earlier work by Gwiazda, Lorenz,
and Marciniak-Czochra [18] (see also [4, 19, 27]) and Chapter 8 of the monograph [2].
We will work with the cone of all finite positive Radon measures denoted M+(Ω),
where Ω is a metric space consisting of all admissible individual states. In our pre-
sentation, we assume Ω = [xb,∞) and we think of x ∈ Ω as the size of an individual.
An important reason for working with finite Radon measures is that their behavior at
infinity is tightly controlled: for each ε > 0, there exists a compact set Kε such that
μ(Ω\Kε) < ε.

Since the EBT method approximates the true solution as a measure of point
masses, the natural mode of convergence on M+(Ω) is weak convergence.1

Definition 2.1. A sequence of measures {μk} on Ω converges weakly to a mea-
sure μ if ∫

Ω

φ(x) dμk(x) →
∫
Ω

φ(x) dμ(x),

as k → ∞ for all bounded continuous real functions φ on Ω.
The weak convergence defined above induces a topology associated with the

Kantorovich–Rubinstein metric, also known as the flat metric:

ρ(μ, ν) = sup

{∫
Ω

φ(x) d(μ − ν)
∣∣∣φ ∈ C∞

0 (R), ‖φ‖W 1,∞ ≤ 1

}
,

in which ‖φ‖W 1,∞ = ‖φ‖L∞ + ‖φ′‖L∞and C∞
0 (R) denotes the space of infinitely dif-

ferential real-valued functions on R with compact support. With this metric, M+(Ω)
is a complete metric space (see [18, Def. 2.5]).

Analogously to weak convergence, we define weak continuity as follows.
Definition 2.2. A mapping ζt : R+ → M+(Ω) is weakly continuous in time if,

for all bounded continuous real functions φ on Ω,∫
Ω

φ(x)dζt

is continuous in the classical sense as a function of t.
With these two topological notions in place, we are in position to define measure-

valued solutions to the PSPM (1.1).
Definition 2.3. A mapping ζt : [0, T ] → M+([0,∞)) is a weak solution to (1.1)

up to time T if ζt is weakly continuous in time and∫ ∞

xb

φ(x, T ) dζT (x)−
∫ ∞

xb

φ(x, 0) dν0(x)

=

∫ T

0

∫ ∞

xb

(
∂φ

∂t
(x, t) + g(x, ζt)

∂φ

∂x
(x, t)− μ(x, ζt)φ(x, t)

)
dζt(x)dt

+

∫ T

0

φ(xb, t)

∫ ∞

xb

β(x, ζt) dζt(x) dt(2.3)

1There are two natural notions of convergence on M+(Ω)—strong convergence and weak con-
vergence. Strong convergence is unsuitable for our purposes as, for example, the sequence of Dirac
measures δ1/n does not converge to δ0 as n → ∞ in the strong topology.
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for all infinitely differentiable real-valued test functions φ on R × R with compact
support, henceforth written φ ∈ C∞

0 (R × R). Here, ν0 ∈ M+(Ω) is the initial data at
time t = 0.

Remark 2.4. The definition above was inspired by Gwiazda, Lorenz, andMarciniak-
Czochra [18]. We differ in that we use smooth test functions, but note that these are
dense in the space C1 ∩W 1,∞ used in [18].

Remark 2.5. The dependence on the environmental feedback variable E in (1.1)
is represented here by a direct dependence on the solution measure ζt.

In order to show the convergence of the EBT method, we will recast the definition
of a weak solution. Let 0 ≤ t1 < t2 ≤ T and v ∈ M+(Ω). For a given test function
φ ∈ C∞

0 (R × R) and a family of measures σt, we define the residual

Rφ(σt,ν, t1, t2) =

∫ ∞

xb

φ(x, t2) dσt2(x)−
∫ ∞

xb

φ(x, t1) dν(x)(2.4)

−
∫ t2

t1

∫ ∞

xb

(
∂φ

∂t
(x, t) + g(x, ζt)

∂φ

∂x
(x, t)− μ(x, ζt)φ(x, t)

)
dσt(x)dt

−
∫ t2

t1

φ(xb, t)

(∫ ∞

xb

β(x′, ζt) dσt(x′)
)
dt,

where the measure ν is interpreted as the initial data at time t = t1. Clearly, if
Rφ(σt, ν0, 0, T ) = 0 for all test functions φ and the family of measures σt is weakly
continuous in time, then σt is a weak solution to (1.1). We will sometimes write
Rφ(σt) meaning Rφ(σt, ν0, 0, T ).

3. Convergence of the escalator boxcar train. We establish the convergence
of the EBT method in five steps: (1) At each fixed time t, the sequence of approxi-
mating EBT measures contains a subsequence which converges weakly to a positive
Radon measure ζt. (2) We find a subsequence that for all t converges weakly to a
mapping ζt that is weakly continuous in time. (3) The residuals of the approximating
EBT measures ζNt converges to the residual of ζt for any test function. (4) The resid-
ual of the approximating EBT measures ζNt converges to zero, and hence the measure
ζt is a weak solution. All that remains is then to show that the entire sequence of
approximating EBT measures converges weakly to ζt. We do this by (5) assuming the
existence of a unique weak solution to the structured population model and showing
that a contradiction will otherwise result. The core elements of the proof are the parts
required for the fourth step, i.e., Lemmas 3.5 and 3.7 and the estimates needed in
section 4 to deal with the original nonlinear transformation at each internalization.

Throughout the proof, we assume that the vital rates g, β, and μ are nonnegative,
continuous, and bounded functions of the state variable x. We further assume that
they are Lipschitz continuous with respect to the measure variable (the feedback from
the population-level to the individual vital). Specifically, we assume that

sup
x

|β(x, σ) − β(x, λ)| ≤ Cβ ρ(σ, λ),

sup
x

|g(x, σ)− g(x, λ)| ≤ Cg ρ(σ, λ),

sup
x

|μ(x, σ) − μ(x, λ)| ≤ Cμ ρ(σ, λ).

Here, the Lipschitz continuity in M+(Ω) is asserted with respect to the Kantorovich–
Rubinstein metric, and the constants are assumed independent of x as well as the
measure variables σ and λ.
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Lemma 3.1 (step 1). For each t ∈ [0, T ], the sequence {ζNt } of approximating
EBT measures contains a weakly convergent subsequence. In fact, any subsequence
{ζN ′

t } of {ζNt } contains a weakly convergent subsequence.
Proof. By Prohorov’s theorem [2], it is enough to show that the sequence {ζNt }

is uniformly bounded in the variation norm and is uniformly tight. As the measures
are positive by construction, this amounts to showing that ζNt ([xb,∞)) is uniformly
bounded in N , with limM→∞ supN ζNt ((M,∞)) = 0. A biological interpretation of
these requirements, which we will build on in the proof, is that the abundance and
typical size of individuals in the population are bounded from above. Letting PN (s) =
ζNs ([xb,∞)), it follows that

P ′
N (s) =

N∑
i=B

N ′
i(s) =

N∑
i=B

β(Xi, ζ
N
s )Ni(s)−

N∑
i=B

μ
(
Xi, ζ

N
s

)
Ni(s)

≤
N∑

i=B

β(Xi, ζ
N
s )Ni(s) ≤ βsup

N∑
i=B

Ni(s) = βsupPN (s),

where βsup is the supremum of β, i.e., the maximum individual birth rate. The
above inequality holds for all s ∈ [0, T ] except at the finite number of times, where
boundary cohorts are internalized. At these points, the function PN is continuous.
Thus, 0 ≤ PN (t) ≤ PN (0) exp(βsupT ). Hence PN (t) = ζNt ([xb,∞)) is uniformly
bounded on [0, T ], since PN (0) is independent of N . (Recall that in section 3 we
assumed that the initial mass should be independent of N and equal to that of the
population measure given as initial condition.)

To prove limM→∞ supN ζNt ((M,∞)) = 0, we first show that the statement is true
for t = 0. Let ε > 0 be given. Since the initial data ν0 is a positive Radon measure
and thus tightly controlled at infinity, we may choose M1 large enough such that
ν0((M1,∞)) < ε/2. Pick any continuous function ϕ on [xb,∞) satisfying 0 ≤ ϕ(x) ≤ 1
with ϕ(x) = 1 for x > M1 + 1 and ϕ(x) = 0 for x < M1. Then

ζN0 ([M1 + 1,∞)) ≤
∫ ∞

M1

ϕ dζN0 <

∫ ∞

M1

ϕ dν0 + ε/2 < ε,

if we choose N > N0 for some sufficiently large N0, since ζ
N
0 converges weakly to ν0

as N → ∞. To account for the measures with N ≤ N0, we choose M2 so large that
ζN0 ([M2,∞)) < ε for N = 1, 2, . . . , N0. Finally, we choose M as the largest of the two
numbers M1 + 1 and M2.

To prove the statement for a general time t ∈ [0, T ], we first note that the center
of mass and abundance at time t of any internal cohort i > 0 with Xi(t) large enough
can be estimated with their respective values at time t = 0. Specifically, Xi(t) ≤
Xi(0) + tgsup, where gsup is the supremum of the growth rate g, and Ni(t) ≤ Ni(0).
Combining these two estimates, we have that ζNt (M,∞) ≤ ζN0 (M − tgsup,∞) and the
first assertion of the lemma follows. Finally we note that the above argument holds
for any subsequence of {ζNt }. This concludes the proof.

Lemma 3.2 (step 2). The approximating EBT sequence {ζNt } contains a subse-
quence which, for each t ∈ [0, T ], converges weakly to a positive finite measure ζt. The
mapping ζt : [0, T ] → M+(Ω) is weakly continuous in time.

Proof. Let {qk}∞k=1 be an enumeration of the rational numbers in [0, T ]. Accord-

ing to Lemma 3.1 there exists a convergent subsequence {ζN
1
j

q1 } of {ζNq1}. Repeating

this argument, there exists a convergent subsequence {ζN
2
j

q2 } of {ζN
1
j

q2 }. Proceeding
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by induction, we obtain for each k a sequence {ζN
k
j

qk } which converges weakly to ζqk
and is a subsequence of all preceding sequences. Inspired by Cantor’s diagonalization

argument we define the sequence ζ̂kt := ζ
Nk

k
t . It follows that for each rational t ∈ [0, T ],

this sequence converges weakly to a measure ζt.
We will now show that the subsequence also converges to a positive finite Radon

measure for all real t ∈ [0, T ]. We first show that for each fixed test function φ ∈
C∞(R) and each time t, the sequence of real numbers

(3.1)

∫ ∞

xb

φ dζ̂kt

converges as k → ∞. It then follows from classical results in the theory of distri-
butions, e.g., [22, Theorems 2.1.8 and 2.1.9], that ζ̂kt converges weakly to a positive
measure ζt. This will turn out to be the desired measure.

To prove convergence of the sequence (3.1), we first note that for fixed k, the

measure ζ̂kt is weakly continuous in time since each Ni(.) and Xi(.) are continuous
functions. Let t ∈ [0, T ] and φ be a test function. Given ε > 0 we get

∣∣∣∣
∫ ∞

xb

φ dζ̂jt −
∫ ∞

xb

φ dζ̂kt

∣∣∣∣
≤

∣∣∣∣
∫ ∞

xb

φ dζ̂jt −
∫ ∞

xb

φ dζ̂jq

∣∣∣∣+
∣∣∣∣
∫ ∞

xb

φ dζ̂jq −
∫ ∞

xb

φ dζ̂kq

∣∣∣∣+
∣∣∣∣
∫ ∞

xb

φ dζ̂kq −
∫ ∞

xb

φ dζ̂kt

∣∣∣∣
for any j, k, and q. Noting that the birth rate and mortality rate are bounded, we
can use the same argument as in the proof of Lemma 3.1 to show that the first and
last terms above are bounded by a constant multiple of |t− q|. In particular, this
constant depends on neither j nor k. Choosing q as a rational number sufficiently
close to t these two terms will be smaller than ε/2. Finally, since q is rational, we
may choose j and k large enough to make the middle term less than ε/2. Thus, we
have established the Cauchy property for the sequence (3.1), which hence converges

for all test functions φ. This shows that ζ̂jt converges weakly to a bounded positive

Radon measure ζ̂t for all t ∈ [0, T ].

Using the same idea as above, we see that ζ̂t is weakly continuous in time. Specif-
ically,

∣∣∣∣
∫ ∞

xb

φ dζ̂s −
∫ ∞

xb

φ dζ̂t

∣∣∣∣
≤

∣∣∣∣
∫ ∞

xb

φ dζ̂s −
∫ ∞

xb

φ dζ̂ks

∣∣∣∣+
∣∣∣∣
∫ ∞

xb

φ dζ̂ks −
∫ ∞

xb

φ dζ̂kt

∣∣∣∣+
∣∣∣∣
∫ ∞

xb

φ dζ̂kt −
∫ ∞

xb

φ dζ̂t

∣∣∣∣ ,
where again the middle term is bounded by a constant multiple of |t− s| independent
of k. Finally, the first and last terms can be made arbitrarily small as a consequence
of the weak convergence of ζ̂ks to ζ̂s.

Lemma 3.3. Assume that the sequence ζkt converges weakly to a finite Radon mea-
sure ζt. If ϕ ∈ C∞

0 (R × R), then, for every bounded continuous function f satisfying

sup
x

|f(x, σ)− f(x, λ)| ≤ Cf ρ(σ, λ)
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for all σ, λ ∈ M+(Ω), we get

∫ T

0

∫ ∞

xb

ϕ(x, t)f(x, ζkt ) dζ
k
t (x)dt →

∫ T

0

∫ ∞

xb

ϕ(x, t)f(x, ζt) dζt(x)dt,

as k tends to infinity.
Proof. We have∫ ∞

xb

ϕ(x, t)f(x, ζkt ) dζ
k
t (x) =

∫ ∞

xb

ϕ(x, t)f(x, ζt) dζ
k
t (x)(3.2)

+

∫ ∞

xb

ϕ(x, t)
(
f(x, ζkt )− f(x, ζt)

)
dζkt (x).

By the Portmanteau theorem, the first term on the right-hand side converges to∫ ∞

xb

ϕ(x, t)f(x, ζt) dζt(x).

It remains to show that the second term in (3.2) vanishes as k → ∞,∣∣∣∣
∫ ∞

xb

ϕ(x, t)
(
f(x, ζkt )− f(x, ζt)

)
dζkt (x)

∣∣∣∣
≤ sup

x

∣∣ϕ(x, t) (f(x, ζkt )− f(x, ζt)
) ∣∣ ζkt ([xb,∞))

≤ sup
x

|ϕ(x, t)| sup
x

∣∣f(x, ζkt )− f(x, ζt)
∣∣ ζkt ([xb,∞))

≤ CϕCf ρ(ζ
k
t , ζt) ζ

k
t ([xb,∞)).

Since ζkt converges weakly to ζt, it follows from Gwiazda, Lorenz, and Marciniak-
Czochra [18, Theorem 2.7] that ζkt ([xb,∞)) is uniformly bounded and ρ(ζkt , ζt) tends
to zero as k tends to infinity. Since the above calculation is done pointwise in t, the
lemma follows from Lebesgue’s dominated convergence theorem.

Lemma 3.4 (step 3). Assume that the sequence ζkt converges weakly to the finite
Radon measure ζt. Then the residual Rφ(ζ

k
t ) converges to Rφ(ζt) for all test functions

φ ∈ C∞
0 (R+ × [0, T ]).

Proof. Consider

Rφ(ζ
k
t ) =

∫ ∞

xb

φ(x, T ) dζkt (x) −
∫ ∞

xb

φ(x, 0) dν0(x)

(3.3)

−
∫ T

0

∫ ∞

xb

(
∂φ

∂t
(x, t) + g(x, ζkt )

∂φ

∂x
(x, t)− μ(x, ζkt )φ(t, x)

)
dζkt (x)dt

−
∫ T

0

φ(xb, t)

(∫ ∞

xb

β(x′, ζkt ) dζ
k
t (x

′)
)
dt = I − II − III − IV.

The first term converges by definition of weak convergence and the second term is
unchanged. The third and fourth terms converge by Lemma 3.3.

Lemma 3.5. Let 0 ≤ t1 < t2 ≤ T and v ∈ M+(Ω). Assuming that no internal-
ization is done in the interval (t1, t2), then for any test function φ ∈ C∞

0 (R × R) we
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have that

Rφ(ζ
N
t , ν, t1, t2) =

N∑
i=B

Ni(t1)φ(Xi(t1), t1)−
∫ ∞

xb

φ(x, t1) dν(x)

−
∫ t2

t1

(φ(XB(t), t)− φ(xb, t))

N∑
i=B

β(Xi(t), ζ
N
t ) Ni(t)dt,

where the sum is taken over all cohorts, including the boundary cohort.
Proof. We write the residual (2.4) as

Rφ(ζ
N
t , ν, t1, t2) =

∫ ∞

xb

φ(x, t2) dζ
N
t2 (x)−

∫ ∞

xb

φ(x, t1) dν(x)

−
∫ t2

t1

∫ ∞

xb

(
φ2(x, t) + g(x, ζNt ) φ1(x, t)− μ(x, ζNt )φ(x, t)

)
dζNt (x)dt

−
∫ t2

t1

φ(xb, t)

(∫ ∞

xb

β(x′, ζNt ) dζNt (x′)
)
dt

= I(ζNt2 )− II(ν)− III(ζNt )− IV (ζNt ).

Here we have used the shorthand notation φ1(x, t) = ∂φ(x, t)/∂x and φ2(x, t) =
∂φ(x, t)/∂t.

Recalling that

ζNt =

N∑
i=B

Ni(t)δXi(t),

we get

I(ζNt2 ) =
N∑

i=B

Ni(t2)φ(Xi(t2), t2),

III(ζNt ) =

N∑
i=B

∫ t2

t1

Ni(t)
(
φ2(Xi(t), t) + g(Xi(t), ζ

N
t ) φ1(Xi(t), t)

−μ(xi(t), ζNt )φ(Xi(t), t)
)
dt

= IIIB(ζ
N
t ) +

N∑
i=B+1

IIIi(ζ
N
t ).

Now, by (2.1), we have

IIIi(ζ
N
t ) =

∫ t2

t1

Ni(t) φ2(Xi(t), t) +Ni(t)
dXi(t)

dt
φ1(xi(t), t) +

dNi(t)

dt
φ(Xi(t), t)dt

=

∫ t2

t1

d

dt
(Ni(t)φ(Xi(t), t)) dt = Ni(t2)φ(Xi(t2), t2)−Ni(t1)φ(Xi(t1), t1).

Thus

I(ζNt2 )−
N∑

i=B+1

IIIi(ζ
N
t ) = NB(t2)φ(XB(t2), t2) +

N∑
i=B+1

Ni(t1)φ(Xi(t1), t1).
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In the same way, but now also using (2.2), we get

IIIB(ζ
N
t ) =

∫ t2

t1

d

dt
(NB(t) φ(XB(t), t))− φ(XB(t), t)

N∑
i=B

β(Xi(t), ζ
N
t ) Ni(t)dt

= NB(t2) φ(XB(t2), t2)−NB(t1) φ(XB(t1), t1)

−
∫ t2

t1

φ(XB(t), t)
N∑

i=B

β(Xi(t), ζ
N
t ) Ni(t)dt.

Since

IV (ζNt ) =

∫ t2

t1

φ(xb, t)
N∑

i=B

β(Xi(t), ζ
N
t ) Ni(t)dt,

we have

−IIIB(ζNt )− IV (ζNt ) = −NB(t2) φ(XB(t2), t2) +NB(t1) φ(Xb(t1), t1)

+

∫ t2

t1

(φ(XB(t), t)− φ(xb, t))

N∑
i=B

β(Xi(t), ζ
N
t ) Ni(t)dt.

Summing up the calculations above, we get

I(ζNt2 )−
N∑

i=B+1

IIIi(ζ
N
t )− IIIB(ζ

N
t )− IV (ζNt )

= NB(t2)φ(XB(t2), t2) +

N∑
i=B+1

Ni(t1)φ(Xi(t1), t1)−NB(t2) φ(XB(t2), t2)

+NB(t1) φ(XB(t1), t1) +

∫ t2

t1

(φ(XB(t), t)− φ(xb, t))

N∑
i=B

β(Xi(t), ζ
N
t ) Ni(t)dt

=

N∑
i=B

Ni(t1)φ(Xi(t1), t1) +

∫ t2

t1

(φ(XB(t), t)− φ(xb, t))

N∑
i=B

β(Xi(t), ζ
N
t ) Ni(t)dt.

Finally we get that

Rφ(ζ
N
t , ν, t1, t2) =

N∑
i=B

Ni(t1)φ(Xi(t1), t1)−
∫ ∞

xb

φ(x, t1) dν(x)

+

∫ t2

t1

(φ(XB(t), t)− φ(xb, t))

N∑
i=B

β(Xi(t), ζ
N
t ) Ni(t)dt.

Remark 3.6. The residual can be interpreted as the sum of the error arising from
the discretization of the initial data and the error arising from the boundary cohort.
In the interior of the individual state space, the EBT method gives an exact solution,
i.e., there are no errors arising from the transportation of the interior cohorts.

Lemma 3.7 (step 4). With ζNt defined by the EBT method with internalizations
at times ti = iT/n, we have that

Rφ(ζ
N
t , ν0, 0, T ) → 0,

as N and n tend to infinity. Here ν0 is the initial data at time t = t0 = 0.
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Proof. We first write

Rφ(ζ
N
t , ν0, 0, T ) = Rφ(ζ

N
t , ν0, 0, t1) +

n−1∑
i=1

Rφ(ζ
N
t , ζ

N
ti , ti, ti+1).

By Lemma 3.5 we have

Rφ(ζ
N
t , ν0, 0, t1) =

N∑
i=B

Ni(0)φ(xi(0), 0)−
∫ ∞

xb

φ(x, 0) dν0(x)

+

∫ t1

0

(φ(XB(t), t)− φ(xb, t))
N∑

i=B

β(Xi(t), ζ
N
t ) Ni(t)dt

and

Rφ(ζ
N
t , ζ

N
ti , ti, ti+1) =

∫ ti+1

ti

(φ(XB(t), t)− φ(xb, t))

N∑
j=B

β(xj(t), ζ
N
t ) Nj(t)dt.

A straightforward estimate now gives

∣∣Rφ(ζ
N
t , ν0, 0, T )

∣∣ ≤
∣∣∣∣∣

N∑
i=B

Ni(0)φ(xi(0), 0)−
∫ ∞

xb

φ(x, 0) dν0(ξ)

∣∣∣∣∣
+

n−1∑
i=0

∫ ti+1

ti

|φ(XB(t), t)− φ(xb, t)|
N∑

j=B

β(xj(t), ζ
N
t ) Nj(t)dt.

The first term tends to zero by assumption as the number of initial cohorts, N, tends
to infinity. Noting that xb = XB(ti) and using that the growth rate is bounded,
we get

|φ(XB(t), t)− φ(xb, t)| ≤ Cφ |XB(t)− xb| ≤ Cφg |t− ti| .

Hence,

n−1∑
i=0

∫ ti+1

ti

|φ(XB(t), t)− φ(xb, t)|
N∑

j=B

β(xj(t), ζ
N
t ) Nj(t)dt

≤
n−1∑
i=0

Cφg |ti+1 − ti|2 Cβν0

for the constant Cβν0 = βsupν0([xb,∞)) exp(βsupT ). Thus, the last sum is bounded
by C(T )/n which also tends to zero as the number of internalizations tends to infini-
ty.

Remark 3.8. Examining the proof above, we see that the residual tends to zero
whenever the maximal time between two internalizations of the boundary cohort tends
to zero. Hence, we can relax the assumption that the times at which the boundary
cohort is internalized are evenly distributed.

Recalling that the initial cohorts are chosen to converge weakly to the initial data,
we are now able to prove convergence of the EBT.



CONVERGENCE OF THE ESCALATOR BOXCAR TRAIN 3225

Theorem 3.9. Assume that the assumptions on the birth, growth, and mortality
rates in the beginning of section 3 hold. If the structured population model given
by (1.1a), (1.1b), and (1.1c) has a unique solution ζt, then the solutions ζNt given by
the EBT method converge weakly to ζt as the number of initial cohorts tends to infinity
and the maximal time between two boundary cohort internalizations tends to zero.

Proof (step 5). We assume that the entire sequence ζNt does not converge to ζt.
Then, in the weak topology, there exists an open neighborhood U of ζt, and a subse-
quence ζNk

t of ζNt such that ζNk
t /∈ U for all Nk. From Lemmas 3.1–3.7, we conclude

that {ζNk
t } contains a convergent subsequence with a limit point not equal to ζt,

which is a contradiction since it would imply that the solution to the PSPM is not
unique.

The proof of convergence assumed exact solutions to the ordinary differential
equations (ODEs) underlying the EBT method. In practical implementations, these
need to be solved numerically which introduces small but finite approximation er-
rors. We now extend the convergence proof to account for errors introduced by the
underlying ODE solver.

The following lemma is an immediate consequence of Lemma 3.4.
Lemma 3.10. Assume that ζN,h

t =
∑N

i=B N
h
i (t)δXh

i (t). If for each t we have that

Nh
i (t) → Ni(t) andX

h
i (t) → Xi(t) as h↘ 0, then Rφ(ζ

N,h
t , ν0, 0, T ) → Rφ(ζ

N
t , ν0, 0, T )

as h↘ 0.
Combining the lemma above with Theorem 3.9 we finally have the following

theorem.
Theorem 3.11. Assume that the assumptions on the birth, growth, and mortality

rates in the beginning of section 3 hold. If the structured population model given by
(1.1a), (1.1b), and (1.1c) has a unique solution ζt, then the solutions ζN,h

t , given by
the numerical integration of the EBT method, converge weakly to ζt if the number of
initial cohorts tends to infinity and the maximal time between two boundary cohort
internalizations tends to zero, while h tends to zero sufficiently fast.

4. The original definition of the boundary cohort. Our study of conver-
gence of the EBT in section 3 assumed different dynamics of the boundary cohorts
than was used in the original formulation of the method by de Roos [7]. We based our
work on the assumption that the boundary cohort differed from the interior cohorts
only in the addition of a term for the inflow of newborns. In this section, we consider
the convergence of the EBT method under the original definition of the boundary
cohort dynamics.

While we simply assumed a dynamical system for the boundary cohort, de Roos
formally derived the underlying equations. Consequently, the original dynamics for
the boundary cohort reflect the reduction in center of mass that in reality accompanies
an inflow of newborns. Moreover, as the center of mass is not defined as a physical
quantity for an empty cohort, the equations were derived through series expansion
around the size at birth. Thus, rather than tracking the center of mass XB(t) directly,
de Roos considered a quantity πB which roughly represents the cumulative amount by
which the individuals in the boundary cohort exceed their birth size. This quantity
is mapped onto the center of mass through the nonlinear transformation

(4.1) XB =

{ πB
NB

+ xb if πB > 0,

xb otherwise.
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The specific equations used for defining the boundary cohort were

dNB

dt
= −μ(xb, ζN )NB − ∂μ(xb, ζ

N )

∂x
πB +

N∑
i=B

β(Xi, ζ
N )Ni,(4.2)

dπB
dt

= g(xb, ζ
N )NB +

∂g(xb, ζ
N )

∂x
πB − μ(xb, ζ

N )πB,(4.3)

with initial conditions NB = πB = 0. We will assume that these are nonnegative, as
this is a natural requirement which can easily be enforced by an ODE solver if nec-
essary. The appearance of partial derivatives in the expressions above, arising from
series expansion around the size at birth, in conjunction with the nonlinear transfor-
mation mapping πB and NB onto XB, pose new challenges for proving convergence.
As we will show, however, our proof of convergence can be tailored to accompany also
the original definition of the boundary cohort.

Note first that the only parts in the proof of convergence in which the equations
defining the boundary cohort are used is Lemma 3.5 and implicitly in Theorem 3.11.
It, therefore, suffices to give new proofs of these statements. To this end, we require
an additional lemma concerning the behavior of the quotient πB/NB.

Lemma 4.1. With NB and πB defined by (4.2) and (4.3), we get

0 ≤ XB − xb ≤ Ct

for t ∈ [t0, t0 + h] and some positive constants C and h which only depend on g,
∂g/∂x, and ∂μ/∂x.

Proof. From the definitions of NB and πB we have

d

dt
Xb =

d

dt

πB
NB

=
1

NB

dπB
dt

− πB
N2

B

dNB

dt

= g +
∂g

∂x

πB
NB

− μ
πB
NB

+ μ
πB
NB

+
∂μ

∂x

π2
B

N2
B

− πB
N2

B

N∑
i=B

βiNi

= g +
∂g

∂x

πB
NB

+
∂μ

∂x

π2
B

N2
B

− πB
N2

B

N∑
i=B

βiNi

≤ g +
∂g

∂x

πB
NB

+
∂μ

∂x

(
πB
NB

)2

.

Remembering that XB = πB/NB + xb, we thus have X ′
B ≤ a+ b(XB − xb) + c(XB −

xb)
2 for some positive constants a, b, and c. Hence X ′

B ≤ 2a when XB ≤ X∗
B for

some positive X∗
B. Since XB(0) = xb it follows that XB(t) ≤ xb + 2at for t ∈

[0, X∗
B/2a].
We now use this to show the following lemma.
Lemma 4.2. Assume that a new boundary cohort is created at time t = t1. For

t2 > t1 sufficiently close to t1, we have for all t ∈ [t1, t2] that

(4.4)

∣∣∣∣NB(t)

(
dXB(t)

dt
− g(XB(t), ζ

N
t )

)∣∣∣∣ ≤ C1(t2 − t1)

and

(4.5)

∣∣∣∣πB(t) ∂∂xμ(XB(t), ζ
N
t )

∣∣∣∣ ≤ C2(t2 − t1).
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Proof. Since NB is bounded, πB = NB(XB − xb), it follows from the above proof
that |πB(t)| ≤ C(t2−t1) for some positive constant C. Hence, since ∂μ(XB(t), ζ

N
t )/∂x

is also bounded by the assumptions in [7], the statement (4.5) follows trivially. To
show the first part of the assertion, we note that

NB(t)

(
dXB(t)

dt
− g(XB(t), ζ

N
t )

)
=
∂g

∂x
πB +

∂μ

∂x
πB

πB
NB

− πB
NB

N∑
i=B

βiNi.

Since πB and πB/NB = XB−xb both increase at most linearly from zero, the assertion
(4.4) follows.

The two lemmas above will be used to bound the residual between two internal-
izations.

Lemma 4.3. Let 0 ≤ t1 < t2 ≤ T and v ∈ M+(Ω). For a given test function
φ ∈ C∞

0 (R × R) and a family of measures σt. Assuming that no internalization is
done in the interval (t1, t2), then

Rφ(ζ
N
t , ν, t1, t2) =

N∑
i=B

Ni(t1)φ(Xi(t1), t1)−
∫ ∞

xb

φ(x, t1) dν(x)

+

∫ t2

t1

(φ(XB(t), t)− φ(xb, t))

N∑
i=B

β(Xi(t), ζ
N
t ) Ni(t)dt

+

∫ t2

t1

NB(t)

(
dXB(t)

dt
− g(XB(t), ζ

N
t )

)
φ1(XB(t), t)

+
(
μ1(XB(t), ζ

N
t )πB(t)

)
φ(XB(t), t)dt,

where the sums are taken over all cohorts, including the boundary cohort.
Proof. Examining the proof of Lemma 3.5 we see that the boundary cohort only

appears in the term IIIB,

IIIB(ζ
N
t ) =

∫ t2

t1

NB(t) (φ1(XB(t), t) + g(XB(t), ζ
N
t ) φ1(XB(t), t)

− μ(XB(t), ζ
N
t )φ(XB(t), t))dt.

This term is shown to be equivalent with

∫ t2

t1

d

dt
(NB(t) φ(XB(t), t)) − φ(XB(t), t)

N∑
i=B

β(Xi(t), ζ
N
t ) Ni(t)dt.

Using the original definition for the boundary cohort dynamics, (4.2) and (4.3), we
derive the required correction term

∫ t2

t1

d

dt
(NB(t) φ(xB(t), t))− φ(XB(t), t)

N∑
i=B

β(Xi(t), ζ
N
t ) Ni(t)dt− IIIB(ζ

N
t )

=

∫ t2

t1

NB(t)

(
dXB(t)

dt
− g(xB(t), ζ

N
t )

)
φ1(XB(t), t)

+μ1(XB(t), ζ
N
t )πB(t)φ(XB(t), t)dt.
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By Lemma 4.2, we see that the correction term above is bounded by C(t2 − t1)
2.

Analogous to Lemma 3.7, we then have the following lemma.
Lemma 4.4. With ζNt defined by the EBT method with internalizations at times

ti = iT/n, we have that

Rφ(ζ
N
t , ν0, 0, T ) → 0,

as N and n tend to infinity. Here ν0 is the initial data at time t = t0 = 0.
The original definition of the boundary cohorts might prove more challenging from

a numerical perspective. However, if we can determine numerically solutions ζN,h
t to

the equations of the EBT method such that the center of mass, Xh
B, now determined

by the nonlinear transformation (4.1) converges to its true value, XB, as the step
length h ↘ 0, the residual still tends to zero according to Lemma 3.10. Hence, the
numerical convergence follows as before.

5. Discussion. Enhanced biological realism and predictive ability of theoretical
investigations are gaining importance as anthropogenic impacts are fundamentally
altering the native environment of many organisms. Physiologically structured popu-
lation models (PSPMs) are increasingly used to model and analyze biological systems.
As these models account for the physiological development of individuals, they are
better able to predict system dynamics. In contrast to simple unstructured population
models such as the classical Lotka–Volterra equations, PSPMs often defy analytical
investigations due to the nonlocal dependencies. There is thus a mounting need for nu-
merical methods that can effectively uncover the underlying dynamics. The Escalator
Boxcar Train (EBT) has been specifically designed for PSPMs and has three major
advantages: it prevents numerical diffusion, it is relatively easy to implement, and
the underlying equations allow for a natural biological interpretation. The method
was developed more than two decades ago and has been used to study PSPMs ever
since, but the fact that convergence has never been formally proved might well have
hampered its wider acceptance beyond the domains of theoretical biology.

In this paper we have given the first rigorous proof of convergence for the EBT
method. Our proof is given in a modern setting of measure-valued solutions (see
e.g., [18]). This contrasts with previous efforts by de Roos and Metz [9] that were
carried out in a classical setting and thus required additional smoothness assumptions.
While their efforts fell short of proving the full convergence of the EBT method, the
authors succeeded in showing that the method consistently approximates the true
solution, i.e., that the local approximation error as measured through an arbitrary (but
smooth) functional of the solution is bounded and vanishes in the limit of infinitely fine
discretization of the individual state space. Our study also complements the existing
convergence analyses of particle methods for first-order hyperbolic equations, reviewed
by [6] and thoroughly analyzed in [27], by demonstrating that particle methods can be
brought to bear on equations which renew themselves at the boundary. Having been
placed on a solid theoretical foundation, particle methods with the added ingredient
of frequent internalizations now stand an excellent chance of being adopted as the
method of choice for a rapidly expanding array of exciting biological applications.

There are many possible extensions of the work presented here. A straightfor-
ward extension is to write down the corresponding proof for a higher-dimensional
state space but with a single birth state. We believe that with more tedious calcula-
tions, one could prove the convergence also for the case of stochastic birth state. A
further extension is to consider different versions of the boundary cohort dynamics
and internalization. We initially proved convergence when the boundary cohort dif-



CONVERGENCE OF THE ESCALATOR BOXCAR TRAIN 3229

fers only by the addition of a fecundity term. While this works mathematically, it
is natural to account for the fact that newborn individuals reduce the average size
of individuals in the boundary cohort. The original formulation of the EBT method
does account for this through a different definition of the boundary cohort, and as
a second step we analyzed and proved convergence for that case. We believe that
our proof can be extended to show convergence also for other formulations of the
boundary cohort, as long as the flux of individuals is preserved in the limit of fre-
quent internalizations. A more challenging extension is to consider stochasticity in
individual development which on the population-level roughly amounts to diffusion.
Here, important insights and ideas could be derived from the rich literature on particle
methods, in which many different partial differential equations (PDEs) with specific
nonlocal dependencies have been analyzed (see, e.g., [1, 5, 6, 16, 23, 28]). It would
also be very interesting to consider the problem of multiple birth states, with the
typical example being cell division. A final important extension would be to consider
vital rates that depend on the entire history of the population state up to the current
time, rather than merely the current population state, as this would encompass cases
with dynamic environmental feedback variables.

For practical numerical applications, it would be very useful to have estimates
on the rate of convergence under different smoothness assumptions. Such estimates
might also inform the choice of boundary cohort dynamics. Also here, insights and
ideas could be derived from the rich literature of particle methods, although it is not
obvious how the techniques used there to assess convergence rates should be adapted
and tailored to our methodology of proof. The standard method for deriving estimates
of convergence rates for particle approximations of transport equations considers two
solutions to the transport equation with different initial conditions and follows the
characteristic curves back to the initial data in order to estimate how much they
differ. Choosing one of these two solutions as the particle approximation now yields
an error estimate. This method does not work in our setting, however, as we can
neither follow the characteristic curves back to the initial data, nor substitute the
particle approximation as one of the two solutions. Partial results in this direction
have, however, already been obtained in [4] using an operator-splitting algorithm from
semigroup theory. The authors prove continuous dependence with respect to param-
eters and initial data for a broad range of equations that include our nonconservative
problem (1.1). In the absence of births, i.e., if β ≡ 0, their result yields an estimate
of the error of the approximate solution at a later time. It is quite possible that the
techniques in [4] could be used to establish an independent convergence proof for the
EBT method, but it would require additional machinery such as regular internaliza-
tions to overcome the complications that arise at the boundary as individuals start to
grow into the domain. If this effort could be successfully carried out, it would almost
certainly yield estimates of the convergence rate. Moreover, it would be a major step
forward for the understanding of particle methods in biology and other fields with
nonconservative equations.

Given the long tradition of PDEs in the physical sciences, it is not surprising that
PSPMs were initially studied using this formalism. Efforts in the last few decades
have revealed, however, that the PDE formalism is not always well suited for consid-
ering questions of existence, uniqueness, and stability. For this reason, the cumulative
formulation of structured population models [15, 13] was developed. It had the draw-
back, however, that a principle of linearized stability and the Hopf bifurcation theorem
proved hard to establish [20]. Currently, it appears that renewal equations are well
suited for studying PSPMs [11, 12, 14, 20]. The work presented here has been de-
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veloped from the PDE setting. We believe, however, that renewal equations are a
promising framework for developing and analyzing numerical methods for PSPMs. A
first step would be to recast the EBT method in this setting, after which the extensions
outlined above could be considered. With interest in PSPMs now mounting, a histor-
ical opportunity exists for bridging biological theory and computational mathematics
through the development of modern numerical methods for the 21st century.
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