DEGREE PROJECT, IN DD221X FOR MASTER DEGREE IN TMAIM , SECOND
g Zﬁz 3 LEVEL

BT Wy, STOCKHOLM, SWEDEN 2014

FKTHY

VETENSKAP
39 OCH KONST &%

N

Periodic Motion Extraction Using
Harmonic Regression and Structural
Parameterization

EXTRAKTION AV PERIODISKA RORELSER
GENOM ANVANDNING AV HARMONISK
REGRESSION OCH STRUKTURELL
PARAMETRISERING

MAGNUS RAUNIO

KTH ROYAL INSTITUTE OF TECHNOLOGY

COMPUTER SCIENCE AND COMMUNICATION (CSC)

&

B,
FKTHS

VETENSKAP
39 OCH KONST %

S Se

KTH Computer Science
and Communication

Periodic Motion Extraction Using Harmonic
Regression and Structural Parameterization

Extraktion av periodiska rorelser genom anvandning av harmonisk
regression och strukturell parametrisering

MAGNUS RAUNIO

mraunio@kth.se

Degree Project in Computer Science at CSC
Master's programme in Machine Learning
Supervisor/Employer: Florian T. Pokorny and Mikael Vejdemo-Johansson
Examiner: Danica Kragic

October 9, 2014

mailto:mraunio@kth.se

Periodic Motion Extraction Using Harmonic
Regression and Structural Parameterization

Abstract

The work of this thesis focuses on how to construct a smooth
and periodic motion from motion capture data of a motion
with a periodic structure, such as walk cycles. To identify
periodic structures in the motion capture data we rely on
previously developed methods from algebraic topology to
project each frame of the motion capture data onto a circle.
This gives us a description of how the periodic motion looks
structurally. To construct a typical periodic motion from
this projection we propose a harmonic regression model on
the positional joint rotations. To prevent overfitting of the
regression model we use the joints velocities and accelera-
tions as constraints, which helps in maintaining a natural
flow for the motion. Our method helps in preventing over-
fitting of the regression model, but the extracted motion
can still suffer from temporal artefacts due to difficulties
in performing the inverse mapping from structure to time.
The method described is implemented as part of a plugin
for Blender to provide a tool for performing periodic motion
extraction in a 3D animation tool-kit.

Extraktion av periodiska rorelser genom
anviandning av harmonisk regression och
strukturell parametrisering

Referat

Arbetet i detta examensarbete fokuserar pa hur man kan
konstruera en jidmn och periodisk rorelse fran motion cap-
ture data av en rorelse med periodisk struktur, som till
exempel en gangcykel. For att identifiera periodiska struk-
turer i motion capture data anvinder vi tidigare utveckla-
de tekniker ifran algebraisk topologi for att projicera varje
bildruta av motion capture data pa en cirkel. Detta ger
oss en beskrivning av hur den periodiska rorelsen ser ut
strukturellt. For att konstruera en typisk periodisk rorelse
fran denna projicering foreslar vi en harmonisk regressions
modell pa ledernas rotations positioner. For att forhindra
overfitting av regressions modellen anvénder vi oss av leder-
nas hastigheter och accelerationer som restriktioner for att
bibehalla det naturliga flédet hos rérelsen. Var modell hjal-
per att forhindra overfitting av regressions modellen, men
den extraherade rorelsen kan fortfarande lida av temporala
artefakter pa grund av svarigheter i att gora en inverterad
mappning fran struktur till tid. Metoden som beskrivits ar
implementerade i form av ett plugin till Blender for att ge
tillgang till ett verktyg som kan extrahera periodiska rorel-
ser i ett 3D animations verktyg.

Contents

(1__Introductionl 1
|2 Background| 2
2.1 Algebraic Topology|. 2
2.2 Previous Workl 8
B_Method| 11
3.1 Problem Description|o oL 11
3.2 Harmonic Regression| 11
3.3 Weighted Harmonic Regression| 14
3.4 Weight Estimation| 15
[3.5 Preprocessing| Lo 16
3.6 Motion Reconstructionl 19
[3.7 Derivative Approximation by Finite Difterences| 21
3.8 Delay Embedding|. o o oo 21
3.9 Translation Modell oL 22
4_Result] 24
29
BT _TO0IH. . . o o o 29
5.2 Plugin Design|. o 30
B3 Tnferface 31
6 _Discussionl 34
[7__Conclusions| 36
|Bibliography| 37
|A Template Matching Errors| 39
IB Root Mean Squared Errors| 42

|IC Frame Ranges| 45

46

Introduction

Using motion capture data to create realistic animations has become a standard
technique in games and movies. There are also large motion capture databases
available online for free [I], and even cheap RGBD cameras can be used to generate
motion capture data [16]. It is becoming easier and cheaper to generate, or acquire,
motion capture data that can be used by professionals or hobbyists.

However, when one wish to create periodic motions from motion capture data,
like a walk cycle, the motion capture data stream will have to be aligned so that
the end pose of the walk cycle fluidly transitions into the start pose. This has been
commonly done by either manually segmenting and aligning the motion capture data
[17], or by automatically estimating the phase and offset of the captured motion so
that it can be segmented and aligned [12].

In this paper we instead rely on a method presented in [15] where each pose of
the motion capture data is mapped onto a circle S!, thereby sorting the data so that
similar poses follow each other. Techniques for creating a typical periodic motion
period from this mapping and how to interpolate between different periodic motions
are also presented in [I5]. The method for extracting a typical motion would tend
to yield jittery output motions though. In this thesis we investigate a different
approach for extracting a typical motion from the data once it has been mapped
onto a circle, one which should produce a smoother and more natural motion.

Background

2.1 Algebraic Topology

In this section we introduce some fundamental terms in algebraic topology to allow
us to easier explain the algorithm for extracting periodic motions. It is provided
more as a quick reference to look things up for those of us that are not that famil-
iar with algebraic topology and a complete understanding of these topics are not
essential to understand later parts of the thesis.

The most important concepts to take away from this section is that of homology,
cohomology and cocycles. For a good reference on algebraic topology readers can
reference [4], [7] or [2] which were used as references for the following section.

Simplex. In [4] a k-simplex is defined as “...the con-
vex hull of k + 1 affinely independent points”.

For examples of different k-simplices, see figure c d

A 0O-simplex is a single vertex, a 1-simplex

is a edge between two vertices, a 2-simplex is °

a triangle and so on. a f
Let u; be a point in RY and let ¢ = b e

[ug, ...ug] be a k-simplex. Then a face of the

simplex o is a subset of o [4]. For example, the Figure 2.1: a is a 0-simplex,
(k-1)-faces of the triangle in figure would bcis a 1-simplex and def is
be the edges of the triangle. We notate that a a 2-simplex.

simplex 7 is a face of the simplex ¢ using the

notation 7 < o.

Simplicial complex. From [4] we have a definition of simplicial complexes which
we paraphrase as, “..a finite collection of simplices Y such that ¢ € Y and
7 < o implies 7 € 0, and 0;,0; € X implies 0; N 0; is either empty or a face
of both”.

In figure we show a simplicial complex consisting of 0- , 1- and 2-
simplices. If we removed the simplex bc from the set in figure [2.2] we would
still have a valid simplicial complex, but if we instead removed simplex ¢ we
would no longer have a valid simplicial complex since we no longer would
include all the faces of each simplex in the set

CHAPTER 2. BACKGROUND

In figure we show a set of simplices that are not a valid simplicial
complex in the 2D plane due to the intersection between simplices bd and ce.

o d
L] L]
a f a
b e b e
Figure 2.2: A simplicial Figure 2.3: This is not a
complex consisting of sim- simplicial complex in the 2D
plices {a,b,c,d,e, f,bc,be, plane due to the intersection
bd,de,ef, fd,def}. between bd and ce.
Chains. A k-chain is a linear combination of k- c

simplices, i.e.) ;a;0; where o is a k-simplex
and a; is coefficients [4] selected such that
a; € G where G is some group, ex. Zo. A
k-chain « is notated as o € C(Y; G), where Y
is the simplicial complex that the chain occurs

)) Figure 2.4: An example of a
in. See figure for an example of a 1-chain.

1-chain, o = ab + be.

Boundary operator. The boundary operator O

for a k-simplex o is defined as a linear com- o 8
bination of o:s (k-1)-faces. Let o = [ug, ...ux]
where u; € R%, then the boundary operator f
can be defined [4] as: .
b e
k .
i N
O = % (=1)" [0, -+t -] (2.1) Figure 2.5: The boundaries

b—cand de—ef+ fd of the
simplices in figure 2.1 The
0-simplex a has an empty
boundary.

Where @ means that u is excluded. See
figure for a concrete example on how the
boundary operator works.

The boundary operator can be applied to chains as well as simplices and
the boundary operator J applied on a k-chain « is defined [4] as:

akOé = 8k Zaiai = Zaiak(fi (2.2)

Where a; and o; are as defined in the previous description of chains.

CHAPTER 2. BACKGROUND

Cycles and boundaries. A cycle is a chain where
Oya = 0, i.e. its boundary is empty [4] and
therefore it is a closed loop. See figure b
for an example of a 1-cycle. A k-boundary is
a k-cycle that is obtained from applying the Figure 2.6: An example of
boundary operator on a (k+1)-chain [4]. a l-cycle a = ab + be + ca,

with boundary dra = {a —
b+b—c+c—a=0}.

Homology. Homology is a way of mathematically talking about the structure of a
simplicial complex by capturing holes in it. Each hole will be associated with
a set of cycles that goes around the hole, these sets are known as homology
classes.

The k-th homology classes are specified as the cosets of the quotient group
Zy | By, where Zj indicates all k-cycles and By indicates all k-boundaries for
a topological space [4], such as a simplical complex. This means that the
k-cycles of a k-th homology class will differ only by k-boundaries. Thus by
adding any boundary b € By to a k-cycle a from a homology class we will
obtain another cycle o' which is a member of the same homology class, i.e.
a+b=a where a,a’ € H and H is a homology class.

The k-th homology classes partitions the k-cycles into equivalence classes
which is why we can use a single k-cycle to represent a homology class.

The reason that these cycles will capture holes is that the cycles in a
homology class are not the boundaries of any (k+1)-chain, and if they are
not a boundary, then there must be a hole there instead. We illustrate this
with the following trivial example, the 1-cycle in [2.6] captures a hole, but if
we “filled in” the triangle so that we added the simplex abc to the simplicial
complex, the 1-cycle would no longer capture a hole because it is the boundary
of the 2-chain abc.

Homomorphism. A homomorphism is a structure preserving map, which means
that it is an operation that commutes with respect to the group operation [4].
For example, let U and V be groups with the group operation addition, and
let ¢ : U = V be a homomorphism. For a,b € U we will for ¢ then have:

pla+b) = p(a) + ¢(b) (2.3)

Next we introduce the dual homomorphism. Let U* and V* be the dual
spaces of U and V, then the homomorphism ¢* : V* — U* is the dual of the
homomorphism . As per the definition of a dual homomorphism we therefore
have the following relation [4] between ¢* and ¢:

(¢"a*)b = a"(pb) (2.4)
Where ¢* € V* and b € U.

CHAPTER 2. BACKGROUND

C
a
Cochains. A k-cochain is a homomorphism ¢ that \/

takes a k-chain to a coefficient in a group, i.e. b
@ : Cy — G where C} is a group of k-chains
[4] and G is ex. Zz. We notate a k-cochain ¢
as ¢ € C*(Y;G) where Y is the a simplicial
complex in which it occurs.

Figure 2.7: An example of
a l-cochain where the 1-
chains ab and bc is mapped
to 1 while ab+ bc is mapped
to 0 when working in Zs.

Coboundary operator. The definition of the coboundary operator is as the dual
homomorphism of the boundary operator 0 [4]. For a more intuitive under-
standing of what the coboundary is, consider the simplex de in figure Its
coboundary will be a homomorphism of the simplex def in the same figure
and if we had more 2-simplices sharing the face de they would also be part
of the coboundary. The coboundary therefore operates in the opposite direc-
tion of the boundary operator and we notate the coboundary operator as §*
where k is the dimension of the simplex we are working with. The coboundary
operator 6*~1 is the dual homomorphism for 9.

Cocycles and coboundaries. Like for chains and cycles, a k-cocycle is a k-cochain
and a k-cocycle is defined as the kernel of the coboundary operator ker(d%)
[4]. That is, for ¢ to be a k-cocycle then for each cycle ¢ € Cy4q the following
expression must be true §f¢(c) = 0. In figure we give an example of how
to verify that a cochain is a cocycle.

Next, k-coboundaries are defined as the image of the coboundary operator
im(6¥~1) [], which means that k-coboundaries are those k-cochains we get
when we apply the coboundary operator to a (k — 1)-cochain.

Since the coboundary operator 6* ! is defined as the dual homomorphism
of 9}, we will by definition of the dual homomorphism have (6*~!¢)a = ¢ ()
where o € Cj, and ¢ € CF 1,

[13

Cohomology. In [7] cohomology is referred to as “..an algebraic variant of ho-
mology, the result of a simple dualization in the definition”. The dualization
here refers to the dual space of chains, cochains, and the dualization of the
boundary operator, the coboundary operator. Due to the relation between
homology and cohomology, cohomology captures holes in much the same way
as homology. In fact, when the cochains are chosen with field coefficients it is
stated in [7] that “..cohomology is the exact dual of homology”.

The cohomology classes are computed as elements in the quotient group
Z%/B* where Z* are all k-cocycles, and B* are all k-coboundaries. Coho-
mology is not as easy to intuitively understand as homology, but it is more
expressive by allowing us to assign values to simplices using cochains.

CHAPTER 2. BACKGROUND

7

AN

N

9 9

a

Figure 2.8: In the left figure we have a 1-cochain ¢ where all 1-simplices mapped to
1 are marked in red/underlined, the unmarked ones are mapped to 0. To the right is
coboundary of this cocycle, where each 2-simplex is evaluated to 0 since by definition
Slp(abi) = pdi(abi) = p(ab) — p(bi) + p(ia) = 0 — 1+ 1 = 0 (try evaluating a
different 2-chain, they all result in 0). Thus we have shown that ¢ is a cocycle since
each 2-chain mapped by 6%y is 0.

Simplex generators. When computing the homology, or cohomology, classes for
some set of points Y C R?, a simplicial complex will have to be constructed
which describes Y. There exists a number of techniques for generating a
simplicial complex from unordered point data, among them are, for example
the Vietoris-Rips complex and the Witness complex [2]. A shared feature
between these two complex generators is that they grow the simplicial complex
by starting out with the point cloud Y as a set of 0-simplices and then grow
the radius around the 0-simplices. Once the 0-simplices are within each others
radial distance they are connected to create higher dimensional simplices, as

shown in figure The radius parameter is usually referred to as e.

Figure 2.9: An example of the construction of a simplicial complex using Vietoris-Rips
filtration. The leftmost image shows the point cloud for which we are constructing the
complex. The middle image shows how the simplicial complex {a,b, ¢, ab,ac} is con-
structed. The right most image shows how the simplicial complex {a, b, ¢, ab, ac, be, abc}
is constructed.

CHAPTER 2. BACKGROUND

Persistence. In [4] persistent homology is defined as a way of measuring the scale
of topological features in a point cloud, where topological features refers to
homology classes. The need to measure the scale of topological features comes
from that several simplicial complexes can be constructed from a single point
cloud, e.g. when we are using the Vietoris-Rips filtration, the simplical com-
plex we constructs depends upon our choice of e.

Persistence deals with this by tracking the births and deaths of homology
classes as the simplicial complex is being constructed. This gives for each
homology class a €; at which the class is born and a €; at which it dies.

Each class will be associated with a interval [e;, €;) where ¢; < €;. This
can be visualized using a barcode, where the x-axis corresponds to intervals
of [e;,€5), and the y axis corresponds to different classes as seen to the left
in figure An alternative representation is the one shown to the right
in figure 2.10] where we represent each class with a point, and let the x-axis
represent the birth €;, and the y-axis represents the death €;. The length of the
interval [€;, €;) can then be used to find which classes are the most persistent
by selecting the classes with the greatest interval length.

Persistent cohomology can be used to measure the births and deaths of
cohomology classes as well, as long as the cohomology is the exact dual of the
homology [14].

Cocycles
Death €

€ Birth &

Figure 2.10: The figure shows two different ways to visualising persistence of
cocycles. To the left a persistence barcode showing the life length of individual
cohomology classes. To the right a persistence diagram shows the same informa-
tion as in the left image, where each cocycle is represented by a point.

CHAPTER 2. BACKGROUND

2.2 Previous Work

The work of this thesis is based on the work in [I4] and [I5]. The work in [I4]
presents an algorithm for how to produce a circular parameterization of the points
in a point cloud. This circular parameterization technique relies on persistent co-
homology, and it works by finding persistent cohomology classes which can be used
to measure the distance around the hole which the class captures.

In [I5] it is demonstrated how this can be applied for extracting periodic
motions from motion capture data, and several issues are reported on difficulties
with dealing with motion capture data this way. Among them how to reconstruct
the periodic motion so that it still appears natural.

(a) A point cloud called Y... (b) ...that we construct a (c¢) ...for which a l-cocycle in

simplicial complex for... C'(Y;Z,) is found. This co-
cycle is used to construct a 1-
cocycle a € CH(Y;Z)...

0.0

(d) ..from which we construct a (e) ...that gives us a circular parameteri-
smooth?1-cocycle & € C*(Y;R)... zation of the vertices on the interval [0, 1).

Figure 2.11: The figure describes the major steps of the pipeline for the circular pa-
rameterization method discussed in [14].

ZNote: The values in this figure are truncated, 0.12 is actually 0.125, and 0.06 is 0.0625.

CHAPTER 2. BACKGROUND

We will now give a basic explanation of the method used in [I4] to perform the
circular parameterization, and in figure 2.11] we have outlined the important steps
of the algorithm.

First off, for a point cloud Y a simplicial complex is generated, using e.g. the
Vitoris-Rips complex, up to some maximum € value. See figure and figure
for an example of this process.

The next step consists of finding the most persistent cohomology class that
occurs as the simplicial complex is generated and selecting a single 1-cocycle to
represent this cohomology class. By finding the most persistent class we ensure
that we find a significant hole structure in the simplicial complex. In figure
we show such a 1-cocycle which captures the hole in our simplicial complex.

When finding the 1-cocycle we use a cocycle with coefficients in Z, where p is
a prime number. This 1-cocycle can then be used to construct a 1-cocycle o with
coefficients in Z (For details on this see section 2.4 in [14]).

The reason we construct a 1-cocyle a € C*(Y';Z) is that such a 1-cocycle can be
used to construct a function that counts each time a lap is completed around the
hole captured by the 1-cocyle [14]. A 1-cocycle with coefficients in Z;, does however
not share this property which is why we try to switch from the coefficient group Z,
to Z.

The algorithm for finding persistent 1-cocycles does however rely on that the
cohomology is the exact dual to the homology which means that the algorithm will
not work for cocycles with coefficients in Z. Therefore Z, coefficients are used to
compute the cocycles, and we then try to convert the cocycles from C1(Y;Z,) to
CY(Y';Z). The conversion may fail however, but it is uncommon, and switching the
prime number p to a different one, and recomputing the cohomology classes, will
generally resolve this.

To just use the 1-cocycle to count each time a lap is completed around the hole is
not very useful though. By constructing an additional 1-cocycle & with coefficients
in R, that lies in the same cohomology class as a, we get a cocycle that instead
of counting laps count fractions of a lap, and since both cocycles are in the same
cohomology class they capture the same hole.

The 1-cocycle & will however need to be smooth in order to get a good param-
eterization, where the measurement of smoothness for a 1-cocycle a is 3, |a(o;)|?
where o; is a 1-simplex in the simplicial complex. By minimizing this term when
constructing & we obtain a smooth cocycle, and for our example simplicial complex
the smooth 1-cocycle appears as in figure The reason that minimizing
S la(o;)? will yield us a good parameterization is that it is shown in [14] that
this will also minimize the parameterization distance between the faces of o;. Since
we are dealing with 1-cocycles it means that the faces of o; are O-simplices and
the distances, along the circular parameterization, between connected O-simplices is
minimized.

So far we have left out some details on the restrictions for @ and a, among
them that & = a + 6°f where f is a 0-cochain with coefficients in R. Because of
this relation 6°f actually captures the fractional part of &, which means that f

CHAPTER 2. BACKGROUND

can be used to construct our circular function since the fractional part tells us how
far around the hole we are (in [I4] it is described how to quickly compute f when
finding @&). Then the circular function # can be specified as § = f mod Z. In figure
2.11(e)| we show how 6 evaluates each 0-simplex to a value in [0,1), and it gives us
a circular function, where we loop around from 1 to 0 once we complete a lap.

In [15] it is demonstrated how this can be used for ex-
tracting periodic motions from motion capture data. The
motion capture data is represented by a skeleton, like the
one in figure as well as a time sequence that specifies
the rotation of each joint for this skeleton. In order to con-
vert this to a point cloud like in figure each frame in
the time sequence is mapped as a point into R% where d is
the number of degrees of freedom for the skeleton.

To then extract a periodic motion from this point cloud
the circular parameterization approach described earlier is
first executed. This gives a parameterization where similar
skeleton poses are close to each other according to the pa-
rameterization. To this circular parameterization a Gaussian
mixture model is fitted, yielding a probability distribution for
the structural distribution of poses.

By then sampling a number of circular coordinates from
this distribution a new pose is created for each of these sam-
pled values. This is accomplished by performing a k-nearest
neighbour lookup for the sampled values. Next, the k-nearest
pose neighbours are used to calculate a centroid pose, and the
centroid is used as a pose in the output motion. An output
motion is then created by ordering the centroids according
to their sampled circular coordinate.

While this gave a motion that was structurally similar to
the input motion, the reconstructed motion would be quite
noisy [15] due to creating the output poses from averaging
structurally similar poses. This is what we wish to improve
upon in this report, so that we can obtain smoother and
more natural looking motions.

10

i

Figure 2.12: The
skeleton associated
with the motion

capture data used in
this thesis. The joints
have been marked
with circles, each
with one to three
degrees of freedom.

Method

3.1 Problem Description

Following the approach in [I5] we construct a function 6 : Y — S, where Y € R¢,
and d denotes the number of degrees of freedom for the skeleton that our motion
capture data is associated with. The problem we wish to solve is to construct a
function h : S! — R? so that we can map a circular coordinate back onto R? so that
in R? we get a smooth closed curve representing the periodic motion.

The first thing to do is transform the motion capture data into a point cloud
Y so that we can find a mapping 6 : Y — S!. We do this by constructing each
point y € Y from a frame in the motion capture data where the values along the
dimensions of y is the rotational positions of the joints for that frame.

Ideally, this would give us a point cloud Y where the 1-cocycles will represent
a complete period of our periodic motion. The problem with this representation
though is that if a periodic motion arrives back at the same, or a similar, positional
joint configuration before it has actually completed its period we will not find the
“correct” 1-cocycle. This could for example occur in a walk cycle where we will
pass through the same positional state space twice when the left leg moves before
the right leg or vice versa. To deal with this delay embedding can be used, which
we describe further in section [3.8

The rest of this section deals with how we construct the function h : S* — R?
to reconstruct our motion from the circular parameterization.

3.2 Harmonic Regression

In order to construct a function h : S! — R¢ that gives a closed curve in R% we use
linear regression with a basis of sin and cos functions, known as harmonic regression.
In figure we show some examples where we have a function h : St — R? for a
point cloud Y C R? that we have found a circular parameterization 6 : Y — S! for.

First, we will however discuss what assumptions our linear regression model
makes. A linear regression system is typically specified as:

y=Xp+e (3.1)
Where 3y is a observation vector whose values are assumed to depend on the

observed values in the matrix X, and the dependencies are specified by the coef-

11

CHAPTER 3. METHOD

0@ %0 o 0.8 0.8
° . 07 07
06 06
05 05
04 04
o ° 03 03

° ° 02 02

0.0 0.0

(a) A circular point cloud Y for which we (b) The found function h for K =1
have found a function 6 : Y — S.

SR [N
. ¥ ;
IR | R

(c) A circular point cloud with (d) The found function h for (e) The found function h for
an added sin curve Y for which K =1 K =10

we have found a function 6 :

Y — S

Figure 3.1: The left hand side figures shows a point cloud Y, color coded according
to the circular mapping found for Y. The mapping spans the interval [0, 1), and it is
colour coded according to this mapping. The right hand side figures shows a function h
that we can construct for Y and its circular parameterization using different harmonic
regression models.

ficient vector 8. What is important here is that the error term e is assumed to
be distributed as A(0,0?) when using ordinary least squares (OLS) to solve the
system. The Gaussian assumption means that we assume the following properties
for our error term e:

Ele|X]=0 (3.2)
Var[eTe|X] = o1 (3.3)
To estimate [in equation (3.1)), using OLS [9], one estimates (3 as:

B=(XTx)"1xTy (3.4)

We will now introduce the notation we use for our harmonic regression model
when we model a periodic motion. We let 2; € S! denote the value onto which y; is

12

CHAPTER 3. METHOD

mapped, where y; € Y, and |Y| = M. Next we will construct a system of regression
equations like in equation (3.1) where we for each dimension j of Y formulate the
regression equations as:

yi; = cj+ SN ajisin(2rkay) + bjy, cos(2mky)
Yoj =c¢j+ Zle ajk sin(2mkxg) + bk cos(2mkxa)

35
Yij =¢j+ ZkK:1 ajk sin(2wkx;) + by, cos(2mkx;) (3.5)

ymj =cj+ Zi{:l aj sin(2wkx) + by cos(2mkx)

By solving this system using the OLS method we can find the coeflicients
@jx, bjx, ¢j and construct a function h;(z):

K
hj(xz) =c; + Z aji sin(2wkx) + bjj, cos(2mkx) (3.6)
k=1
Which gives us a periodic model for each degree of freedom of the skeleton, and
we use these to construct a model h for the periodic motion as:

h(z) = (hi(z),...hq(z)) (3.7)

The motivation for this model is that any linear combination of sin and cos
functions will result in a periodic function, and by adding a bias term ¢; we can
have a periodic motion around a certain position. The larger we select K, the more
accurately we can model the periodic motion, and when selecting K as infinite any
periodic function can be reconstructed. Thus a large K is ideal for allowing us to
recreate complex periodic motions, but as can be seen in figure [3.1(d)| and [3.1(e)|
our choice of K can yield quite different functions, and a large K will make the
model prone to overfitting.

We do however need a large K value for our model to be able to model complex
joint movements. To prevent us from overfitting the model we therefore add addi-
tional constraints in the form of the velocity and acceleration of the motion. When
the model only depended on the positions of the joints we would solve the following
minimization problem using OLS:

M
arghmin Z |hj(zi) — yi;]? (3.8)
ii=1

By including the velocities and accelerations we will instead solve the following
minimization problem:

M
argmin » _ |hy(;) — yi| + [hy(xi) — yig|* + |hy (20) — ;5] (3.9)
=

13

CHAPTER 3. METHOD

Where the velocity for point y;; is notated as y;j and the acceleration is notated

as y;; The values of y;j and y;; are approximated by central finite differences, as

described in section

3.3 Weighted Harmonic Regression

In section we proposed a regression model for reconstructing a periodic motion,
but we do have a quite serious problem with this model. We mentioned in the same
section that if we solve this system by OLS we assume that all the error terms are
N (0, 0?) distributed, but when we add the velocities and accelerations to this model
this assumption is really poor.

A better assumption is that we have three different kind of error term dis-
tributions with different variances, one for position, one for velocity and one for
acceleration. This kind of problem where the error terms have different variances
is known as heteroskedasticity.

When using OLS regression the unbiased estimate of the error terms variance,
02, can be estimated [9] as in equation where we use the notation from
equation (3.1)).

0? = 1 ||Xp g (3.10)
n—k—1

Where n is the length of y and k + 1 is the width of X. We then model the
positional error as NV (0, 07), the velocity error as N'(0, 07) and the acceleration error
as N(0,02), and estimate the error term variances o, o, and o, as:

M

57 = m XZ: | (i) = wig | (3.11)
1 X, :

612) = M—9oK Zl: ‘hj(xi) - yij’2 (3.12)
1 X, "

&2 = M—9K z@: |hj (m3) — yij’2 (3.13)

The models for the velocity and acceleration do not have a bias term like the
positional model since it is removed when we derivate h which is why we divide by
M — 2K instead of M — 2K — 1. We will now modify our minimization problem
and model it as:

M
argmin Y |hj(x;) — yi|* + alhy () — yi1* + i1k () — vy (3.14)

hj =1

14

CHAPTER 3. METHOD

To remedy our heteroskedasticity problem we will then have to find weights o
and ~; for each degree of freedom j so that:

aﬁ = qjol = o2 (3.15)

3.4 Weight Estimation

In order to estimate our weights o; and 7; we use feasible general least squares
regression (FGLS) [§] instead of OLS. For OLS it is assumed the error e has the

properties in equation (3.2) and (3.3). For GLS we do not have to assume (3.3

though, instead the error term variance may be a full covariance matrix as in equa-

tion (3.16)).

Var[eTe|X] = X (3.16)
Where ¥ is a positive definite matrix. The solution for 5 when using GLS [§] is:

B= X' tx) txTs 1y (3.17)

Of course, the covariance matrix 3 is not known which makes GLS tricky to

use, and that is the difference between FGLS and GLS. For FGLS the covariance

matrix ¥ will first have to be estimated. In section [3.3| we suggested that we would

have three types of error variances, something known as group heteroskedasticity
[8]. This means that we assume ¥ has the form:

o2l 0 0
Y = 0 o2 O (3.18)
0 0 o3I

Now we just have to estimate ag, 02 and o2 which will allow us to perform a
GLS regression. Since our assumption is that we have group heteroskedasticity this
can be done by performing separate OLS regressions [§] for the position, velocity
and acceleration. These separate regressions models are then used to estimate our
three variances as 63, 62,62 by using equations through .

This gives us an estimate of our diagonal covariance matrix . We could now
solve our regression problem using equation , but we will instead reformulate it
as a weighted least squares (WLS) regression, like we have in equation . This
is possible since ¥ is a diagonal matrix [§]. Our GLS regression with a diagonal
covariance matrix will therefore yield the following minimization problem:

M 2 / . / 2 ") " 2
argminz | J("Elzz ylj‘ + |](122 yz]| + |](122 yzg‘
hi =1 p % T4
M ~2 ~2
— ; hi(x:) —]2 &h/ N a2 &h” N a2 3.19
—arghm1n2| (i) — yis +62’ i(@i) — vyl +5_2‘ i (@i) — Yyl (3.19)
J =1 v a

15

CHAPTER 3. METHOD

~2 ~2

. . ag. . g,
Which means that our «; and ~y; are estimated as =5 respectively =5.
J J 62 52

The validity of this model depends on that our assumﬁtion of group heteroskedas-
ticity is sound though. A much more complicated covariance matrix could be used
instead, where the errors of velocities and accelerations are correlated with the po-
sitional errors, which seems like a sound assumption since we will approximate the
velocities/accelerations with finite differences. We would however need to estimate
the correlations well, and if we do this we would no longer be able to reformulate
the problem as a weighted least squares problem. This in turn means that we must
assure that 3 is positive definite, and use the full GLS regression model instead of
the simpler WLS regression model (which we can solve using OLS if we factor in
the weights into the absolute values). We would neither be able to estimate the
variances/covariances by simply performing our three separate OLS regressions due
to the assumption of covariances between the errors. This is why we opt for the
model relying on the assumption of group heteroskedasticity.

3.5 Preprocessing

In section we said that we could find a smooth circular parameterization 6 :
Y — S', which meant that the distance between two O-simplices in Y, along con-
necting 1-simplices, is proportional to the distance between the 0O-simplices along
the parameterization. That we have a “smooth” parameterization is not something
we can use optimally though since it is smooth with respect to the distance be-
tween the point positions, i.e. skeleton poses that are similar will have a similar
parameterization.

This means that our parameterization X will have a distribution over [0, 1)
which depends on the structure of Y. For example, a motion which moves at
different speeds through different poses will have a distribution with peaks at where
motion moves slowly. The structural parameterization therefore only tells us how
the poses follow each other, but not at which speed they follow each other. We
would like the distribution of X over [0,1) to not just correspond to structure, but
time as well, and if this is not the case the velocities and accelerations can not be
used as additional constraints since they are time dependent. This is one of the
more serious weaknesses of using structural parameterization for periodic motion
extraction since we can obtain a mapping that captures structural periods, but not
exactly how these periods are related to time.

We attempt to construct a time dependency for X by relying on the fact that the
input motion is uniformly distributed over time, where frames have been captured
at a specific frame rate. Therefore each complete period of X should be uniformly
distributed over the time interval [0,1). It is however not always clear where a
period begins, and ends, and we may also have incomplete periods which makes it
tricky to distribute each period uniformly. Doing so could also ruin the structural
mapping we have obtained.

16

CHAPTER 3. METHOD

We therefore do not attempt to gain a time dependency by uniformly distributing
each period, but instead by uniformly distributing X over the interval [0, 1). In order
to obtain a uniform distribution over [0,1) we sort the z; values from smallest to
largest, and for x; at the j:th position in this ordering we assign the value:

—1
2l =]—M (3.20)
This remaps the z values like in figure [3.2] to figure 3.3

S1.0
2 / /s
208 ¢
% 0.6
% .
504 / 7
. s s
502 4/1 /!
3
|9
5 0.0 — —
0 50 100 150 200 250 300
Frame index

Figure 3.2: The figure shows how the circular parameterization in [0, 1) relates to the
frame indices of a single periodic motion with approximately two periods. The motion
capture data is motion 08:07.

=
o

c
o
g 7
208
% 0.6
go.
©
§0.4
502
>
o
5 0.0
0 50 100 150 200 250 300
Frame index

Figure 3.3: The same data as in figure , but where the points are uniformly dis-
tributed over [0,1).

There are some problems with this approach though which may lead to the
following types of errors:

e We may end up pushing points with structural and temporal similarities away
from each other, ex. if the input motion consists of the exact same period
repeated a number of times after each other we will end up with a zig-zag
motion like in figure [3:4) where we have what looks like saddle points where
there should be none.

« If we have an overrepresentation of a certain pose it will occupy more time, ex.
if have a point cloud consisting of one and a half motion, then the extracted
motion will flow through one half of the motion faster than the other half
creating a temporal artefact.

17

CHAPTER 3. METHOD

Input motion Uniformfly distributed parameterisation |deal parameterisation
4 N - .] oY 1 .
08 08 08
L .. LR - eee e L] -

0B 06 05
s 04 5 04 5 04
= 02 = 02 = 02
[i]] [o]
E £ £
O s s s & = s s = O eees L) o .
= = =
[S £ a2
5] =] o
04 T s s

0B 06 0B

. e L g *80 L3 L d
08 08 03
- - - - - B sesn B -
i 1 2 3 4 i 0.z 04 06 0.8 1 i 0.z 0.4 06 0.a 1
Period Circular parameterisation Circular parameterisation

Figure 3.4: To the left we show an example motion for which we find a circular param-
eterization X. In the middle image we see that we end up find a zig-zag pattern for this
motion after having uniformly distributed X. To the right we see the ideal distribution
where the X values are overlapping where we have a temporal overlap.

In [I5] a Gaussian mixture model approach, described in section was used
instead. The mixture model was used to sample circular coordinates and construct
new poses, but we would like to remap our X values so that they correspond to
time better. We could do something similar to this, by fitting a Gaussian mixture
model g(z) to X, and remapping each z; as:

apew = Jo 9@ (3.21)

o 9(x)dz
By doing this we would obtain an inverse function from structure to time. The
problem with this approach though is that we would not necessarily obtain a close
to uniform distribution over [0, 1) for our remapped X values, which we assumed to
be the ground truth in the previously described approach. In figure we show an
example of how this remapping would look for figure [3.2] using the mixture model

in figure
51.0 :
N
208
g /
0 0.6
S & g
o J &
g 04 rJ __’-‘
o
202 - /
] s
= - <
O O'00 50 100 150 200 250 300
Frame index

Figure 3.5: The figure shows the same data as in figure [3.2) but where the points are
redistributed using the Gaussian mixture model approach.

The Gaussian mixture model may not always spread out the points well because
the fitted model does not actually fit the data well. We may end up mapping points

that are structurally similar, but not temporally similar to approximately the same

18

CHAPTER 3. METHOD

[*)]
o

(S
o

IS
o

Point density
S 8

[
o

L | L
|
8.0 0.2 0.4 0.6 0.8 1.0

Circular Parameterization

Figure 3.6: The figure shows the Gaussian mixture model for fitting the parameteriza-
tion values from figure together with a histogram for those values.

value. One could argue that this is simply caused by the wrong choice for the
number of components for the mixture model or other parameters chosen incorrect
when constructing our mixture model, but we have no way of knowing the “correct”
parameter choice. The Gaussian mixture model also suffer from the second type
of error we have mentioned, where we have an overrepresentation of certain poses
making those poses occupy more time.

We choose the first approach discussed over the mixture model approach because
our belief is that the errors introduced by uniformly distributing the samples can
be better modelled as Gaussian noise than the errors we may get from using the
mixture model and therefore be better suited for our regression model. The two
approaches both have their weaknesses though, the Gaussian mixture model relies
too much on the circular parameterization, and when uniformly distributing the x
values we do not rely enough on the parameterization.

3.6 Motion Reconstruction

In order to reconstruct the input motion with the same frame rate as the input
motion had we have to estimate the average number of frames for a periodic motion.
In figure we show the circular parameterization X of each frame for a motion.
We wish to estimate the period length N, in frames, for this motion. To do this we
use the same method as in [15], which remaps X to X with an added offset, like in
figure By then fitting a line to the points using OLS, like in figure the line
will have an incline that is the inverse of the frame length N.

The algorithm for performing the remapping from figure to figure is
described in figure It works by calculating an offset which tells us how many
times, and in which direction, we crossed over the “edge” 0 to 1, i.e. it tracks which
period we are currently in.

19

CHAPTER 3. METHOD

3.0

« Circular parameterisation
— 0.01x + 0.89
2.5t — period length: 156

2.0

1.5

1.0

Circular Parameterization with offset

5|
0. 0 50 100 150 200 250 300

Frame Index

Figure 3.7: In this figure we see the remapped points from figure as well as the
fitted line and the estimated period length.

remap (x)

1 =2
for i € {2,..,length(x)}
offset = |&_1 —x;+0.5]

Z; =x; + offset

return 2

Figure 3.8: Pseudocode for performing the transformation from figureto figure .

Now that we have an estimation of the frame length N, let Z be the recon-
structed motion sequence and define z; as:

l Nl)

To then create one period of periodic motion we calculate all z; for 1 < i <
N where 7 is an integer. This assumes that we have unwarped the time axis,
as described in section so that the distribution of X on the interval [0,1)
corresponds to time.

2 = h((3.22)

20

CHAPTER 3. METHOD

3.7 Derivative Approximation by Finite Differences

In this section we describe briefly how we approximate our velocities y and accel-
erations y// by central finite differences [5]. For y; we calculate y; and y;/ as:

Yi-4 Wiz vi2 Wi | Win Yire | Wirs | Yita

+
Yy = 280 105) 5 .) 5 105 280 (3.23)
_Yima 8Yis Yoo 8Yio1 2054 Byirn Yite | 8Yits Yita
y/»/ _ _ 560 315 b} b} 72 9) 315 560

$2
(3.24)

Where ¢ is the time step between the frames. This means that we require that
we have an equidistantly spaced time grid for our y values, which we have since the
motion we are attempting to model has been captured at a specific frame rate.

The problem is to select the correct value for ¢t so that the magnitudes and
velocities are scaled correctly when used over the interval [0,1). In section we
estimated the period length NV of the input motion, and our time step ¢ is in units
of periods, which is why we select t as:

t= (3.25)

By approximating the derivatives this way we assume that IV is a good estimate
of the period length and also that the input motion has a consistent period length
for each motion, ex. if the input motion consists of two periods we assume that the
first period moves at the same speed as the second period. If this is not the case the
derivatives are not estimated accurately since we would need different time steps
for the two periods due to that we measure our time steps in units of completed
periods. For example, the second period should have larger time steps than the first
period if the second period is moving faster.

Assuming that the motions have approximately the same speed seems like a rea-
sonable assumption though. Two motions that are structurally the same, but with
different speeds may not be perceived as the same motion to a human after all. For
motions with only slight differences in speed we will consider the additional errors
in the velocities/accelerations as additional noise when performing our regression.

3.8 Delay Embedding

When creating our point cloud Y we may end up with self intersections in Y that
occurs before we actually have completed the periodic motion due to pose symme-
tries, as described in section Delay embedding [3] can be used to resolve this
by encoding the trajectory of the motion, and not just the position. It does this

21

CHAPTER 3. METHOD

by constructing a point cloud Y from our position data Y, as in equation We
then use Y for constructing the circular parameterization X. Then we use X1.p7—m
as the circular parameterization of Y7.5;_,,, and use this subset of Y to perform the
harmonic regression.

9i =(Yi1, Yi2, - YiD, (3.26)
Yi+1,1, Yi+1,25 -+, Yi+1,D;

Yi+m, 1, Yi+m,2, -5 yi+m,D)

In equation [3:26] the variable m is the embedding factor, which can be increased
to encode further trajectory data into our point cloud. This helps us distinguish
between when ex. a leg is moving forward or backward. How to choose the delay
embedding factor we do not have an answer too, other than trial and error.

3.9 Translation Model

So far we have described how we deal with constructing a periodic motion based
upon the joint rotations of the skeleton. However, for a periodic motion it could
also be of interest to extract a translation component for the motion so that we have
a motion where not just the skeletons joints move correctly, but also so that the
skeletons translation speed is correct. For example, the skeleton should translate
forward when the leg pushes the skeleton forward.

In order to accomplish this we construct a separate regression model for the
translation component, which we call hY. We construct h” similar to how we
constructed the joint model h, but with an added linear component as in equation

(3.27)) and equation (3.28)).

K

th(x) =c;+ Z laji sin(2mkx) + by, cos(2mkx)] + Lz (3.27)
k=1
Wl (z) = (h] (z),..hr (z)) (3.28)

Where d” is the number of degrees of freedom for the translation components.
We choose this model so that the skeletons translation will have a periodic structure
just as the joint rotations, but add the linear component since the translation may
increase, or decrease, over time and not just rotate around a point like the joints.
The X values we use will therefore also have to be modified since A’ (x) is not a
periodic function where the interval [0, 1) will correspond to the interval [n,n + 1)
for any integer n.

For the translation model our X values will therefore have to be offset with the
period they occur at. We therefore construct and use X instead of X, as described

22

CHAPTER 3. METHOD

in section For X we no longer have a wrap around at the edge 0 to 1, but
instead span over multiple periods.

Other than constructing a separate function h”, and using X instead of X, the
method for extracting the translation component is exactly the same as when we
extract the joint rotations, as described in the previous sections of this chapter.

23

Result

In this chapter we evaluate our final weighted model. Ideally, we would like to
evaluate how “natural” an extracted motion is, but such a measurement is very ill
defined. We instead evaluate our extracted motions by computing the root mean
squared error (RMSE) for our regression model as well as compute the error when
we try to match the extracted motion sequence against the input motion sequence.
We define the root mean squared error as in equation

We also evaluate a weighted root mean squared error for the velocity and ac-
celeration. We define the root mean squared error for the velocity and acceleration
as:

S (R () — y)IIP
RMSE(h ¢ 1 i (4.3)

Where o = (y/ai,..\/ag) and v = (/71, ..,/ 7d)- We weight the error for the
velocity and acceleration to allow for comparison between the velocity and accel-

eration error with the positional root mean squared error. If all three root mean
squared errors are of similar size then we should have a model that puts equal
importance on all three measurements. This is not the same as comparing the
standard deviations o, 0, and o, along each degree of freedom or perform a het-
eroskedasticity test, which is what we would actually like to do to see if we have
remedied our heteroskedasticity problems, but it is problematic to present all this
information in a compact way which actually tells us something about the motion
since we are dealing with so many degrees of freedom. Since we are evaluating the

24

CHAPTER 4. RESULT

root mean squared error over all joints at once this gives us a more compact way of
presenting similar information, since the standard deviation is evaluated over the
residuals along one dimension while we evaluate the RMS error over the residuals
along all dimensions.

We present the root mean squared errors for three different types of motions
(boxing, walking and running motions) in tables and In these tables we
show the root mean squared error for three different models. The weighted position-
velocity-acceleration model (M), the positional model (Mz) and the unweighed
position-velocity-acceleration model (M3).

We can see in these tables that M; tends to yield similar RMS errors on the
position as My, while M3 tends to have much larger RMS errors for the position.
This would indicate that our weighted model M; manages to reconstruct a similar
motion to Ms, but where M; takes the velocities and acceleration into consideration.

For M; we also have similar errors for the position, velocity and acceleration.
We will not be as brave to say that we have managed to resolve the inherent het-
eroskedasticity problems of our model M; since we do not perform any tests for
heteroskedasticity, but instead say that we have obtained weights for the velocity
and acceleration so that they are included in the regression in a sensible way since
we put equal importance on the three different measurements now. For M3 we can
see that the errors of the accelerations are much larger than either the velocity and
position which makes us overfit to the accelerations and get a motion that does not
resemble the input motion as well as either M; or Ms.

In figure we show a reconstructed motion for the different models. In this
figure we see that M; gives the most sensible reconstructed motion, which seems to
be the case most of the time based upon observations, while My gives an overfitted
function, and M3 give a distorted motion due to overfitting to errors in the velocity
and acceleration errors.

Now we would like to have a measurement of how well the reconstructed mo-
tion actually matches the input motion. We try to evaluate this by matching the
extracted motion against the input motion as a form of template matching. For the
input motion Y we match it against a repeated reconstructed motion Z according

to equation (4.4)).

M

argmin Y _ ||y; — zital| (4.4)
" i=0

We then calculate the average point error between the matched sequences as in
equation (|4.5]).

¢ 2 llys = zisall? s
= .

We present the resulting errors in tables[AT] [A.2] and [A.3] We can observe that
M; and M> both yield approximately the same template matching error and that

25

CHAPTER 4. RESULT

0.9

0.8
o oy 0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

o, o
9600600000

®%060000 "

%%
o,
%,

(a) Motion extracted using the weighted
model M;. We obtain a smooth motion which
resembles the input motion.

0.9 0.9

0.8 0.8

oy 0.7 0.7

0.6 0.6

5 0.5 0.5

i loa 0.4

74 0.3 0.3

0.2 0.2

0.1 0.1

0.0 0.0
(b) Motion extracted using the position model (¢c) Motion extracted using the unweighted
Ms. We obtain a motion which resembles the model M3. We obtain a motion that is smooth
input motion, but which can be perceived as and, but that is warped compared to the input

jittery. motion.

Figure 4.1: PCA projections of the reconstructed motion and the point cloud for motion
02:03 using the three different models.

they match the same indices generally, so M produces a motion similar to My, but
where M has appropriate derivatives as well.

Since we evaluate the template matching error in much the same way as the
positional root mean squared error these should be somewhat comparable. The RMS
error will of course be smaller since we have minimized this error when constructing
our motion, but if we obtain a motion where the RMS error is small and the template
error is also small then we have a motion that we could model accurately and which
also appears the same as the input motion.

An example of a motion which does not turn our very well for model M; is
motion 35:19 which has a template matching error much greater than its positional
root mean squared error. The reason this motion does not turn out well is because

26

CHAPTER 4. RESULT

of single bone which throws off the circular parameterization. As a comparison, in
figure we show the PCA projection of motion 35:19 using all bones of the
skeleton, and in figure we show the same motion, but where the troublesome
bone has been excluded.

0.9 0.9

0.8 0.8

0.7 0.7

> . |06 0.6
4 [|05 0.5
¥ - . 0.4 0.4
0.3 0.3

0.2 0.2

0.1 0.1

0.0 0.0

(a) PCA projection of motion 35:19. (b) PCA projection of motion 35:19 where the

’rhand’ bone has been eliminated.

Figure 4.2: The PCA projection of motion 35:19 is meant to show how a single bone
may have a large impact on the circular parameterization. In the left hand side figure
we end up performing one and a half lap around the hole shown in the right hand side
image, thereby gaining a circular parameterization which is not what we are actually
looking for.

The troublesome bone turns out to be a minor bone in the right hand, which
suddenly makes a large shift in its rotation along its x-axis, probably caused by
errors in the motion capture system. The bone is not really important for the
periodic motion though, which is a running motion, but because of the large shift
in magnitude the distances between the 0-simplices are largely dependent on the
right hand bone, therefore throwing the circular parameterization off target.

This is similar to the trouble we have with the boxing motions, except that
instead of a single bone throwing off the parameterization we have a culminative
sum of slight differences which gives us a poor parameterization. For the running
and walking motions the periods are very similar each time, but for the boxing
motions we have a more significant differences between the different periods due to
that a lot of joints have minor differences. For example, when the second punch
is thrown the pose might have the knees bent more than when the first punch
is thrown, or perhaps just the feet are shifted more outwards. Together these
differences causes trouble for the circular parameterization, where figure and
figure illustrates this problem.

Because of these kinds of problems, it could be more useful to use a lower dimen-
sional skeleton when performing the circular parameterization, ex. for a running
motion the legs would be enough for finding the periodic structure of the motion or

27

CHAPTER 4. RESULT

0.9 0.9

0.8 0.8

.. 0.7 0.7
RS 0.6 0.6
Q%”?o:oonog%s,:w: ®eoo0e®® 05 05
T Tt 0.4 0.4
el 0.3 0.3

0.2 0.2

0.1 0.1

0.0 0.0

(a) PCA projection of the circular parameter- (b) PCA projection of the reconstructed mo-
ization for 14:02. tion using model M; for input motion 14:02.

Figure 4.3: PCA projections for motion 14:02, showing how the boxing motions are
slightly offset each period making it more difficult to find a good parameterization.

the upper body for a boxing motion. The problem would be to automatically know
which bones are actually significant for the motion, using just ex. a PCA projection
would not always be helpful as demonstrated by figure

An alternative approach could be, instead of reducing the dimension, to rescale
the dimension values so that bones which are not considered as important for the
circular structure have smaller magnitude than the important bones. A reasonable
assumption would be that the larger bones are more important than the smaller
bones, so by first normalizing the values along each dimension and then scaling each
dimension by the length of the bone it represents one could accomplish this. This
would help to ensure that we do not let small bones, such as the bones in the hand,
be dominant when computing the distances between the 0-simplices, but instead let
large bones dominate.

Other than the problem of finding a good circular parameterization we observe
the type of errors we have discussed in section [3.5] where the motion flows through
certain poses too quickly. We observe this behaviour more among the motion cap-
ture data of running motions in comparison to the walking motions, due to that the
running motions tend to have fewer periods than the walking motions. The more
periods we have, the less noticeable the error will be since the incomplete periods
gain less importance. Using the velocities and accelerations as constraints seems to
lessen this problem somewhat, but not enough for it to not be noticeable.

28

Software

In this chapter we give a short description of the software and resources used for
this thesis, as well as the software developed which is available in the form of a
Blender plugin written in Python.

5.1 Tools

Motion capture data. The motion capture data used in this paper is from the
CMU database [1] and is provided in the form of .asf and .amc file pairs which
describes the motion capture data. The .asf file describes the skeleton of the
captured subject in the form of a hierarchical structure of joints where the root
of the hierarchy describes the global rotation and translation for the skeleton.
The .amc file contains the actual motion capture data and describes a time
sequence with joint rotations and global rotation and translation for the root
joint. The data is converted from the .asf/.amc format to .bvh format using
[10] in order to allow for easy importing into Blender.

Blender. Blender [6] is a opensoure 3D animation suit that we are using for visu-
alizing the motion capture data and the results of periodic motion extraction.
Blender provides easy access for integrating user created plugins written in
Python, and the method described in this thesis is implemented as a plugin
for Blender. The Blender version used is 2.70 running Python 3.3.

Dionysus. Dionysus [II] is a C++ library that provides access to different al-
gebraical topology computations and implements among other things the
method described in [I4] for mapping a point cloud to a circle. Dionysus
also provides Python bindings (using Boost.Python) for the high performance
C++ implementation which allows for easy integration with Blender. Since
the latest Blender versions uses Python 3, the Dionysus bindings will need to
be built with Python 3.

Python libraries. The developed Blender plugin depends on the following python
libraries: NumPy, CVXOPT, Matplotlib and scikit-learn.

29

CHAPTER 5. SOFTWARE

5.2 Plugin Design
In figure [5.1] we show the design of the Blender plugin. It consists of a front end

that handles the interaction with Blender and a back end that performs the motion
extraction.

Blender

Interface used to modify
operator properties and
invoking extraction operator

Contains extraction operator
properties

Contains motion capture
seguences

Creates point cloud from
motion capture sequences.

Creates animation sequence
from extracted motions.

Dionysus

Constructs simplical complex
Computes persistent
cohomolgy

Maps points in complex onto
a circle

A regression model of sin
and cos functions

Extracts a periodic motion
sequence from motion
capture data

Calculates finite differences.
Estimate number of cycels
in motion capture data

Abstract class providing an
interface for regression models

Figure 5.1: The figure shows the components of the software and which ones are
connected with Blender and Dionysus.

The Blender part of the software is design according to the MVC (model-view-
controller) pattern, where BlenderContext corresponds to the model, Extraction-
Panel to the view and ExtractionOperator to the controller. BlenderContext is the
model Blender uses internally to track the state of the current session. To this
we have attached our own model which tracks the current input options for our
ExtractionOperator, and these input options are editable via ExtractionPanel.

ExtractionPanel is the Ul part of the plugin, through which input parameters are
edited and the ExtractionOperator is invoked. The ExtractionOperator then con-
verts the selected input motions into a point cloud which is sent to MotionExtractor
and receives back from MotionExtractor a number of points which it converts back
into animations that are stored in BlenderContext.

30

CHAPTER 5. SOFTWARE

MotionExtractor depends on Dionysus to perform the circular mapping of the
point cloud which it then uses to reconstruct a periodic motion using the Harmoni-
cRegression class. The HarmonicRegression class is a subclass of RegressionModel
which provides an interface for regression models.

5.3 Interface

The Blender interface is highly user customizable, consisting of several different
Editors which are sub windows in the Blender interface. Each FEditor enables dif-
ferent functions and views. Our plugin operates in the 3D View FEditor, which also
allows for switching between different Modes. Each Mode is meant for working with
different aspects of 3D animation and modelling.

Our plugin for extracting periodic motions is available in either Object Mode or
Pose Mode when working in the 3D View Editor. Object Mode is used for working
with positioning of 3D objects, such as a collection of bones, known as an armature.
Pose Mode is on the other hand meant for working with transforming individual
bones of an armature. We bring this up since the plugin will behave differently
depending on which Mode is active.

In Object Mode one or several armatures can be selected and the periodic motion
extraction operator can be invoked. This will for each selected armature, with an
attached animation, extract a periodic motion. In Pose Mode individual bones can
be selected instead, and periodic motion can be extracted which only uses those
specific bones. This can be useful in case one only wish to extract a periodic
motion for part of the body, for example the upper body of a human armature.

In figure[5.2)and figure 5.3 we show how the plugin is integrated with the Blender
interface, where figure [5.2]is in Object Mode while figure[5.3]is in Pose Mode. These
figures also gives labellings for different parts of the interface, both for the input
options for the plugin and other relevant parts of the Blender interface, and what
these labellings refers to we explain in the following list.

1. Playback of animations attached to the armatures shown in 8D View FEditor.
This option is available in Timeline Editor.

2. Lists available animation and displays the currently active animation for the
selected armature. Once a periodic motion is extracted it will be available
in this list together with all other animations. The extracted motion will be
prefixed with the word “Periodic” to distinguish it from the input motion.
This option is available in Dope Sheet Editor.

3. The currently active armature when in Object Mode. 1t is this skeletons an-
imation which is currently displayed at label two and the skeleton which we
will extract a periodic motion for if we invoke the extraction operator. Part
of the 8D View Editor.

31

CHAPTER 5. SOFTWARE

4.

10.

11.

12.

13.

Invokes the periodic motion ex-
tractor operator using the in-
put options listed below.

Selects maximum e value to
use when constructing the sim-
plicial complex. Lower val-
ues decrease computation time,

but higher values allows for _...mmmm o
finding more persistent cocy- BEe =
cles that could be better candi- [ElCsame o)
dates when extracting the peri- =
odic motion. 10—

171" computetransiation

Allows for subsampling the in-
put motion. A value of 1
means we sample every frame,
a value of 2 every second frame,
etc. By subsampling we can de-
crease the computation time.

Allows for limiting the frame
range used when performing
the motion extraction, in case Figure 5.2: The figure shows the plugin inter-
we are only interested in part of face and what it looks like when we mark an
the input motion, or if we wish armature that which we wish to extract a peri-

to decrease computation time. odic motion for when Object Mode is active.
Makes option 8-9 available.

The first frame to use when extracting periodic motions.
The maximum number of frames to use from the input motion.

The maximum number of cocycles to select for constructing periodic motions.
For each cocycle we will perform a separate regression based upon the circular
parameterization the cocycle yields, and for each cocycle a periodic motion
is output into the animation list. The n cocycles selected are the n most
persistent cocycles found.

Selects if we wish to compute the translation component for the input motion,
in addition to the joint rotations, as described in section [3.9] Makes option
12-14 available.

Check box for enabling computation of the translation along the x-axis, while
the drop down menu allows for switching between regression model equation

and (B).

Same as option 12 but along the y-axis.

32

CHAPTER 5. SOFTWARE

14. Same as option 12 but along the z-axis.

15. Advanced options check box.
Enables advanced input op-

157 Advanced options

tions 16-24.

16. Selects the delay embedding Rez=s
factor to be used, as described

in section i;i

17. Selects the prime number p to [-

use when performing the circu- 8 e
lar parameterization. Only im-
portant if we fail to lift the co-

cycle from Z, to Z.

' Compute transiation

RSN rarstaiion model competty: 20

18. The K value to use for our joint
regression model, as described
in section

19. The K value to use for our
translation regression model.

20. Uncheck in case we do not wish
to use the velocity as a con-
straint when extracting a peri-
odic motion.

Figure 5.3: The figure shows the plugin inter-

face when the advanced options have been en-

21. Uncheck in case we do not wish abled and how the view may look when Pose
to use the acceleration a con- Mode is active. By selecting the upper body a
straint when extracting a peri- periodic motion for just the upper body of the
odic motion. skeleton can be extracted.

22. If checked, a window will open once the simplicial complex has been con-
structed and the persistent cocycles found. The window will display a per-
sistence diagram representing the cocycles. In this diagram cocycles can be
selected manually and will override the automatic selection of the most per-
sistent cocycles.

23. Check if one wish to output 2D plots of a PCA projected representation of
the input motion, as well as the output motion.

24. Specifies the output directory for the 2D PCA plots.
25. Switches between Object Mode and Pose Mode.

26. In Pose Mode one can select individual bones to use when extracting the
periodic motion. Only the selected bones will be animated. The selected
bones that are used when extracting a periodic motion are highlighted in
blue.

33

Discussion

In this report we have attempted to use the first and second order derivatives to
prevent overfitting of our harmonic regression model. We will now discuss some
alternative methods to our approach for modelling a periodic motion.

For our harmonic regression model we use the velocities and accelerations to
prevent overfitting of the regression model, but there are also other ways of doing
this, such as ridge regression [I3]. It works by assuming that the coefficients £,
excluding the bias term, also follows a normal distribution around 0. By including
this assumption into the minimization problem large weights would be penalized,
which would prevent the model from growing too complex. Instead of minimizing
equation one would then minimize:

argﬁminHXﬁ—:&I!2+AHB—1II2 (6.1)

Where _1 are the coefficients with the bias term excluded, and A is a manually
selected weight. To select A cross validation would have to be used and iteratively
find where A causes the model to do overfitting instead of underfitting. To use the
velocities and accelerations as constraints on the weights suits our problem better
since we only have to solve a constant number of regression problems in order to
find suitable weights and construct a model that is not overfitted. Since we are
dealing with d number of degrees of freedom it is preferable that each model can be
found fairly quickly in order to allow for better user interaction.

For our current model we have also assumed that we have group heteroskedas-
ticity, but we have not dealt with any heteroskedasticity problems that may occur
internally within ex. the velocities. This does not seem to be a serious problem for
our extracted motions, but a possible way to deal with this could be to first fol-
low our approach to obtain weights to remedy the group heteroskedasticity and use
that as a basis to further improve the model. Using iterative reweighed least squares
(IRLS) [13] we could try to find individual weights for each points position/veloc-
ity /acceleration to attempt to deal with any possible remaining heteroskedasticity
problems. Our assumption of group heteroskedasticity seems to be valid though, so
we do not include IRLS in our solution since it would further add to the computation
without necessarily much gain.

A more interesting aspect to take into account is that for our current model
we have assumed that our y values have a periodic structure around some mean

34

CHAPTER 6. DISCUSSION

value. This may not always be the case for joints that can rotate 360°, since they
may just rotate with an increasing value and still complete multiple periods. For
a human skeleton there is only the shoulder and the root joint, which tells us the
overall rotation of the skeleton, that can do this though, so it is not such a severe
problem. But it does prevent us from modelling full body rotations, such as a
human performing a pirouette. To resolve this one could use use polar coordinates
to represent the rotation of those joints. For joint j in the point cloud Y we would
compute polar coordinates (yjfj, yi’j), where we use * to indicate all values, as:

Yij = €08(ysj) (6.2)

Ysj = SI0(1s;) (6.3)

We would then specify the the joint model as hj(z) = atan2(hj(x), b} (z)), where
hi and hf are periodic functions fitted to yj/; respectively y;. The problem is to
find suitable functions for the polar coordinates. We could use separate harmonic
regression models for them, but that would not be entirely sound. Between A and
hi we have the relation h}‘(x)2 + h}-’(x)2 = 1 due to that we are modelling polar
coordinates. We would therefore, instead of minimizing , wish to minimize the
constrained model:

M
al;ﬁr}?vin{z |hg () — y?j\z + [h] (w) — yijQ | h;v‘(uv)2 + h}f(ac)2 =1} (6.4)
3% =1

To this we could add the velocity and acceleration as well, as we do in equation
(3.9). If one wish to use polar coordinates the joints will of course have to be
converted into polar coordinates before constructing the circular parameterization,
since the circular parameterization also relies on that the y values have a periodic
structure.

35

Conclusions

The method we have presented for generating a periodic motion from a structurally
parameterized point cloud shows some merit. We can generate a motion that rep-
resents the input motion, and by using the first and second order derivatives, as
additional constraints for our regression model, we can also obtain a model that is
not prone to overfitting and therefore generates a smoother and more natural mo-
tion. Our velocity and acceleration approximations depend upon that we estimate
the length of a period correctly though or we will have an incorrect time step when
approximating the derivatives by finite differences.

Of the three types of motions we tried our method on we find that for running
and walking motions the method works well, but for the boxing motions we try the
method on we can not obtain any good structural parameterizations. The boxing
motions tend to not be as structurally similar as the running/walking motions each
period in the high dimensional space, due to a few bones which do not exhibit
periodic behaviour and those bones can come to dominate the structural param-
eterisation. For this reason we suggest that only a few major bones are used to
construct the structural parameterization.

One problem with our approach is that there may exist temporal artefacts. The
motion may flow too fast through certain poses due to the fact that we can not
recover a perfect inverse function from structural to temporal space. This means
that poses that are more common, due to motion data with incomplete periods,
will be overrepresented when reconstructing a periodic motion. The easiest way to
resolve this would be to prune the data to only contain complete periods or use
motion capture data with many periods so the temporal artefacts become minimal.

The elegant way to resolve this would be to construct a better inverse function
from structure to time, which takes both the structural parameterization and time
into consideration. The two methods we have proposed in section rely instead on
the structural parameterization and pose density. How to construct such a function
is not clear though.

Another interesting problem to still solve is how to deal with joints that can
perform 360° rotations. We suggested in section [6] to use polar coordinates and to
solve the constrained minimization problem to deal with this, but we can not
suggest a method for solving this minimization problem.

The final product of our work is implemented as a Python package to be used as
a plugin for Blender, and provides access to a tool for extracting periodic motions.

36

Bibliography

[13]

CMU Graphics Lab Motion Capture Database. http://mocap.cs.cmu.edu/.

Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical
Society, 46(2):255-308, 2009.

Frederic Chazal, Daniel Chen, Leonidas Guibas, Xiaoye Jiang, and Christian
Sommer. Data-driven trajectory smoothing. In Proceedings of the 19th ACM
SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems, 2011.

Herbert Edelsbrunner and John Harer. Computational Topology: An Introduc-
tion. American Mathematical Society, 2010.

Bengt Fornberg. Generation of finite difference formulas on arbitrarly spaced
grids. Mathematics of Computation, 1988.

Blender Foundation. Blender. http://www.blender.org/, 2014.

Allen Hatcher. Algebraic Topology. Allen Hatcher : paper or electronic for
noncommercial use may be freely withhout explicit permission from the author,
2000.

Chung-Ming Kuan. Statistics: Concepts and Methods. http://homepage.ntu.
edu.tw/~ckuan/pdf/et01/et_Ch4.pdf, second edition, 2004.

Harald Lang. Topics on applied mathematical statistics, 2012.
Fengjun Lv. Amc2Bvh. http://vipbase.net/amc2bvh/, 2006.

Dmitriy Morozov. Dionysus. http://www.mrzv.org/software/dionysus/,
2012.

Dirk Ormoneit, Michael J. Black, Trevor Hastie, and Hedvig Kjellstrom. Rep-
resenting cyclic human motion using functional analysis. Image and Vision
Computing, 23:12641276, 2005.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. 2012.

37

http://mocap.cs.cmu.edu/
http://www.blender.org/
http://homepage.ntu.edu.tw/~ckuan/pdf/et01/et_Ch4.pdf
http://homepage.ntu.edu.tw/~ckuan/pdf/et01/et_Ch4.pdf
http://vipbase.net/amc2bvh/
http://www.mrzv.org/software/dionysus/

BIBLIOGRAPHY

[14]

[15]

[16]

[17]

Vin Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Persistent
cohomology and circular coordinates. Discrete Computational Geometry,
45(4):737-759, 2011.

Mikael Vejdemo-Johansson, Florian T. Pokorny, Primoz Skraba, and Danica
Kragic. Cohomology learning of periodic motion. Submitted to AAECC, 2013.

Xiaolin Wei, Peizhao Zhang, and Jinxiang Chai. Accurate realtime full-body
motion capture using a single depth camera. Technical report, Texas AM
University, 2012.

Yaser Yacoob and Michael J. Black. Parameterized modeling and recognition
of activities. Technical report, Computer Vision Laboratory, University of
Maryland, 2002.

38

Template Matching Errors

o M; is the weighted model suggested in ((3.14)).
o My is the positional model suggested in (3.8)).

o M3 is the unweighted model suggested in (3.9).

Table A.1: Boxing cycle errors. The table shows the average errors in radians for each
frame when matching the extracted motion against the input motion for three different
models M;,Ms,Ms, and the matched index is also listed. All the motions listed in this
table are of motion capture data of a human who is boxing. The results were obtained
using K = 20, a delay embedding factor of 2 and a maximum ¢ value of 5.

Motion Boxing average point error (radians) Period
1D My Mo My count
Error, Index Error, Index Error, Index
13:17 1.75 176 1.90 175 8.30 226 1.00
14:02 0.95 41 1.02 42 3.42 43 1.00
15:13 0.51 173 0.53 174 2.86 172 1.52
17:10 0.62 23 0.74 23 5.58 25 1.00
79:08 0.64 53 0.71 54 6.39 54 1.00
Mean 0.89 - 0.98 - 5.31 -
Median 0.64 - 0.74 - 5.58 -

39

APPENDIX A. TEMPLATE MATCHING ERRORS

Table A.2: Walk cycle errors. The table shows the average errors in radians for each
frame when matching the extracted motion against the input motion for three different
models M,Ms,Ms, and the matched index is also listed. All the motions listed in this
table are of motion capture data of a walking human. The results were obtained using
K = 20, a delay embedding factor of 2 and a maximum ¢ value of 2.

Motion Walking average point error (radians) Period
1D My Mo My count
Error, Index Error, Index Error, Index
02:01 1.15 197 1.13 226 8.92 287 1.00
02:02 0.38 90 0.39 90 0.78 90 2.49
05:01 0.99 255 0.99 252 4.01 249 2.27
06:01 0.34 42 0.35 42 9.96 76 3.33
07:01 0.37 126 0.37 126 0.95 125 2.40
07:02 0.41 15 0.41 16 0.75 16 2.49
07:03 0.30 66 0.30 66 0.70 65 2.83
07:04 0.37 87 0.38 87 1.35 87 2.58
07:05 0.36 130 0.37 130 0.83 130 2.73
07:06 0.28 87 0.28 87 1.18 87 3.00
07:07 0.38 28 0.38 28 0.88 28 2.67
07:08 0.39 88 0.40 88 0.79 89 2.39
07:09 1.44 174 1.39 150 16.60 176 1.00
07:10 0.40 72 0.41 72 0.87 73 2.40
07:11 0.47 25 0.48 25 0.84 25 2.43
07:12 0.44 50 0.45 50 1.67 51 2.46
08:01 0.90 0 1.04 1 12.33 24 2.28
08:02 0.41 17 0.42 17 1.32 15 2.47
08:03 0.32 118 0.33 118 0.71 119 2.84
08:04 0.28 29 0.29 29 11.71 44 3.04
08:05 0.46 88 0.50 88 12.20 78 2.16
08:06 0.44 15 0.46 15 0.80 15 2.66
08:07 0.41 138 0.42 138 2.03 138 1.91
08:08 0.67 29 0.97 29 2.50 28 2.53
08:09 0.53 109 0.56 109 11.66 19 2.60
08:10 0.38 27 0.38 27 0.73 26 2.33
08:11 0.26 125 0.26 125 0.56 125 2.07
10:04 0.89 122 0.90 123 4.29 74 1.98
12:01 0.32 36 0.32 36 0.46 37 3.36
12:02 0.34 44 0.36 44 0.61 44 4.23
12:03 0.31 11 0.31 11 0.48 12 3.53
Mean 0.50 - 0.52 - 3.66 -
Median 0.39 - 0.40 - 0.95 -

40

APPENDIX A. TEMPLATE MATCHING ERRORS

Table A.3: The table shows the average errors in radians for each frame when matching
the extracted motion against the input motion for three different models Mq,Ms, M3,
and the matched index is also listed. All the motions listed in this table are of motion
capture data of a running human. The results were obtained using K = 20, a delay

embedding factor of 2 and a maximum ¢ value of 3.

Motion Running average point error (radians) Period
1D My Mo My count
Error, Index Error, Index Error, Index
02:03 0.32 2 0.33 2 0.57 2 1.89
09:01 0.50 9 0.52 9 1.03 8 1.66
09:02 0.57 28 0.58 28 1.16 28 1.40
09:03 0.54 32 0.55 32 1.43 31 1.33
09:04 0.57 20 0.58 20 1.32 20 1.53
09:05 0.52 77 0.53 77 1.30 77 1.57
09:06 0.54 19 0.56 19 1.11 18 1.56
09:07 0.53 48 0.55 48 1.36 48 1.50
09:08 0.52 74 0.54 74 1.48 74 1.38
09:09 0.51 22 0.52 22 0.93 22 1.67
09:10 0.58 42 0.59 42 1.78 42 1.34
09:11 0.45 11 0.46 11 1.01 11 1.77
16:08 1.10 130 1.13 139 6.31 203 1.00
16:35 0.42 17 0.43 17 1.42 19 1.67
16:36 0.24 1 0.251 0421 1.97
16:45 0.53 15 0.54 15 1.51 15 1.61
16:46 0.56 10 0.57 11 1.15 10 1.68
16:55 1.69 28 1.68 26 3.30 31 1.64
16:56 0.64 76 0.70 76 1.29 76 2.12
16:57 0.84 236 0.89 238 7.79 16 1.00
35:17 0.27 50 0.28 50 0.88 50 1.83
35:18 0.26 62 0.27 62 0.95 62 1.87
35:19 1.93 151 1.98 151 9.92 101 1.00
35:20 0.32 5 0.33 5 1.06 6 1.84
35:21 0.33 12 0.35 12 0.96 11 1.83
35:22 0.35 6 0.39 6 1.24 7 1.89
35:23 0.37 6 0.42 6 1.00 6 1.83
35:24 0.54 23 0.56 23 1.45 24 1.68
35:25 0.31 67 0.33 67 0.81 67 1.90
35:26 1420 1.46 0 25.77 29 1.00
Mean 0.61 - 0.63 - 2.72 -
Median 0.52 - 0.54 - 1.26 -

41

Root Mean Squared Errors

o M; is the weighted model suggested in ((3.14)).
o My is the positional model suggested in (3.8)).

o M3 is the unweighted model suggested in (3.9).

Table B.1: Root mean squared errors for motion capture data of a boxing human.
The table shows the root mean squared error for position, velocity and acceleration for
three different models Mi,Ms,Ms. The results were obtained using K = 20, a delay
embedding factor of 2 and a maximum ¢ value of 5.

Motion Boxing root mean squared error (radians)
ID M, My M;3

h,h' B h,h', h" hoh' B
13:17 0.851.050.75 0.69 - - 8.79 127.48 16326.26
14:02 0.38 0.40 0.33 0.28 - - 2.94 29.47 1108.90
15:13 0.390.370.36 0.36 - - 3.07 47.34 5931.75
17:10 0.38 0.41 0.25 0.15 - - 5.54 43.93 511.18
79:08 0.60 0.62 0.44 0.35-- 6.43 43.02 1480.19
Mean 0.52 0.57 0.42 0.37-- 5.35 58.25 5071.66
Median | 0.39 0.41 0.36 0.35-- 5.54 43.93 1480.19

42

APPENDIX B. ROOT MEAN SQUARED ERRORS

Table B.2: Root mean squared errors for motion capture data of a walking human.
The table shows the root mean squared error for position, velocity and acceleration for
three different models M7,Ms,M3. The results were obtained using K = 20, a delay
embedding factor of 2 and a maximum ¢ value of 2.

Motion Walking root mean squared error (radians)
ID M, My M3

hoh' K hoh' K hoh K
02:01 0.71 0.76 0.68 0.66 - - 8.62 75.16 10948.75
02:02 0.29 0.28 0.27 0.28 - - 0.68 9.30 1825.07
05:01 0.380.38 0.35 0.35-- 3.77 55.00 13379.91
06:01 0.29 0.29 0.29 0.28-- 10.31 77.30 8219.03
07:01 0.21 0.21 0.20 0.20 - - 0.87 14.45 3086.85
07:02 0.24 0.24 0.24 0.24 - - 0.60 15.61 4235.04
07:03 0.23 0.22 0.22 0.22 - - 0.67 17.68 5133.89
07:04 0.26 0.25 0.25 0.25 - - 1.29 20.09 5794.19
07:05 0.31 0.30 0.30 0.30 - - 0.79 21.45 8318.72
07:06 0.27 0.27 0.27 0.27 - - 1.18 15.31 3228.85
07:07 0.27 0.27 0.26 0.26 - - 0.80 15.98 4292.46
07:08 0.24 0.24 0.23 0.24 - - 0.68 14.62 3929.15
07:09 0.53 0.61 0.51 0.50-- 16.26 141.68 15523.74
07:10 0.30 0.29 0.29 0.29 - - 0.76 14.23 2998.49
07:11 0.27 0.26 0.26 0.26 - - 0.72 13.19 2945.50
07:12 0.33 0.32 0.31 0.32 - - 1.61 16.30 2535.73
08:01 0.65 0.60 0.49 0.49 - - 12.96 117.49 11700.07
08:02 0.23 0.23 0.23 0.23 - - 1.21 17.20 3793.05
08:03 0.26 0.26 0.26 0.26 - - 0.69 17.70 3593.04
08:04 0.28 0.28 0.27 0.27-- 11.86 93.57 12333.07
08:05 0.43 0.40 0.39 0.40 - - 12.69 104.01 10549.11
08:06 0.30 0.30 0.29 0.29 - - 0.68 14.28 2767.69
08:07 0.350.34 0.34 0.34 - - 2.09 27.49 7389.38
08:08 0.63 0.43 0.31 0.31 - - 2.54 25.55 3848.47
08:09 0.44 0.42 0.41 041-- 11.83 84.15 7649.07
08:10 0.17 0.17 0.17 0.17 - - 0.61 11.53 2743.16
08:11 0.22 0.21 0.21 0.21 - - 0.52 18.30 5869.92
10:04 0.44 0.44 0.37 0.37 - - 3.92 48.47 9884.15
12:01 0.20 0.19 0.19 0.19 - - 0.35 8.09 1941.92
12:02 0.23 0.22 0.22 0.22 - - 0.55 10.32 2759.23
12:03 0.140.14 0.14 0.14 - - 0.36 8.45 2036.36
Mean 0.33 0.32 0.30 0.30 - - 3.63 36.90 5975.91
Median | 0.28 0.28 0.27 0.27 - - 0.87 17.68 4235.04

43

APPENDIX B. ROOT MEAN SQUARED ERRORS

Table B.3: Root mean squared errors for motion capture data of a running human.
The table shows the root mean squared error for position, velocity and acceleration for
three different models Mi,Ms,Ms. The results were obtained using K = 20, a delay
embedding factor of 2 and a maximum ¢ value of 3.

Motion Running root mean squared error (radians)
ID M, My M3

hoh' K oK, R oK, R
02:03 0.24 0.22 0.22 0.22 - - 0.53 7.11 1056.13
09:01 0.23 0.22 0.21 0.21 - - 0.86 10.45 1609.51
09:02 0.18 0.18 0.16 0.16 - - 0.93 10.49 1690.53
09:03 0.16 0.16 0.15 0.14 - - 1.30 12.36 1229.33
09:04 0.20 0.20 0.18 0.18 - - 1.12 9.33 1159.75
09:05 0.21 0.20 0.19 0.19 - - 1.12 12.89 2174.89
09:06 0.20 0.20 0.18 0.18 - - 0.89 10.68 1536.68
09:07 0.20 0.20 0.18 0.18 - - 1.18 12.70 1737.03
09:08 0.18 0.18 0.17 0.17 - - 1.34 15.48 1969.14
09:09 0.21 0.21 0.19 0.20 - - 0.78 12.59 2743.59
09:10 0.17 0.17 0.16 0.16 - - 1.68 17.04 2300.80
09:11 0.230.23 0.22 0.22 - - 0.89 9.65 1450.28
16:08 0.39 0.44 0.33 0.32 - - 6.39 60.69 7742.40
16:35 0.22 0.21 0.20 0.20 - - 1.34 12.78 1998.31
16:36 0.24 0.22 0.22 0.23 - - 0.42 7.01 1054.93
16:45 0.28 0.26 0.24 0.24 - - 1.40 11.58 1091.23
16:46 0.330.320.31 0.31 - - 0.94 13.25 2463.22
16:55 0.810.77 0.73 0.69 - - 2.61 29.65 3147.93
16:56 0.58 0.53 0.52 0.52 - - 1.24 12.69 1443.62
16:57 0.540.64 0.35 0.31-- 7.77 76.36 10639.76
35:17 0.20 0.19 0.19 0.18 - - 0.84 10.48 1435.39
35:18 0.19 0.19 0.18 0.18 - - 0.92 17.27 2619.36
35:19 0.66 0.78 0.46 0.43 - - 12.24 113.79 18083.95
35:20 0.20 0.20 0.19 0.19 - - 1.05 10.70 1545.42
35:21 0.250.23 0.22 0.22 - - 0.97 11.32 1737.95
35:22 0.29 0.26 0.25 0.25 - - 1.24 12.24 1529.77
35:23 0.330.29 0.29 0.28 - - 0.95 14.40 1626.25
35:24 0.29 0.28 0.27 0.27 - - 1.39 15.60 2131.89
35:25 0.28 0.25 0.25 0.25 - - 0.82 11.32 1256.01
35:26 0.57 0.60 0.47 0.44 - - 27.94 199.86 12757.30
Mean 0.30 0.30 0.26 0.26 - - 2.77 26.06 3165.41
Median | 0.23 0.22 0.22 0.22 - - 1.12 12.64 1713.78

44

Frame Ranges

For the boxing motions we only used a subset of the frames while we used all frames
for the running and walking motions. The frames used for the boxing motions are
listed in table

Table C.1: For some motions we only use a subset of frames. For those motions we
list the frames used here.

Motion ID | Frame Start Frame End
13:17 200 450
14:02 130 250
15:13 140 420
17:10 180 250
79:08 140 220

45

Online Video Resources

In this chapter we have collected a number of online links for videos we have ren-
dered of motion 02:03, 06:01 and 14:02. For each motion we have three videos, one
displaying a looped version of the motion capture data, one displaying the result
from using model M; and one for using model M.

Table D.1: The table contains links to renderings of three different motions. The
videos helps illustrate the difference between model M7 and M5 in addition to allow for
comparing the output motion to the input motion capture data. The motion capture
data was captured at 120 fps and is playedback at 30 fps and the extracted motions are
generated at 120 fps and played back at 30 fps as well. The motions are playedback at
reduced speed to help highlight the difference between the models as well as errors in
the extracted motions.

Motion Link

02:03 raw data | https://www.youtube.com/watch?v=7_Gu9DrOyKo |
02:03 M, https://www.youtube.com/watch?v=-67BqSJODIk |
02:03 My https://www.youtube.com/watch?v=kU_c7t1cCVY| |
06:01 raw data | https://www.youtube.com/watch?v=bOEIflIXCRgo |
06:01 M, https://www.youtube.com/watch?v=_66NMZgS8TFM |
06:01 My https://www.youtube.com/watch?v=3tLLzjc7T A |
14:02 raw data | https://www.youtube.com/watch?v=Ry9dO09xEpk |
14:02 M, https://www.youtube.com/watch?v=-WQNnBqsg2U |
14:02 M, https://www.youtube.com/watch?v=pzRZSmWuWak |

46

https://www.youtube.com/watch?v=7_Gu9DrOyKo&list=PLc8dzHVOdbZvEd_1lRc1-lySAIWojjiyH
https://www.youtube.com/watch?v=-67BqSJODIk&list=PLc8dzHVOdbZvEd_1lRc1-lySAIWojjiyH
https://www.youtube.com/watch?v=kU_c7t1cCVY&list=PLc8dzHVOdbZvEd_1lRc1-lySAIWojjiyH
https://www.youtube.com/watch?v=b0EIf1XCRgo&list=PLc8dzHVOdbZvEd_1lRc1-lySAIWojjiyH
https://www.youtube.com/watch?v=_66NMZg8TFM&list=PLc8dzHVOdbZvEd_1lRc1-lySAIWojjiyH
https://www.youtube.com/watch?v=3tLLzjc7T_A&list=PLc8dzHVOdbZvEd_1lRc1-lySAIWojjiyH
https://www.youtube.com/watch?v=Ry9dO09xEpk&list=PLc8dzHVOdbZvEd_1lRc1-lySAIWojjiyH
https://www.youtube.com/watch?v=-WQNnBqsg2U&list=PLc8dzHVOdbZvEd_1lRc1-lySAIWojjiyH
https://www.youtube.com/watch?v=pzRZSmWuWak&list=PLc8dzHVOdbZvEd_1lRc1-lySAIWojjiyH

	Introduction
	Background
	Algebraic Topology
	Previous Work

	Method
	Problem Description
	Harmonic Regression
	Weighted Harmonic Regression
	Weight Estimation
	Preprocessing
	Motion Reconstruction
	Derivative Approximation by Finite Differences
	Delay Embedding
	Translation Model

	Result
	Software
	Tools
	Plugin Design
	Interface

	Discussion
	Conclusions
	Bibliography
	Template Matching Errors
	Root Mean Squared Errors
	Frame Ranges
	Online Video Resources

