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Phil. Trans. R. Soc. Lond. A 312, 345-361 (1984) [ 345 ] 
Printed in Great Britain 

The relation between logic programming and logic specification 

BY R. KOWALSKI 

Department of Computing, Imperial College, 180 Queen's Gate, London SW7 2BZ, U.K. 

Formal logic is widely accepted as a program specification language in computing 
science. It is ideally suited to the representation of knowledge and the description of 
problems without regard to the choice of programming language. Its use as a 
specification language is compatible not only with conventional programming 
languages but also with programming languages based entirely on logic itself. In this 
paper I shall investigate the relation that holds when both programs and program 
specifications are expressed in formal logic. 

In many cases, when a specification completely defines the relations to be computed, 
there is no syntactic distinction between specification and program. Moreover the 
same mechanism that is used to execute logic programs, namely automated deduction, 
can also be used to execute logic specifications. Thus all relations defined by complete 
specifications are executable. The only difference between a complete specification 
and a program is one of efficiency. A program is more efficient than a specification. 

LOGIC PROGRAMMING 

The use of logic as a specification language may be more familiar than its use as a programming 
language. A short introduction may therefore be appropriate. 

Logic programming (Kowalski 1974, 1983) is based upon (but not necessarily restricted to) the 

interpretation of rules of the form 

A ifB and C and ... 

as procedures 

to do A, 
do B and do C and .... 

This interpretation is equivalent to 'backwards reasoning' and is a special case of the resolution 
rule of inference (Robinson I965). It is the basis also of the programming language PROLOG 

(Colmerauer et al. 1973; Clark & McCabe I984). 

Example 1. 

(a) x is mortal if x is human. 
This is interpreted as the procedure 

'to show x mortal 
show x human' 

or 
'to find x mortal 

find x human' 

depending whether x is given or not. 
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R. KOWALSKI 

(b) Socrates is human. 
This is interpreted as a procedure that solves problems without introducing further 

subproblems. 
The notation of (a) and (b) is one we have used to simplify the syntax of logic for teaching 

children (Ennals I982). This syntax is translated by a PROLOG program into more conventional 

symbolic notation: 

Mortal(x) if Human (x) 
Human(Socrates). 

To find a mortal we pose the query 

Find x where Mortal(x). 

This is equivalent to proving the theorem: 

there exists an x such that x is mortal, i.e. 
3 x Mortal(x). 

The procedural interpretation answers the query by reasoning backwards from the theorem 
to be proved by using 1 (a) to reduce the problem to the subproblem of showing 

there exists an x such that x is human, 

which is solved directly by 1 (b). As a byproduct, the solution 

x = Socrates 

can be extracted from the proof. In this way I (a) and I (b) behave as a program and backwards 

reasoning behaves like procedure invocation. 
In this example we are given declarative statements of classical logic, and the procedural 

interpretation turns them into a program. The following example is more obviously related to 

computing. 

A LOGIC SPECIFICATION OF THE SORTING PROBLEM 

Example 2. 

Sort(x y) if Permutation(x y) 
and Ordered(y). 

The rule can be read both declaratively: 

'y is a sorted version of x 
if y is a permutation of x 
and y is ordered' 

and procedurally: 

'to sort x into y 
find a permutation y of x and 
show y is ordered'. 

Given complete definitions of the lower-level Permutation and Ordertied relations, the rule for 
Sort completely specifies the notion of sorting. The procedural interpretation turns the specification 
into an executable, although very inefficient, non-deterministic program. 
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LOGIC PROGRAMMING AND SPECIFICATION 

Notice that the specification of sortedness can be used both to test given x and y and to 

generate y as output, given x. It can even be used to generate pairs of x and y that satisfy the 
Sort relation. This is the same flexibility that we have with database queries. The mechanization 
of theorem-proving makes it possible to query program specifications. 

Note also that the specification of sortedness contains no assignment statements or other side 
effects. The purpose of assignment is to re-use space for the purpose of efficiency. It has no place, 
therefore, in program specifications where the emphasis is on clarity. 

A LOGIC PROGRAM FOR THE SORTING PROBLEM 

Example 3. 

Sort(x x) if Ordered(x) 
Sort(x y) if i <j 

and xi > xj 
and Interchange(x ij z) 
and Sort(z y). 

The declarative reading of the rules is obvious: 

If x is ordered 
then x is already a sorted version of itself. 
If x contains some out of order pair 

xi > xj where i <j 
and these are interchanged giving an 

intermediate sequence z 
and y is a sorted version of z 
then y is also a sorted version of x. 

But it is the procedural interpretation of the rules that makes them useful. Taken together the 
two rules behave as a procedure. Given x as input and y as output 

to sort x, 

repeatedly interchange out of order pairs 
xi > xj where i <j 
until x is ordered. 

Here we have used functional syntax with relational semantics. The single condition 

i > xj, 

which employs a form of functional syntax, would need to be replaced by three conditions in 
relational syntax: 

Contains(x i u) and 

Contains(xj v) and 
u > v. 

We shall have more to say about the relation between functional and relational syntax later. 
Notice that the procedural reading of the rules suggests a destructive assignment operation 

that replaces the sequence x by the result of interchanging xi and xj. Such an assignment that 

destroys the preceding value of x is an efficiency-improving operation that should not be allowed 
to affect the semantics of the rules as determined by their declarative reading. 
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R. KOWALSKI 

VERIFICATION OF LOGIC PROGRAMS 

A complete logic specification defines a collection of relations in the same way that a logic program 
does. Given a set of sentences S containing a predicate, say P(x y), S defines P in the sense that 

(s t) is in the relation P 
iff 

S logically implies P(s t) 
or equivalently 
for first-order logic 
iff 

P(s t) can be proved from S. 

This notion of 'definition' accords with our intuition in the case where S is a logic program. 
Because it is so hard to distinguish between programs and complete specifications, we use the 
same notion of definition for both. But notice that, according to this, any relation defined 

by a finite set of sentences of first-order logic is semi-computable (i.e. recursively enumerable). 
This conflicts with the usual notion of semantic definition in which even very simple sentences 
of first-order logic 'define' uncomputable relations. 

We shall now prove that the sort program of example 3 meets the specification of example 2. 
To do this we shall show that if (s t) is in the relation defined by the program then it is also 
in the relation defined by the specification. 

Proof by induction on the length n of a proof (computation) of Sort(s t) by means of the 

program. We shall show that 

if the program implies Sort(s t) then 
t is a permutation of s and 
t is ordered. 

n = 1. Sort(s t) can be proved by using the first rule of the program alone. 

Therefore s = t and s is ordered. 
So t is a permutation of s and t is ordered. 

n = k + 1. There is a backward proof of Sort(s t), the first step of which uses the second rule 

of the program to reduce the goal Sort(s t) to the subgoals 

i<j 
Si > Sj 

Interchange(s ij r) 
Sort(r t), 

for some concrete i, j and r. Obviously, the proof of the subgoal Sort(r t) takes fewer than k + I 

steps. Therefore we may assume by the induction hypothesis that 

t is a permutation of r and 
t is ordered. 

But Interchange(s ij r) implies that 

r is a permutation s. 
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LOGIC PROGRAMMING AND SPECIFICATION 

Therefore 

t is a permutation of s and 
t is ordered. 

The relation between the specification of sortedness and various logic programs for sorting lists 
has been studied in detail by Clark & Darlington (1980). 

The inductive method of proof, which works in this example to show that a program meets 
its specification, works whether the specification is partial or complete. The same proof, in 

particular, shows that the program meets the partial specification that 

t is ordered whenever Sort(s t) is logically implied by the program. 

Notice, however, as this example shows, there is no purely syntactic distinction between 

complete and partial specifications. A definition of orderedness is a complete specification for 
the problem of testing or generating ordered sequences, but it is only a partial specification 
for the sorting problem. 

A PROGRAM WITHOUT A SPECIFICATION 

The following example, due to Peter Hammond (Hammond & Sergot 1983), is a logical 
reconstruction of a small part of a medical expert system implemented in the expert system 
shell EMYCIN. It can be regarded either as a program without a specification or as a complete 
specification that runs efficiently enough not to need a separate program. 

Example 4. 
x should take y if x has complained of z 

and y suppresses z 
and Not y is unsuitable for x 

y is unsuitable for x if y aggravates z 
and x has condition z 

aspirin suppresses inflammation 

aspirin suppresses pain 
etc. 

aspirin aggravates peptic ulcer 
lomotil aggravates impaired liver function 

etc. 

This example is characteristic of many others whose main objective is to represent some aspect 
of human knowledge or expertise. It has no specification besides the informal constraint that 
it reflects such knowledge and expertise as faithfully as possible. In this respect it bears more 
resemblance to a program specification than it does to a program. On the other hand, because 
it runs with tolerable efficiency, it is impossible not to regard it as a program as well. Similar 

examples can be found in the field of expert systems, in the formalization of legislation (Cory 
et al. 1984) and in data processing, where database queries, for example, can be regarded as 

specifications that behave like programs. This example also illustrates two other features of' logic 
programs': negation by failure and declarative input-output. 
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NEGATION BY FAILURE 

In our previous examples we have restricted ourselves to the use of rules and queries with 

positive atomic conditions. This is equivalent to the Horn clause subset of logic. In example 4 
we have extended the Horn clause subset to allow negated conditions. The procedural 
interpretation of Horn clauses can be extended to deal with such conditions. For example, a 

negated condition such as 

Not y is suitable for x 

is judged to hold if the positive condition 

y is unsuitable for x 

fails to hold. Such negation by failure is consistent with classical negation (Clark 1978) provided 
the implicit only-if half of 'definitions' is made explicit, i.e. in this case provided the second 
rule is re-expressed as 

y is unsuitable for x 

iff there exists z such that y aggravates z 

and x has condition z. 

Moreover, negation by failure can only be used to test conditions and not to generate 
solutions. For example, given the additional assumption 

John has condition peptic ulcer, 

the negated goal 

Find y where Not y unsuitable for John 

incorrectly fails because the unnegated goal. 

Find y where y unsuitable for John 

succeeds. Thus, although negation by failure is correct and efficient, it is also incomplete. The 
limitations of negation by failure are discussed in Kowalski (I983). 

DECLARATIVE INPUT-OUTPUT 

In example 4 the relations 

x has complained of 2 
and 

x has condition z 

are not defined. The appropriate parts of their 'definitions' can be provided dynamically by 
'the user' as they are required by the system. This makes input-output declarative in the sense 
that it can be understood entirely in logical terms: the output is a logical consequence of the 
information initially contained in the system together with any information provided by the 
user (Sergot 1982). The input can be given in any order, provided it does not affect the logical 
implication of the output. 
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LOGIC PROGRAMMING AND SPECIFICATION 

THE EXTENDED HORN CLAUSE SUBSET OF LOGIC 

The Horn clause subset of logic, even if it is extended to allow negated conditions, lacks the 

expressive power of the standard form of logic. For example, the natural specification of the subset 
relation requires the use of a condition that itself has the form of a universally quantified Horn 
clause. 

Example 5. 

(a) X ' Y if For all z [zeY if zeX]. 

We call this generalization of the Horn clause subset of logic, in which conditions can have 
the form of universally quantified Horn clauses, the extended Horn clause subset of logic. This 
extension has great expressive power and many examples such as the definition of subset, the 
definition of greatest common divisor and the definitions of ordered sequence given later in 
the paper can be formalized naturally within this language. The use of conditions that are 

universally quantified Horn clauses often makes it possible to avoid the use of recursion. For 
the definition of subset, recursion is unavoidable if we restrict ourselves to the use of Horn 
clauses: 

(b) Nil c Y 

cons(u v) ' Y if u E Y and v ' Y. 

The Horn clause definition of subset is the obvious recursive program, given that sets are 

represented by lists. It is very like a program in a functional programming language and it 
can be directly executed in PROLOG. 

Given an appropriate definition of the membership relation e, 5 (a) is a complete specification 
of the subset relation. It is executable in the sense that if s = t is implied by 5 (a) together with 
the associated definition of E then s ' t can be proved by means of a mechanical theorem-proving 
procedure. With today's general-purpose theorem-proving procedures, however, this will be 

very inefficient. But by translating 'For all' into double negation and interpreting negation 
by failure, universally quantified Horn clause conditions can be executed both correctly and 

efficiently. The specification 5 (a) of subset, in particular, will run as an iteration: 

given s and t it will attempt to show s ' t by consecutively generating the elements 
of s and showing that they belong to t (byfailing to show that there is any element 
of s that does not belong to t). 

Such iterative execution of the specification can be more efficient than recursive execution of 
the program. Thus much of the work that has previously gone into the derivation of programs 
from specifications may have been wasted. Moreover, it has also distracted attention from the 

problem of designing theorem-provers that efficiently execute program specifications. 
The 'specification' of subset can benefit more than the recursive program from being 

executed by means of different strategies. For example, an 'or-parallel' theorem-prover that 
can explore alternatives in parallel could, conceptually at least, attempt to show s c t by 
exploring the elements of s in parallel, perhaps using associative look-up to show that they all 

belong to t. Thus we obtain different algorithms simply by changing the mode of execution 

(Kowalski 1979). 
On the other hand, the translation of 'For all' into double negation and the interpretation 

of negation as failure, although correct and efficient, is incomplete. Certain logical consequences 
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cannot be proved by these means. In particular, although 5 (a) can be used to test that the 

subset relation holds for given s and t, by using these methods it cannot be used to generate 
s from t or t from s. Moreover, it will succeed only when s has finitely many members. 

THE DERIVATION OF LOGIC PROGRAMS FROM LOGIC SPECIFICATIONS 

Given a logic program and a complete logic specification, it is often possible to derive the 

program from the specification. Such programs are derived by using the rules of logic and as 

a consequence are guaranteed to be correct. 

Although in the subset example it may be better to execute the 'specification' than the 

'program', in other cases no execution strategy can render a specification as efficient as a 

program. It is instructive, therefore, to show how 5 (b) can be derived from 5 (a), if only because 

it is a simple example and because such derivation is useful in other cases. For this we need 

to replace the if-half of the specification by its full iff form: 

X = Y iffFor all z [zeY ifzeX]; (sl) 

we also need auxiliary definitions to specify how sets can be represented by lists: 

Not Exists z [z E Nil] (s2) 

zecons(u v) iffz = u or zev. (s3) 

These three sentences, together with the axioms of equality, constitute a complete specification, 
which logically implies the program. 

Proof. 
(a) The specification implies the recursive clause of the program: 

Xc Y if For all z [zeY ifzeX] (by (si)) 

(the if-half of the specification) 
cons(u v) _ Y if For all z [zeY if [z = u or ze v]] (by (s3)) 

cons(u v) ' Y if For all z [z Y if z = u] 
and For all z [z e Y if z e v] 

cons(u v) C Y if ueY and v c Y (by (si)) 

(b) The specification implies the basis of the program: 

Nil - Y if For all z [z e Y if z e Nil] (by (s )) 
(an instance of the if-half of the specification) 
Nil c Y if For all z [z e Y if False] (by (s2)) 
Nil c Y if True 
Nil Y. 

Note that the proof of (a) can be regarded as generalizing the fold-unfold method of Burstall 

& Darlington (977). It can be viewed both as logical proof and aas symbolic execution of the 

specification. This method of deriving logic programs from logic specifications has been 

developed by Clark (Clark & Sickel 1977; Clark et al. 1982); Hogger (I978 a, b) and others 

(Hanson & Tarnlund I979; Winterstein et al. I980). 
We have shown that the program is partially correct by showing that it is logically implied 

by its specification. This may be counter-intuitive, and therefore requires explanation. Suppose 
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LOGIC PROGRAMMING AND SPECIFICATION 

a set of sentences S defines a relation P(x y). (In a typical application, x might be input, y output 
and P(x y) an input-output relation.) This means that 

(x y) is in relation P 
iff 
S F- P(x y). 

Where X F- Y means that conclusion Y can be proved from assumptions X. Thus not only does 
S imply P(x y), it also 'computes' it, in the sense that its instances can be derived by means 
of a mechanical theorem-proving procedure. Suppose Spec and Prog are a complete specification 
and a program, respectively, defining a relation P(x y). Then to say that the program is partially 
correct relative to the specification is to say that every instance of P that is a consequence of 

Prog is also a consequence of Spec, i.e. 

if Prog f- P(x y) then Spec F- P(x y). 

But this holds if 

Spec -- Prog 

by the transitivity of the proof predicate. If the converse holds, i.e. 

if Spec 1- P(x y) then Prog t- P(x y), 

then the program is complete in the sense that the program derives every instance of P that is 
defined by the specification. This holds if 

Prog h- Spec. 

Notice that to prove correctness or completeness we can replace either Spec or Prog by any 
stronger set of sentences that implies the same atomic relations. This justifies the use of the iff 
form of definitions and induction in such proofs. Thus it is closely related to Hoare's 
identification of a program (this symposium) with the strongest predicate that describes its 
behaviour. 

Notice also that to prove a specification implies a program, we need to show that the 

specification logically implies each clause in the program. Thus the complexity of proving partial 
correctness is linear in the number of clauses in the program, and the complexity of proving 
completeness is linear in the number of clauses in the specification. 

VERIFICATION OF THE EUCLIDEAN ALGORITHM 

The Euclidean algorithm can be verified by the same technique of deriving programs from 

specifications that was used to verify the recursive program for subset. For the Euclidean 

algorithm, however, the program is significantly more efficient than the specification. Here we 
use functional notation for the sake of clarity. 

Example 6. 

(a) gcd(x y) = z if z divides x 
and z divides y 
and For all u [u < z if u divides x 

and u divides y]. 
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Notice that, like the definition of subset, this definition is expressed in the extended Horn clause 
subset of logic. However, the Euclidean algorithm for gcd can be expressed in Horn clause form: 

(a) gcd(x y) = z if x divides y 
gcd(x y) = z if x y 

and x divides y with remainder r 
and r =- 0 
and gcd(r x) = z. 

As for example 5, it can be shown that the specification (in iff form together with auxiliary 
properties of' divides', ' < ' and the axioms of equality) logically implies the program. However, 
unlike example 5, the derivation requires genuine mathematical ingenuity. Although both 

specification and program are executable, the program is significantly more efficient. 

Note. 

(1) The functional notation gcd(x y) = z can be rewritten in relational notation as 

Gcd(x y z). 
(2) By exploiting functional notation, the second clause of the program can be written more 

compactly as 

gcd(x y) = gcd(r x) if x y 
and x divides y with remainder r 
and r = 0. 

(3) For the sake of completeness we need to add a third clause 

gcd(x y) = gcd(y x) if y < x. 

The use of functional notation simplifies the program, but is inefficient if the equality symbol, 
=, is defined by means of the axioms of equality. We shall show later how functional notation 
can be transformed into relational notation without equality. Thus we can have the convenience 
of functional notation while retaining the semantics of relations. Relational semantics gives us 
both partial functions and non-deterministic functions as special cases. 

ALTERNATIVE SPECIFICATIONS OF ORDEREDNESS 

In our next and last example we show that the technique of deriving programs from 

specifications also applies when both the specification and the program are formulated in the 
extended Horn clause subset of logic. Moreover, it applies when both program and specification 
can be regarded as alternative specifications. 

Example 7. 
A specification-program of ordered sequence: 

(a) Ordered(x) if For all ij [xi < xj if i < j]. 

Another specification-program: 

(b) Ordered(x) if For all i [xi < xi+l]. 

Executed by means of an extended Horn clause theorem-prover, 7 (b) is significantly more 
efficient than 7 (a). Given a sequence x of finite length n, it takes time/space proportional to 
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LOGIC PROGRAMMING AND SPECIFICATION 

n to test whether x is ordered; 7 (a) takes time/space proportional to n2. Both 7 (a) and 7 (b) 
are more flexible than a conventional algorithm in that the elements of the sequence x can be 
accessed either in sequence or in parallel. Either way, 7 (b) can be executed at least as efficiently 
as a conventional program. 

It is instructive to compare 7 (b) with the corresponding Horn clause program, where 

sequences are represented by lists 

Ordered (Nil) 
Ordered(cons(u Nil)) 
Ordered(cons(u cons(v w))) if u < v 

and Ordered(cons(v w)). 

This is less natural than 7 (b) and less flexible. Not only is it restricted to sequential exploration 
of the sequence, but it is committed to exploring it in one particular order. 

It is harder to compare 7 (a) and 7 (b) as specifications than it is to compare them as programs. 
What is clear, however, is that it is much easier to show that 7 (b) implies 7 (a) than it is to 
show the converse. 

THEOREM. Example 7 (b), with appropriate properties of , implies 7 (a). 

Proof. Assume 
For all ij [xi < xj if i <j], 

then For all i [xi < xi+l] (since i < i+ 1), 
then Ordered (x) (assuming 7 (b)), 
therefore 7 (a). 

This can be interpreted as showing either that 7 (a) is a correct program relative to 7 (b) as 

specification or that 7 (b) is a complete program relative to 7 (a) as specification. 

THEOREM. Example 7 (a), with induction and appropriate properties of <, implies 7 (b). 

Proof. We shall show 7 (a) implies 7 (b) by showing that 

For all i [xi < xi+l] 
implies 

For all ij [xi < xj if i <j]. 

The proof is by induction on j. 

j = 0. For all i [xi < x0 if i < 0] is vacuously true on the assumption that sequence indices 
are non-negative. 

j k+ 1. Assume i < k+ 1. We need to show xi < xk+i. 
Case 1. i= k. 

Then xi < xk, 
xk < Xk+1 (assuming 7 (a)), 

therefore xi < xk+l. 
Case 2. i < k. 

Then xi < xk (by induction hypothesis), 
xk < xk+l (assuming 7 (a)), 

therefore xi < xk+l. 
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THE RELATION BETWEEN FUNCTIONAL AND RELATIONAL NOTATION 

Perhaps the main alternative to the use of logic for program specification is some form of 
functional language with equality. The semantics of such languages are usually defined by 
means of algebra or category theory, and rewrite or reduction rules are usually used to execute 
them. 

If we restrict attention to first-order functional languages (in which functions are not allowed 
as arguments to functions) then it is possible to transform equations into Horn clauses, providing 
them with a model theoretic semantics and predicate logic proof rules. This is done by treating 
functions as a special case of relations. We use the schemas 

f(x) y iff F(x y), (E1) 
P(f(x)) iff For all y [P(y) iff(x) = y], (E2) 

where with every function symbol f there is associated a predicate symbol F and P(y) is any 
formula with free variable y. For simplicity we consider functions of one argument. Functions 
of several arguments can be treated in the same way. 

Consider the simple example of a functional program for computing the length of lists: 

length(Nil) = 0 

length (cons (u v)) = length(v) + I 

We can use (El) and (E2) to transform this into a Horn clause program. 

(a) length(Nil) = 0 

Length(Nil 0) (by (El)) 
(b) length(cons (u v)) = length(v) + 1 

Length (cons (u v) length(v) + 1) (by (El)) 
Length (cons (u v) y) if length(v) + = y (by (E2)) 
Length(cons(u v) y) if Plus(length(v) 1 y) (by (El)) 
Length (cons (u v) y) if Plus(z 1 y) 

and length(v) = z (by (E2)) 
Length(cons(u v) y) if Plus(z 1 y) 

and Length(v z) (by (El)) 

Notice that the application of (E2) in the penultimate step involves treating the whole formula 

Length (cons (u v) y) if Plus(length(v) 1 y) 

as P(length(v)). By using (E2) this becomes 

[Length(cons(u v) y) if Plus(z 1 y)] if length(v) = z, 

which simplifies to 

Length (cons(u v) y) if Plus(z 1 y) and length(v) = z. 

In Kowalski (1983) this step was performed more directly by using an additional schema (E3) 

P(f(x)) iff Exists y [P(y) and f(x) = y], 

which unnecessarily assumes that the function f is total. 
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The schema (El) and (E2) have been used in effect as a higher-order program that transforms 

equations into Horn clauses. This transformation, moreover, provides the basis for a simple 
proof that any recursively enumerable function can be computed by means of Horn clauses. 
Take any set of recursion equations defining a recursively enumerable function and apply (El) 
and (E2) to produce a Horn clause program that computes the same function. It is straight- 
forward to verify that each computation step, which uses the recursion equations as rewrite rules, 
can be mimicked by backwards reasoning by using the corresponding Horn clauses to get the 
same result. (The proof, which is given in greater detail in Kowalski (1983), uses (E3) in 

addition to (El) and (E2), and therefore incorrectly assumes that recursively enumerable 
functions are total.) 

CONCLUSION 

The examples investigated in this paper show how hard it is to distinguish logic programs 
from complete logic specifications. The only criterion that can be used to discriminate between 
them seems to be relative efficiency, but this applies just as much to pairs of programs as it 
does to pairs of programs and specifications. 

Given a distinction between program and specification, however, verification of the program 
reduces to a demonstration of logical implication. Given a complete specification, in particular, 
it is often possible to verify the program by showing that it can be derived from the specification 
by using the rules of logic. 

Logic sufficiently blurs the distinction between program and specification that many logic 
programs can just as well be regarded as executable specifications. On one hand, this can 

give the impression that logic programming lacks a programming methodology; on the other, 
it may imply that many of the software engineering techniques that have been developed for 
conventional programming languages are inapplicable and unnecessary for logic programs. 
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Discussion 

M. A. JACKSON (101 Hamilton Terrace, London, U.K.). Professor Kowalski spoke more than once 
of the 'efficiency' of a specification. Does he interpret efficiency with respect to some operational 
definition of his semantics? 

R. KOWALSKI. The execution of a logic program or specification is made by means of a 
mechanical proof procedure. Given a fixed proof procedure, different specifications-programs 
behave with different efficiency. The efficiency of a specification, therefore, can only be 
evaluated relative to some proof procedure. Such a proof procedure can be regarded as defining 
an operational semantics. Model theoretic semantics defines a denotational semantics. 

M.J. ROGERS (Department of Computer Science, University of Bristol, U.K.). Programs written in 
PROLOG seem in practice to be very much more difficult to check for correctness than those 
written in a procedural language. Part of this difficulty appears to stem from tracing the actions 
in taking the first matching clause and then following the program through nested loops. The 

problem is further complicated by the action of assert and retract clauses. 

R. KOWALSKI. In the paper I have restricted my attention to logic programming with Horn 
clauses and various extensions. I have not considered PROLOG and its relation with logic 
programming. 

Pure logic programs can be verified without taking their behaviour into account. This makes 
it possible to use increasingly sophisticated proof procedures to execute logic programs without 

complicating correctness proofs. 
It is possible to write pure logic programs in PROLOG, but because of its depth-first search, 

this can give rise to infinite loops and other less extreme forms of inefficiency, especially when 

executing specifications rather than programs. To avoid such loops the 'programmer' may need 
to control the order in which clauses are executed. The verification of such programs then needs 
to take behaviour into account; and, because PROLOG'S behaviour includes back-tracking and 
is more complicated than conventional program execution, verification of such programs can 

be more complicated than verification of conventional programs. 
The dynamic assertion and retraction of clauses in PROLOG programs introduces a form of 
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destructive assignment, for the purpose of improving efficiency. This further complicates 
behaviour and, what is worse, destroys the behaviour-independent semantics of the program 
and significantly complicates program verification. 

There are two main ways to improve this undesirable situation. (1) Insist on greater logic 
programming discipline within PROLOG programs. Where this leads to inefficiency, transform 
the logic program in a correctness-preserving way so that it runs efficiently without using the 

extralogical features of PROLOG. The resulting program will be less obviously correct, but at 
least its correctness can be demonstrated declaratively without needing to consider its 
behaviour. (2) In the longer term, we need to develop improved logic programming languages, 
which do not rely on extralogical features for the sake of efficiency. Special attention needs to 
be paid, in particular, to combatting the worst cases of inefficiency, which arise as a result of 
not being able to use programmer-controlled destructive assignment. 

J. C. SHEPHERDSON (School of Mathematics, University of Bristol, U.K.). Can Professor Kowalski 

explain why one often says 'if' when one means 'if and only if'? 

R. KOWALSKI. The 'if-' half of the 'if-and only if' half of definitions is the computationally 
useful part. On the one hand, the explicit use of 'if and only if' syntax obscures the pragmatic 
intention conveyed by using 'if'; on the other hand, using 'if' obscures the fact that 'only if' 
is also intended. 

The use of' if' syntax facilitates incremental program and specification development. It makes 
it easy to add more clauses to a definition, without explicitly retracting an explicitly stated 

'only-if' assumption. 
The use of 'if' when 'if and only if' is intended can be regarded as a special case of default 

reasoning, where some assumption is made 'by default'. Default reasoning is common in 
artificial intelligence, especially in systems based on frames, where it is generally regarded to 
be in conflict with classical logic. It can be argued that replacing 'if' halves of definitions by 
'if and only if' gives a logical reconstruction of default reasoning. 

D. SANNELLA (Department of Computer Science, University of Edinburgh, U.K.). 
(1) I do not see why Professor Kowalski's logic program for subset is more amenable to 

parallel execution than an equivalent functional program would be. Functional programs offer 
the same opportunities for parallel execution as logic programs, and for exactly the same 
reasons. 

(2) In his gcd example, Professor Kowalski seemed to indicate that the search for gcd(x, y) 
would be limited to numbers less than x and y. Putting a limit on the search requires either 
a careful choice of the specification of divides (which must state more or less explicitly that 
divides (x, y) is false if x > y) or else a lot of cleverness on the part of the compiler. The fact 
that some specifications lead to non-terminating programs suggests that the relation between 

specifications and programs is not as close as Professor Kowalski says. 

R. KOWALSKI. (1) Logic programs provide for two main kinds of parallelism, and-parallelism 
and or-parallelism. And-parallelism is the analogue of parallel evaluation of subterms in 
functional programming languages. The opportunity for or-parallelism, however, results from 
the non-deterministic computation of relations instead offunctions. It is the analogue of parallel 
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search for answers to queries in relational databases. This combination of opportunities for both 

and-parallelism and or-parallelism reflects the fact that logic programming can be regarded 
as generalizing and unifying functional programming and relational databases. The resulting 
unification also encompasses rule-based languages of the kind used for expert systems. 

(2) There are two ways to 'execute' the specification of gcd: by means of a standard 

theorem-prover for first-order logic or by using negation by failure. Because negation by failure 
is incomplete in the general case, it may be incomplete in a particular case such as the 

specification of gcd, especially if, as D. Sannella points out, the definition of divides(x y) does 
not have some explicit or implicit constraint that x < y. 

However, if we use any complete theorem-prover for first-order logic and the definition of 

gcd implies the existence of a gcd, for particular numbers x and y, then, by the completeness 
theorem for first-order logic, the theorem-prover is guaranteed to terminate successfully with 
an existence proof. Most theorem-provers, including all theorem-provers based on the 
resolution principle, will construct the gcd as a by-product of the proof. Thus, except for the 

inefficiency involved in using a general-purpose theorem-prover for computation, there is no 
difference in principle between a program and a complete specification, except for efficiency. 

M. M. LEHMAN (Department of Computing, Imperial College, London, U.K.). Professor Kowalski said 
'you cannot get a specification right the first time'. May I suggest that he should have said 
'you cannot get a specification right', period. 

A specification can be wrong in one of two ways (or both). It may, for example, be internally 
inconsistent, in that it includes (at least) two inconsistent statements, a situation that could 
be detected (for example by a verification procedure) calculable for a formal specification. But 
for a specification defining a program that is to be used to find a solution to a real problem 
currently of interest, the issue is one of satisfaction, not correctness. A specification may be 

effectively incorrect in that, as formulated, even though totally self consistent, the problem whose 
solution is specified is not that to which a solution is required. 

In practice, this always happens. The very development of a specification changes one's 

viewpoint of the problem and of means for its solution. The very execution of a program changes 
one's view and definition of the problem one wishes to solve. Hence computer applications and 
the specifications that define programs that implement them are, by their very nature, 
evolutionary. A specification must be viewed as a dynamic object that always needs to be 

adapted. A specification is never absolutely right. 

R. KOWALSKI. I very much agree with the spirit of Professor Lehman's remark: it is very difficult 
to get a specification absolutely right. However, the ability to execute a specification would 

help a great deal to test its assumptions and to identify where they might be changed to avoid 

unacceptable consequences. The conventional software life cycle that waits to test a specification 
until it is implemented as a program is a very inefficient way of improving specifications. 

Whether it is ever possible to get a specification absolutely right is not the main issue. What 
matters is that we should be easily able to change a specification when it is necessary or desirable 
to do so. The use of logic to formalize specifications provides a proof theoretic framework which 
facilitates the alteration of specifications to more adequately meet user requirements as well 
as to meet changing requirements. 
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D. PARK (Computer Science Department, Warwick University, Coventry, U.K.). Many people are 
reluctant to discard procedural programming concepts; perhaps this is because they see the 
execution of a program as primarily a simulation of a succession of events in the world, rather 
than as a process of deduction about what holds in one particular state of the world. Does the 
ideal programming language perhaps need concepts of both sorts? Is there some compromise 
position? 

R. KOWALSKI. You have identified what is probably the most important, unresolved problem 
in logic programming. It is an instance of a more general problem, known as the 'frame 

problem', in artificial intelligence. There are various proposals and outlined solutions for this 

problem. I have discussed one of these proposals in Kowalski (1983). Although I am not certain 
what the right solution is, I hope that it will not involve procedural programming with explicit 
destructive assignment as we know it today. 

24-2 
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