
Hybrid session verification through
Endpoint API generation

Raymond Hu and Nobuko Yoshida

Imperial College London

1 / 1

Outline

I Background: multiparty session types (MPST)
I Implementations and applications of MPST

I Hybrid session verification through Endpoint API generation
I Practical MPST-based (Scribble) toolchain
I Simple example: Adder service
I Real-world example: Simple Mail Transfer Protocol (SMTP)

2 / 1

Multiparty session types (background)
I Programming distributed applications

I From: protocol spec. (e.g. natural language, sequence diagrams, . . .)
I To: endpoint programs that faithfully implement their role in the protocol
I Potential errors:

× Communication mismatch: e.g. receiver is sent an unexpected message
× Protocol violation: executed interaction does not follow the protocol
× Deadlock: e.g. all endpoints blocked on input

I Types for specification and verification of message passing programs
I Originally developed as a type theory in the π-calculus [POPL08]

G

LA
. . . LC

PA

. . .
PC

Projection

Static type checking

3 / 1

Multiparty session types (background)
I Programming distributed applications

I From: protocol spec. (e.g. natural language, sequence diagrams, . . .)
I To: endpoint programs that faithfully implement their role in the protocol
I Potential errors:

× Communication mismatch: e.g. receiver is sent an unexpected message
× Protocol violation: executed interaction does not follow the protocol
× Deadlock: e.g. all endpoints blocked on input

I Types for specification and verification of message passing programs
I Originally developed as a type theory in the π-calculus [POPL08]

G

LA
. . . LC

PA

. . .
PC

Projection

Static type checking

4 / 1

A B CT1

T2

T3

Multiparty session types (background)
I Programming distributed applications

I From: protocol spec. (e.g. natural language, sequence diagrams, . . .)
I To: endpoint programs that faithfully implement their role in the protocol
I Potential errors:

× Communication mismatch: e.g. receiver is sent an unexpected message
× Protocol violation: executed interaction does not follow the protocol
× Deadlock: e.g. all endpoints blocked on input

I Types for specification and verification of message passing programs
I Originally developed as a type theory in the π-calculus [POPL08]

G

LA
. . . LC

PA

. . .
PC

Projection

Static type checking

5 / 1

A B CT1

T2

T3

G = A → B : T1.

B → C : T2.

C → A : T3.end

Multiparty session types (background)
I Programming distributed applications

I From: protocol spec. (e.g. natural language, sequence diagrams, . . .)
I To: endpoint programs that faithfully implement their role in the protocol
I Potential errors:

× Communication mismatch: e.g. receiver is sent an unexpected message
× Protocol violation: executed interaction does not follow the protocol
× Deadlock: e.g. all endpoints blocked on input

I Types for specification and verification of message passing programs
I Originally developed as a type theory in the π-calculus [POPL08]

G

LA
. . . LC

PA

. . .
PC

Projection

Static type checking

6 / 1

A B CT1

T2

T3

G = A → B : T1.

B → C : T2.

C → A : T3.end

A :!〈B, T1〉.?(C , T3).end
B :?(A, T1).!〈C , T2〉.end
C :?(B, T2).!〈A, T3〉.end

Multiparty session types (background)
I Programming distributed applications

I From: protocol spec. (e.g. natural language, sequence diagrams, . . .)
I To: endpoint programs that faithfully implement their role in the protocol
I Potential errors:

× Communication mismatch: e.g. receiver is sent an unexpected message
× Protocol violation: executed interaction does not follow the protocol
× Deadlock: e.g. all endpoints blocked on input

I Types for specification and verification of message passing programs
I Originally developed as a type theory in the π-calculus [POPL08]

G

LA
. . . LC

PA

. . .
PC

Projection

Static type checking

7 / 1

A B CT1

T2

T3

G = A → B : T1.

B → C : T2.

C → A : T3.end

A :!〈B, T1〉.?(C , T3).end
B :?(A, T1).!〈C , T2〉.end
C :?(B, T2).!〈A, T3〉.end

ā[A](x).x !〈B, t1〉.x?(C , u3).0
a[B](y).y?(A, u1).y !〈C , t2〉.0
a[C](z).z?(B, u2).z!〈A, t3〉.0

Multiparty session types (background)
I Programming distributed applications

I From: protocol spec. (e.g. natural language, sequence diagrams, . . .)
I To: endpoint programs that faithfully implement their role in the protocol
I Potential errors:

× Communication mismatch: e.g. receiver is sent an unexpected message
× Protocol violation: executed interaction does not follow the protocol
× Deadlock: e.g. all endpoints blocked on input

I Types for specification and verification of message passing programs
I Originally developed as a type theory in the π-calculus [POPL08]

G

LA
. . . LC

PA

. . .
PC

Projection

Static type checking

8 / 1

I Static safety properties [MSCS15]
X Communication safety
X Protocol fidelity
X Deadlock-freedom (or progress)

[SFM15MP] A Gentle Introduction to Multiparty Asynchronous Session Types. Coppo,
Dezani-Ciancaglini, Luca Padovani and Yoshida.

[POPL08] Multiparty asynchronous session types. Honda, Yoshida and Carbone.
[MSCS15] Global Progress for Dynamically Interleaved Multiparty Sessions. Coppo,

Dezani-Ciancaglini, Yoshida and Padovani.

Implementing and applying session types (related work)

9 / 1

I Static session typing
I Extending existing mainstream languages, e.g.

I SJ (binary ST in Java) [ECOOP08]
I STING (MPST in Java) [SCP13]

I Need language support for tractability
I First-class channel I/O primitives (e.g. session initiation, choice, etc)
I Linearity/aliasing control of channel endpoints

[ECOOP08] Session-Based Distributed Programming in Java. Hu, Yoshida and Honda.
[SCP13] Efficient sessions. Sivaramakrishnan, Ziarek, Nagaraj and Eugster.

Implementing and applying session types (related work)

10 / 1

I Static session typing
I Embedding into existing languages, e.g. Haskell

I Neubauer and Thiemann [PADL04] (no session interleaving)
I simple-sessions [HASKELL08] (“manual” typing environment management)
I effect-sessions [POPL16] (synchronous)

I Varying tradeoffs involving expressiveness and usability

[PADL04] An Implementation of Session Types. Neubauer and Thiemann.
[HASKELL08] Haskell session types with (almost) no class. Pucella and Tov.

[POPL16] Effects as sessions, sessions as effects. Orchard and Yoshida.

I New languages, e.g.
I SILL (sessions in linear logic) [FoSSaCS13]

[FoSSaCS13] Polarized Substructural Session Types. Pfenning and Griffith.

Implementing and applying session types (related work)

I Run-time session monitoring
I Generate protocol-specific endpoint I/O monitors from source protocol

A → B : T1.B → C : T2.C → A : T3.end
B!T1 C?T3 A?T1 C !T2 B?T2 A!T3

I Direct application of ST to existing (and non-statically typed) languages
[RV13] Practical interruptible conversations. Hu, Neykova, Yoshida, Demangeon and

Honda.
[FMOODS13] Monitoring networks through multiparty session types. Bocchi, Chen,

Demangeon, Honda and Yoshida.
[ESOP12] Multiparty session types meet communicating automata. Deniélou and Yoshida.

I Code/assertion generation from session types
I For a specific target context: generate I/O stubs/skeletons, etc.
I e.g. MPI/C [CC15]: weaves user computation with interaction skeleton

[CC15] Safe MPI code generation based on session types. Ng, Coutinho and Yoshida.
[OOPSLA15] Protocol-based verification of message-passing parallel programs. López, Marques,

Martins, Ng, Santos, Vasconcelos and Yoshida.

11 / 1

Hybrid session verification through
Endpoint API generation

I Application of session types to practice:
I Hybrid (combined static and run-time) session verification

I Directly for mainstream (statically typed) languages
I Leverage existing static typing support

I Endpoint API generation
I Promote integration with existing language features, libraries and tools
I Protocol specification: Scribble (asynchronous MPST)
I Endpoint APIs: Java

I Result: rigorously generated APIs for implementing distributed protocols
I Cf. ad hoc endpoint implementation from informal specifications

12 / 1

Scribble toolchain

I Protocol spec. as Scribble global protocol (async. MPST)

I Global protocol validation
(safely distributable asynchronous protocol)

I Syntactic projection to local protocols
(static session typing if supported)

I Endpoint FSM (EFSM) translation
(dynamic session typing by monitors)

I Protocol states as state-specific channel types
I Call chaining API to link successor states

I Java APIs for implementing the endpoints

13 / 1

G

LC LS

EFSMC EFSMS

APIC APIS

Projection

EFSM translation

API generation

Scribble toolchain

I Protocol spec. as Scribble global protocol (async. MPST)

I Global protocol validation
(safely distributable asynchronous protocol)

I Syntactic projection to local protocols
(static session typing if supported)

I Endpoint FSM (EFSM) translation
(dynamic session typing by monitors)

I Protocol states as state-specific channel types
I Call chaining API to link successor states

I Java APIs for implementing the endpoints

14 / 1

G

LC LS

EFSMC EFSMS

APIC APIS

Projection

EFSM translation

API generation

Scribble toolchain

I Protocol spec. as Scribble global protocol (async. MPST)

I Global protocol validation
(safely distributable asynchronous protocol)

I Syntactic projection to local protocols
(static session typing if supported)

I Endpoint FSM (EFSM) translation
(dynamic session typing by monitors)

I Protocol states as state-specific channel types
I Call chaining API to link successor states

I Java APIs for implementing the endpoints

15 / 1

G

LC LS

EFSMC EFSMS

APIC APIS

Projection

EFSM translation

API generation

Scribble toolchain

I Protocol spec. as Scribble global protocol (async. MPST)

I Global protocol validation
(safely distributable asynchronous protocol)

I Syntactic projection to local protocols
(static session typing if supported)

I Endpoint FSM (EFSM) translation
(dynamic session typing by monitors)

I Protocol states as state-specific channel types
I Call chaining API to link successor states

I Java APIs for implementing the endpoints

16 / 1

G

LC LS

EFSMC EFSMS

APIC APIS

Projection

EFSM translation

API generation

Example: Adder

I Network service for adding two integers

global protocol Adder(role C, role S) {
choice at C {

Add(Integer, Integer) from C to S;
Res(Integer) from S to C;
do Adder(C, S);

} or {
Bye() from C to S;
Bye() from S to C;

}
}

I Scribble global protocol (asynchronous MPST)
I Role-to-role message passing
I Located choice

17 / 1

G

LC LS

EFSMC EFSMS

APIC APIS

Projection

EFSM translation

API generation

Example: Adder

I Network service for adding two integers

global protocol Adder(role C, role S) {
choice at C {

Add(Integer, Integer) from C to S;
Res(Integer) from S to C;
do Adder(C, S);

} or {
Bye() from C to S;
Bye() from S to C;

}
}

I Scribble global protocol (asynchronous MPST)
I Role-to-role message passing
I Located choice

18 / 1

G

LC LS

EFSMC EFSMS

APIC APIS

Projection

EFSM translation

API generation

Example: Adder

I Network service for adding two integers

global protocol Adder(role C, role S) {
choice at C {

Add(Integer, Integer) from C to S;
Res(Integer) from S to C;
do Adder(C, S);

} or {
Bye() from C to S;
Bye() from S to C;

}
}

I Scribble global protocol (asynchronous MPST)
I Role-to-role message passing
I Located choice

19 / 1

G

LC LS

EFSMC EFSMS

APIC APIS

Projection

EFSM translation

API generation

Example: Adder

I Network service for adding two integers

global protocol Adder(role C, role S) {
choice at C {

Add(Integer, Integer) from C to S;
Res(Integer) from S to C;
do Adder(C, S);

} or {
Bye() from C to S;
Bye() from S to C;

}
}

I Scribble global protocol (asynchronous MPST)
I Role-to-role message passing
I Located choice

20 / 1

G

LC LS

EFSMC EFSMS

APIC APIS

Projection

EFSM translation

API generation

Scribble protocol description language (background)
I Adapts and extends formal MPST for explicit specification and

engineering of multiparty message passing protocols
I Syntax based on [MSCS15]
I Communication model: asynchronous, reliable, role-to-role ordering

A

C

B

I Protocol = message types + interaction structure
I Fully explicit: no implicit messages needed to conduct a session

I Collaboration between researchers (Imperial College London) and industry
(Red Hat) developers

[TGC13] The Scribble Protocol Language. Yoshida, Hu, Neykova and Ng.
[COB12] Structuring communication with session types. Honda et al.

[Scribble] Scribble GitHub repo: https://github.com/scribble

21 / 1

1() from A to B;
2() from A to C;
3() from C to B;

https://github.com/scribble

Global protocol validation (interlude)

I Ensure source global protocol is valid for endpoint projection
I i.e. protocol can be safely realised via asynchronous message passing

between independent endpoints

I Ambiguous choice
choice at A {

1() from A to B;
2() from B to C;
3() from C to A;

} or {
4() from A to B;
2() from B to C;
5() from C to A;

}

I Race condition of choice
choice at A {

1() from A to B;
2() from A to C;
3() from B to C;
4() from C to B;

} or {
5() from A to B;
3() from B to C;
6() from C to B;

}

22 / 1

Example: Adder
global protocol Adder(role C, role S) {

choice at C {
Add(Integer, Integer) from C to S;
Res(Integer) from S to C;
do Adder(C, S);

} or {
Bye() from C to S;
Bye() from S to C;

}
}

I Syntactic projection to local protocol (for C)

local protocol Adder_C(self C, role S) {
choice at C {

Add(Integer, Integer) to S;
Res(Integer) from S;
do Adder_C(C, S);

} or {
Bye() from C to S;
Bye() from S to C;

}
}

23 / 1

G

LC LS

EFSMC EFSMS

APIC APIS

Projection

EFSM translation

API generation

Example: Adder
local protocol Adder_C(self C, role S) {

choice at C {
Add(Integer, Integer) to S;
Res(Integer) from S;
do Adder_C(C, S);

} or {
Bye() from C to S;
Bye() from S to C;

}
}

I Endpoint FSM for C

24 / 1

G

LC LS

EFSMC EFSMS

APIC APIS

Projection

EFSM translation

API generation

Example: Adder

I Endpoint API generation
I Session API:

Reify session type names as singleton types

I State Channel API:
EFSM represents the endpoint “I/O behaviour”

I Capture this I/O structure in the type system of the target language

25 / 1

G

LC LS

EFSMC EFSMS

APIC APIS

Projection

EFSM translation

API generation

Adder: Session API

I Reify session type names as Java types (eager singleton pattern)
public final class C extends Role {

public static final C C = new C();
...
private C() {

super("C");
}

I Main “Session” class
public final class Adder extends Session {

public static final C C = C.C;
public static final S S = S.S;
public static final Add Add = Add.Add;
public static final Bye Bye = Bye.Bye;
public static final Res Res = Res.Res;
...

I Instances represent sessions of this type in execution
I Encapsulates source protocol info, run-time session ID, etc.

26 / 1

Adder: Session API

...

27 / 1

Example: Adder

I Endpoint API generation
I Session API:

Reify session type names as singleton types
I State Channel API:

EFSM represents the endpoint “I/O behaviour”
I Capture this I/O structure in the type system of the target language

28 / 1

G

LC LS

EFSMC EFSMS

APIC APIS

Projection

EFSM translation

API generation

State Channel API

I Protocol states as state-specific channel types
I Java nominal types: state enumeration as default channel naming scheme

I Three state/channel kinds: output, unary input, non-unary input
I Generated state channel class offers exactly the valid I/O operations for

the corresponding protocol state
I Fluent interface for chaining channel operations through successive states

I Only the initial state channel class offers a public constructor

29 / 1

Adder: State Channel API for C

I Adder C 1 (output state)
I Output state has send methods

Adder_C_2 send(S role, Add op, Integer arg0, Integer arg1) throws ...
Adder_C_3 send(S role, Bye op) throws ...

I Parameter types: message recipient, operator and payload
I Return type: successor state (state channel chaining)
I Ouput choices via method overloading (session I/O operations directed by

the generated utility types)

30 / 1

Adder: State Channel API for C

31 / 1

Adder: State Channel API for C

I Adder C 2 (unary input state)
Adder_C_1 receive(S role, Res op, Buf<? super Integer> arg1) throws ...

I Unary input state has a receive method
I Received payloads written to a typed buffer argument
I (Tail) recursion: return a new instance of a “previous” state channel

I Adder C 3 (unary input state)
EndSocket receive(S role, Bye op) throws ...

I EndSocket for terminal state
32 / 1

Adder: endpoint implementation for C

Adder_C_1 c1 = new Adder_C_1(...);

33 / 1

Adder: endpoint implementation for C

Adder_C_1 c1 = new Adder_C_1(...);

c1.

34 / 1

Adder: endpoint implementation for C

Adder_C_1 c1 = new Adder_C_1(...);
Buf<Integer> i = new Buf<>(1);
c1.send(S, Add, i.val, i.val);

35 / 1

Adder: endpoint implementation for C

Adder_C_1 c1 = new Adder_C_1(...);
Buf<Integer> i = new Buf<>(1);
c1.send(S, Add, i.val, i.val)

.

36 / 1

Adder: endpoint implementation for C

Adder_C_1 c1 = new Adder_C_1(...);
Buf<Integer> i = new Buf<>(1);
c1.send(S, Add, i.val, i.val)

.receive(S, Res, i)

.send(S, Add, i.val, i.val)

.receive(S, Res, i)

.send(S, Add, i.val, i.val)

.receive(S, Res, i)

.

37 / 1

Adder: endpoint implementation for C

Adder_C_1 c1 = new Adder_C_1(...);
Buf<Integer> i = new Buf<>(1);
c1.send(S, Add, i.val, i.val)

.receive(S, Res, i)

.send(S, Add, i.val, i.val)

.receive(S, Res, i)
//.send(S, Add, i.val, i.val)
.receive(S, Res, i)

38 / 1

Adder: endpoint implementation for C

Adder_C_1 s1 = new Adder_C_1(...);
Buf<Integer> i = new Buf<>(1);
for (int j = 0; j < N; j++)

s1 = s1.send(S, Add, i.val, i.val).receive(S, Res, i);
s1.send(S, Bye).receive(S, Bye);

I Implicit API usage contract:
I Use each state channel instance exactly once

I Hybrid session verification:
Linear channel instance usage checked at run-time by generated API

39 / 1

Adder: endpoint implementation for C

Adder_C_1 s1 = new Adder_C_1(...);
Buf<Integer> i = new Buf<>(1);
for (int j = 0; j < N; j++)

s1 = s1.send(S, Add, i.val, i.val).receive(S, Res, i);
s1.send(S, Bye).receive(S, Bye);

I Implicit API usage contract:
I Use each state channel instance exactly once

I Hybrid session verification:
Linear channel instance usage checked at run-time by generated API

40 / 1

Hybrid session verification
Adder adder = new Adder();
try (SessionEndpoint<Adder, C> se

= new SessionEndpoint<>(adder, C, ...)) {
se.connect(S, SocketChannelEndpoint::new, host, port);
Adder_C_1 s1 = new Adder_C_1(se);
Buf<Integer> i = new Buf<>(1);
for (int j = 0; j < N; j++)

s1 = s1.send(S, Add, i.val, i.val).receive(S, Res, i);
s1.send(S, Bye).receive(S, Bye);

}

I Static typing of session I/O actions as State Channel API methods
I Run-time checks on linear usage of state channel instances

I At most once
I “Used” flag per channel instance checked and set by I/O actions

I At least once
I “End” flag per endpoint instance set by terminal action
I Checked via try on AutoCloseable SessionEndpoint

I Hybrid communication safety
I If state channel linearity respected:

Communication safety (e.g. [JACM16] Error-freedom) satisfied
I Regardless of linearity: non-compliant I/O actions are never executed

41 / 1

Hybrid session verification
Adder adder = new Adder();
try (SessionEndpoint<Adder, C> se

= new SessionEndpoint<>(adder, C, ...)) {
se.connect(S, SocketChannelEndpoint::new, host, port);
Adder_C_1 s1 = new Adder_C_1(se);
Buf<Integer> i = new Buf<>(1);
for (int j = 0; j < N; j++)

s1 = s1.send(S, Add, i.val, i.val).receive(S, Res, i);
s1.send(S, Bye).receive(S, Bye);

}

I Static typing of session I/O actions as State Channel API methods
I Run-time checks on linear usage of state channel instances

I At most once
I “Used” flag per channel instance checked and set by I/O actions

I At least once
I “End” flag per endpoint instance set by terminal action
I Checked via try on AutoCloseable SessionEndpoint

I Hybrid communication safety
I If state channel linearity respected:

Communication safety (e.g. [JACM16] Error-freedom) satisfied
I Regardless of linearity: non-compliant I/O actions are never executed

42 / 1

Hybrid session verification
Adder adder = new Adder();
try (SessionEndpoint<Adder, C> se

= new SessionEndpoint<>(adder, C, ...)) {
se.connect(S, SocketChannelEndpoint::new, host, port);
Adder_C_1 s1 = new Adder_C_1(se);
Buf<Integer> i = new Buf<>(1);
for (int j = 0; j < N; j++)

s1 = s1.send(S, Add, i.val, i.val).receive(S, Res, i);
s1.send(S, Bye).receive(S, Bye);

}

I Static typing of session I/O actions as State Channel API methods
I Run-time checks on linear usage of state channel instances

I At most once
I “Used” flag per channel instance checked and set by I/O actions

I At least once
I “End” flag per endpoint instance set by terminal action
I Checked via try on AutoCloseable SessionEndpoint

I Hybrid communication safety
I If state channel linearity respected:

Communication safety (e.g. [JACM16] Error-freedom) satisfied
I Regardless of linearity: non-compliant I/O actions are never executed

43 / 1

Hybrid session verification
Adder adder = new Adder();
try (SessionEndpoint<Adder, C> se

= new SessionEndpoint<>(adder, C, ...)) {
se.connect(S, SocketChannelEndpoint::new, host, port);
Adder_C_1 s1 = new Adder_C_1(se);
Buf<Integer> i = new Buf<>(1);
for (int j = 0; j < N; j++)

s1 = s1.send(S, Add, i.val, i.val).receive(S, Res, i);
s1.send(S, Bye).receive(S, Bye);

}

I Static typing of session I/O actions as State Channel API methods
I Run-time checks on linear usage of state channel instances

I At most once
I “Used” flag per channel instance checked and set by I/O actions

I At least once
I “End” flag per endpoint instance set by terminal action
I Checked via try on AutoCloseable SessionEndpoint

I Hybrid communication safety
I If state channel linearity respected:

Communication safety (e.g. [JACM16] Error-freedom) satisfied
I Regardless of linearity: non-compliant I/O actions are never executed

44 / 1

Hybrid session verification
Adder adder = new Adder();
try (SessionEndpoint<Adder, C> se

= new SessionEndpoint<>(adder, C, ...)) {
se.connect(S, SocketChannelEndpoint::new, host, port);
Adder_C_1 s1 = new Adder_C_1(se);
Buf<Integer> i = new Buf<>(1);
for (int j = 0; j < N; j++)

s1 = s1.send(S, Add, i.val, i.val).receive(S, Res, i);
s1.send(S, Bye).receive(S, Bye);

}

I Static typing of session I/O actions as State Channel API methods
I Run-time checks on linear usage of state channel instances

I At most once
I “Used” flag per channel instance checked and set by I/O actions

I At least once
I “End” flag per endpoint instance set by terminal action
I Checked via try on AutoCloseable SessionEndpoint

I Hybrid communication safety
I If state channel linearity respected:

Communication safety (e.g. [JACM16] Error-freedom) satisfied
I Regardless of linearity: non-compliant I/O actions are never executed

45 / 1

Hybrid session verification
Adder adder = new Adder();
try (SessionEndpoint<Adder, C> se

= new SessionEndpoint<>(adder, C, ...)) {
se.connect(S, SocketChannelEndpoint::new, host, port);
Adder_C_1 s1 = new Adder_C_1(se);
Buf<Integer> i = new Buf<>(1);
for (int j = 0; j < N; j++)

s1 = s1.send(S, Add, i.val, i.val).receive(S, Res, i);
s1.send(S, Bye).receive(S, Bye);

}

I Static typing of session I/O actions as State Channel API methods
I Run-time checks on linear usage of state channel instances

I At most once
I “Used” flag per channel instance checked and set by I/O actions

I At least once
I “End” flag per endpoint instance set by terminal action
I Checked via try on AutoCloseable SessionEndpoint

I Hybrid communication safety
I If state channel linearity respected:

Communication safety (e.g. [JACM16] Error-freedom) satisfied
I Regardless of linearity: non-compliant I/O actions are never executed

46 / 1

Another Adder client example

I A recursive Fibonacci client
// Result: i1.val is the Nth Fib number
Adder_C_3 fib(Adder_C_1 s1, Buf<Integer> i1, Buf<Integer> i2, int i)

throws ... {
return (i > 0)

? fib(
s1.send(S, Add, i1.val, i1.val=i2.val)

.receive(S, Res, i2),
i1, i2, i-1)

: s1.send(S, Bye);
}

...
fib(s1, new Buf<Integer>(0), new Buf<Integer>(1), N).receive(S, Bye);
...

47 / 1

Another Adder client example

I A recursive Fibonacci client
// Result: i1.val is the Nth Fib number
Adder_C_3 fib(Adder_C_1 s1, Buf<Integer> i1, Buf<Integer> i2, int i)

throws ... {
return (i > 0)

? fib(
s1.send(S, Add, i1.val, i1.val=i2.val)

.receive(S, Res, i2),
i1, i2, i-1)

: s1.send(S, Bye);
}

...
fib(s1, new Buf<Integer>(0), new Buf<Integer>(1), N).receive(S, Bye);
...

48 / 1

Another Adder client example

I A recursive Fibonacci client
// Result: i1.val is the Nth Fib number
Adder_C_3 fib(Adder_C_1 s1, Buf<Integer> i1, Buf<Integer> i2, int i)

throws ... {
return (i > 0)

? fib(
s1.send(S, Add, i1.val, i1.val=i2.val)

.receive(S, Res, i2),
i1, i2, i-1)

: s1.send(S, Bye);
}

...
fib(s1, new Buf<Integer>(0), new Buf<Integer>(1), N).receive(S, Bye);
...

49 / 1

Another Adder client example

I A recursive Fibonacci client
// Result: i1.val is the Nth Fib number
Adder_C_3 fib(Adder_C_1 s1, Buf<Integer> i1, Buf<Integer> i2, int i)

throws ... {
return (i > 0)

? fib(
s1.send(S, Add, i1.val, i1.val=i2.val)

.receive(S, Res, i2),
i1, i2, i-1)

: s1.send(S, Bye);
}

...
fib(s1, new Buf<Integer>(0), new Buf<Integer>(1), N).receive(S, Bye);
...

50 / 1

Another Adder client example

I A recursive Fibonacci client
// Result: i1.val is the Nth Fib number
Adder_C_3 fib(Adder_C_1 s1, Buf<Integer> i1, Buf<Integer> i2, int i)

throws ... {
return (i > 0)

? fib(
s1.send(S, Add, i1.val, i1.val=i2.val)

.receive(S, Res, i2),
i1, i2, i-1)

: s1.send(S, Bye);
}

...
fib(s1, new Buf<Integer>(0), new Buf<Integer>(1), N).receive(S, Bye);
...

51 / 1

Another Adder client example

I A recursive Fibonacci client
// Result: i1.val is the Nth Fib number
Adder_C_3 fib(Adder_C_1 s1, Buf<Integer> i1, Buf<Integer> i2, int i)

throws ... {
return (i > 0)

? fib(
s1.send(S, Add, i1.val, i1.val=i2.val)

.receive(S, Res, i2),
i1, i2, i-1)

: s1.send(S, Bye);
}

...
fib(s1, new Buf<Integer>(0), new Buf<Integer>(1), N).receive(S, Bye);
...

52 / 1

Hybrid session verification through
Endpoint API generation

I MPST-based generation of rigorous APIs for distributed protocols
I I/O behaviour of session type role captured by State Channel API

I Via projected Endpoint FSMs: protocol states as state-specific channels
I Hybrid verification of state channel usage

I Native static typing of session I/O actions via state channels methods
I Supported by run-time checks on linear usage of state channel instances

I Endpoint API is itself a form of “formal” protocol documentation

I Effective combination of static guidance and run-time checks
I Practical compromise between safety and flexibility

I Readily integrates with existing language features and libraries
I Allows certain benefits of static session typing to be recovered

I Good value from existing language features, tools and IDE support
I Methodology can be readily applied to other statically typed languages

I Other hybrid approaches to (binary) ST outside of API generation:
[ML] A simple library implementation of sessions in ML. Padovani.

https://hal.archives-ouvertes.fr/hal-01216310/
[SCALA] Lightweight sessions in Scala. Scalas and Yoshida.

www.doc.ic.ac.uk/research/technicalreports/2015/

53 / 1

https://hal.archives-ouvertes.fr/hal-01216310/
www.doc.ic.ac.uk/research/technicalreports/2015/

SMTP: global protocol
I Simple Mail Transfer Protocol

I Internet standard for email transmission (RFC 5321)
I Rich conversation structure
I Interoperability between “typed” and “untyped” components

global protocol Smtp(role S, role C) {
220 from S to C;
do Init(C, S);
do StartTls(C, S);
do Init(C, S);
... // Main mail exchanges

}

global protocol Init(role C, role S) {
Ehlo from C to S;

...

...
rec X {

choice at S {
250d from S to C;

continue X;
} or {

250 from S to C;
} } }

global protocol StartTls(...) {
...

[SMTPa] SMTP (IETF RFC 5321). https://tools.ietf.org/html/rfc5321

[SMTPb] SMTP Scribble subset. https://github.com/scribble/scribble-java/blob/
master/modules/core/src/test/scrib/demo/smtp/Smtp.scr

54 / 1

https://tools.ietf.org/html/rfc5321
https://github.com/scribble/scribble-java/blob/master/modules/core/src/test/scrib/demo/smtp/Smtp.scr
https://github.com/scribble/scribble-java/blob/master/modules/core/src/test/scrib/demo/smtp/Smtp.scr

SMTP: Client EFSM

I Subset of full SMTP
I (This EFSM is for a slightly larger

fragment than on the previous slide)

55 / 1

SMTP: example protocol implementation error
I Main mail exchange: send a single simple mail

I Implemented as a trace through the EFSM
I Protocol violation: missing “end of data” msg

56 / 1

APIs for programming distributed protocols (background)
I Distributed programming with message passing over channels

I “Untyped” and unstructured, e.g. java.net.Socket

int read(byte[] b) // java.io.InputStream
void write(byte[] b) // java.io.OutputStream

I Typed messages but unstructured, e.g. JavaMail API (com.sun.mail.smtp)
// com.sun.mail.smtp.SMTPTransport implements javax.mail.Transport
protected boolean ehlo(String domain)
protected void mailFrom()
...

[JAVASOCK] Java Socket API.
https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html

[JAVAMAIL] JavaMail API. https:
//javamail.java.net/nonav/docs/api/com/sun/mail/smtp/package-summary.html

57 / 1

https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html
https://javamail.java.net/nonav/docs/api/com/sun/mail/smtp/package-summary.html
https://javamail.java.net/nonav/docs/api/com/sun/mail/smtp/package-summary.html

SMTP: session branching
I Non-unary input choice
I API generation approach enables a range of options

I Generate branch-specific enums for standard switch (etc.) patterns
I Branch performed as separate message input and enum case steps

X Familiar (imperative) Java patterns
× Additional run-time branch case “cast” check

while (true) {
Smtp_C_3_Cases c = s3.branch(Smtp.S);
switch (c.op) {
case _250: Smtp_C_4 s4 = c.receive(_250, buf); return s4;
case _250d: s3 = c.receive(_250d, buf); break;

} }

I Generate branch-specific callback interfaces
X Statically safe (up to basic channel linearity)
× Requires programming in an “inverted” callback style

class MySmtpC3Handler implements Smtp_C_3_Handler {
void receive(Smtp_C_3 s3, _250d op, Buf<_250d> arg) throws ... {

s3.branch(S, this);
}
void receive(Smtp_C_4 s4, _250 op, Buf<_250> arg) throws ... {

s4.send(S, new StartTls())
...

} }

58 / 1

SMTP: session branching
I Non-unary input choice
I API generation approach enables a range of options

I Generate branch-specific enums for standard switch (etc.) patterns
I Branch performed as separate message input and enum case steps

X Familiar (imperative) Java patterns
× Additional run-time branch case “cast” check

while (true) {
Smtp_C_3_Cases c = s3.branch(Smtp.S);
switch (c.op) {
case _250: Smtp_C_4 s4 = c.receive(_250, buf); return s4;
case _250d: s3 = c.receive(_250d, buf); break;

} }

I Generate branch-specific callback interfaces
X Statically safe (up to basic channel linearity)
× Requires programming in an “inverted” callback style

class MySmtpC3Handler implements Smtp_C_3_Handler {
void receive(Smtp_C_3 s3, _250d op, Buf<_250d> arg) throws ... {

s3.branch(S, this);
}
void receive(Smtp_C_4 s4, _250 op, Buf<_250> arg) throws ... {

s4.send(S, new StartTls())
...

} }

59 / 1

SMTP: session branching
I Non-unary input choice
I API generation approach enables a range of options

I Generate branch-specific enums for standard switch (etc.) patterns
I Branch performed as separate message input and enum case steps

X Familiar (imperative) Java patterns
× Additional run-time branch case “cast” check

while (true) {
Smtp_C_3_Cases c = s3.branch(Smtp.S);
switch (c.op) {
case _250: Smtp_C_4 s4 = c.receive(_250, buf); return s4;
case _250d: s3 = c.receive(_250d, buf); break;

} }

I Generate branch-specific callback interfaces
X Statically safe (up to basic channel linearity)
× Requires programming in an “inverted” callback style

class MySmtpC3Handler implements Smtp_C_3_Handler {
void receive(Smtp_C_3 s3, _250d op, Buf<_250d> arg) throws ... {

s3.branch(S, this);
}
void receive(Smtp_C_4 s4, _250 op, Buf<_250> arg) throws ... {

s4.send(S, new StartTls())
...

} } 60 / 1

SMTP: input future generation
I Generation of futures for unary input states

Buf<Smtp_C_1_Future> f1 = new Buf<>();
...
s3 = s1.async(S, _220, f1)

.send(S, new Ehlo("...");
_220 foo = f1.val.sync().msg; // Optional
...

I Safe decoupling of local protocol state transition from message input
I Non-blocking session input actions, cf. [ECOOP10]
I Affine “message handling”, cf. [FoSSaCS15]
I “Asynchronous permutation” of I/O actions, cf. [PPDP14]

[ECOOP10] Type-safe eventful sessions in java. Hu, Kouzapas, Pernet, Yoshida and Honda.
[FoSSaCS15] Polarized substructural session types. Pfenning and Griffith.

[PPDP14] On the preciseness of subtyping in session types. Chen, Dezani-Ciancaglini and
Yoshida.

61 / 1

SMTP: abstract I/O state interfaces
I Factoring of interaction patterns at the type level

global protocol Smtp(role S, role C) {
220 from S to C;
do Init(C, S);
do StartTls(C, S);
do Init(C, S);
...;

}

I I/O state interfaces: code factoring, generics inference, subtyping
<S1 extends Branch_S250_S$250d<S2, S1>, S2 extends Succ_In_S$250>

S2 doInit(Select_S$Ehlo<S1> s) throws ...

62 / 1

I Basic nominal Java state channel types limit code reuse

Smtp_C_4 doInit(Smtp_C_2 s2) throws ...

Smtp_C_8 doInit(Smtp_C_6 s2) throws ...

SMTP: abstract I/O state interfaces
I Factoring of interaction patterns at the type level

global protocol Smtp(role S, role C) {
220 from S to C;
do Init(C, S);
do StartTls(C, S);
do Init(C, S);
...;

}

I I/O state interfaces: code factoring, generics inference, subtyping
<S1 extends Branch_S250_S$250d<S2, S1>, S2 extends Succ_In_S$250>

S2 doInit(Select_S$Ehlo<S1> s) throws ...

63 / 1

SMTP: abstract I/O state interfaces
I Factoring of interaction patterns at the type level

global protocol Smtp(role S, role C) {
220 from S to C;
do Init(C, S);
do StartTls(C, S);
do Init(C, S);
...;

}

I I/O state interfaces: code factoring, generics inference, subtyping
<S1 extends Branch_S250_S$250d<S2, S1>, S2 extends Succ_In_S$250>

S2 doInit(Select_S$Ehlo<S1> s) throws ...

64 / 1

Future work

I make session types good for practice: Extensions to MPST (Scribble)
I explicit connections
I Paradigms other than direct message passing channels?

e.g. actor model, REST, . . . – api gen
I more properties may want to check (at run-time) – hybrid

I Application of further session types features to practice:
I events – apigen
I Explore hybrid verification of further properties: assertions vs. (run-time)

dependent types, time ...
I Augment/combine session types with more advanced constraints

e.g. message value assertions (HTTP Content-Length), time, . . .

65 / 1

