
Domain-Independent Proximity Measures
in Intelligent Tutoring Systems

Bassam Mokbel
CITEC Center of Excellence

Bielefeld, Germany
bmokbel@techfak.uni-bielefeld.de

Sebastian Gross
TU Clausthal

Clausthal-Zellerfeld, Germany
sebastian.gross@tu-clausthal.de

Benjamin Paassen
CITEC Center of Excellence

Bielefeld, Germany
bpaassen@techfak.uni-bielefeld.de

Niels Pinkwart
TU Clausthal

Clausthal-Zellerfeld, Germany
niels.pinkwart@tu-clausthal.de

Barbara Hammer
CITEC Center of Excellence

Bielefeld, Germany
bhammer@techfak.uni-bielefeld.de

ABSTRACT
Intelligent tutoring systems (ITSs) typically analyze student
solutions to provide feedback to students for a given learning
task. Machine learning (ML) tools can help to reduce the
necessary effort of tailoring ITSs to a specific task or domain.
For example, training a classification model can facilitate
feedback provision by revealing discriminative characteris-
tics in the solutions. In many ML methods, the notion of
proximity in the investigated data plays an important role,
e.g. to evaluate classification boundaries. For this purpose,
solutions need to be represented in an appropriate form, so
their (dis-)similarity can be calculated. We discuss options
for domain- and task-independent proximity measures in the
context of ITSs, which are based on the ample premise that
solutions can be represented as formal graphs. We propose
to identify and match meaningful contextual components in
the solutions, and present first evaluation results for artifi-
cial as well as real student solutions.

1. INTRODUCTION
Intelligent tutoring usually relies on knowledge about the
domain being taught and adaptation of pedagogical strate-
gies regarding learners’ individual needs. Therefore, ITSs
typically use formalized domain knowledge to provide intelli-
gent one-on-one computer-based support to students. Often,
even the specific learning task must be modeled explicitly,
which requires significant effort by human experts. Hence,
among several directions of research, one major idea regards
ITSs which are adaptive, based on examples and using ML
or data mining techniques, rather than an explicit modeling
of the background information. This direction also opens
a way towards the application of ITSs in domains where
a formalization of the underlying knowledge is hardly pos-
sible, such as ill-defined domains in which there may ex-
ist a wide variety of strategies for solving a given task [4].
Example-based learning has shown to be an effective tutor-
ing approach in supporting learning, see [1], which can also
be applied without formalizing domain knowledge. In [2],
the authors propose ways how feedback provision can be

Acknowledgments: This work was supported by the Ger-
man Research Foundation (DFG) under the grant “FIT -
Learning Feedback in Intelligent Tutoring Systems.” (PI
767/6 and HA 2719/6).

realized in example-based learning environments.

Assuming that effective feedback-strategies can be estab-
lished based on appropriate examples, let us restrict to a

scenario where a set X̃ of examples x̃j is explicitly given, and

a student solution x̂i from the set X̂ needs to be associated
to the most suited example. We further assume that exam-
ples are themselves solutions (or are represented in the same
form) and we can process them in the same manner. Let
d(xi,xj) be a meaningful proximity measure which indicates

the dissimilarity of any two solutions xi,xj ∈ X = X̂∪X̃ by

a positive value. Then, a student solution x̂i ∈ X̂ can sim-
ply be associated to the most similar (and thus most suited)

example by choosing: argminj d(x̂i, x̃j), j ∈ {1, . . . , |X̃|} .
In the following, we will present general approaches to calcu-
late this dissimilarity, if solutions are represented as formal
graphs with annotations. The overall calculation is not tai-
lored to a specific learning task or domain, if general data
representations are used. To explain the details of the ap-
proach, and show first experimental results, we will refer to
our example application scenario: an ITS to support pro-
gramming courses for the Java language.

2. THE PROXIMITY OF SOLUTIONS
The basic requirement is that solutions can be represented as
graphs, with different kinds of meta information annotated
on the nodes and edges. Each node represents a (syntactic
or semantic) element of the solution, and edges establish re-
lationships between them. Solutions xi ∈ X are thus graphs
Gi = (Vi, Ei). Considering a very simple annotation, we re-
quire that all vertices are attributed to a certain node type,
a symbol from the finite alphabet Σ = {l1, . . . , lT }. In our
application scenario, we consider syntax trees of Java pro-
grams, where the nodes represent syntactic elements and the
corresponding node types indicate their functionality, e.g.
the declaration of a variable, a logical expression, a variable
assignment, etc. Additionally, a parser adds edges denoting
relationships between the syntactic elements, like the call to
a function, the usage of a variable, etc.

Using classical data mining approaches, there are several
ways to define a proximity measure for these annotated
graphs. For example, to represent a solution by a feature

vector, one can extract frequencies of syntax elements within
a solution vs. all solutions to gain a representation analogous
to popular tf-idf weights [5]. By dtfidf(x

i,xj) we refer to the

Euclidean distance between the tf-idf weight vectors of two
Java syntax graphs. This kind of feature encoding captures
statistics about the symbols, however their relations are not
considered. Measures for symbolic sequences respect the or-
dering of symbols, e.g. alignment measures [3]. For this pur-
pose, we can encode the syntax trees as sequences si ∈ Σ∗

by visiting vertices in a depth-first-search order, concate-
nating their node types. This ordering corresponds to the
original sequence of statements in the Java source code. Let
dalign(x

i,xj) be the dissimilarity score of a Smith-Waterman
local alignment of the respective sequences si and sj , with
fixed costs for edit operations, see [3].

Both, tf-idf weights and alignment do not explicitly con-
sider contextual relationships within the syntax. To take
these structural characteristics into account, we propose to
identify densely connected subgraphs and calculate a piece-
wise proximity between parts of the solutions. Our basic
assumption is that solutions consist of semantic building
blocks, in which the elements are in close relation to each
other, and are less related to other elements. For exam-
ple, in a computer program the variables and expressions
within a for-loop are likely to be connected to each other,
but would be less connected to elements outside the loop. In
the following, we call these dense subgraphs fragments. To
identify such fragments, we use the graph clustering algo-
rithm Spectral Clustering (SC) [6]. SC separates the graph
into a fixed number of subgraphs, and as a result, we get
an assignment of every node to one out of m identified frag-
ments {F i

1 , . . . , F
i
m} of the graph Gi for solution xi, where⋃m

s=1 F
i
s = Gi and F i

s ∩ F i
t = ∅ ∀s, t ∈ {1, . . . ,m}, s 6= t.

The goal of fragmenting the graph is to compare distinctive
parts of the solutions independently. To evaluate the dis-
similarity of a single pair of fragments (F i

s , F
j
t) with i 6= j

and s, t ∈ {1, . . . ,m}, one can rely on established proxim-
ity measures from the literature, as exemplified by dtfidf or
dalign. This requires only that each fragment can be repre-
sented individually to apply the respective measure, e.g. as
a string, a numeric vector, etc. We call this the signature

of the fragment. Let d(F i
s , F

j
t) be the dissimilarity of the

fragment pair. To compare the two underlying solutions xi

and xj as a whole, m suitable pairs of fragments (F i
s , F

j
t),

(s, t) ∈ M ⊂ {1, . . . ,m}2 have to be established for com-
parison. Since we want those pairs to yield the best overall
match, i.e. the minimum sum of dissimilarities, we arrive at
an optimal matching problem. For now, we use a simple
greedy heuristic to gain an approximate matching M of all
fragments. We then compute the overall dissimilarity as the
mean δ(F i, F j) = 1

m

∑
(s,t)∈M

d(F i
s , F

j
t) .

3. EVALUATION AND CONCLUSION
We use three datasets consisting of Java programs, where
a semantically meaningful class separation is given in each
set. To quantify the discriminative quality of the different
proximity measures, we report the results of a simple k-

nearest-neighbor (k-NN) classifier w.r.t. this class structure,
see Tab. 1. The Artificial dataset consists of 48 programs
created by a human expert and serves as a basic testbed.
The 48 programs all solve the simple task to decide whether
all words in a given input sentence are palindromes. The
programs are deliberately designed to form 8 groups of 6
solutions each. Each group represents a distinct approach
to solve the task, resulting from a combination of 3 simple
(binary) design choices: using Java utility functions or not,

using String objects or arrays of characters, splitting the sen-
tence into words or iterating over the whole input sequence.
Within each group, the 6 programs are only slightly differ-
ent, with altered syntactic details like variable names and
the sequence of operations. The ‘Tasks’ dataset consists of
438 real student solutions, collected during 3 different pro-
gramming exams for business students. Each solution was
provided by an individual student, and the data is class-
labeled according to the 3 different tasks assigned in the
respective exam: [I] implementing Newton’s method to find
zeros in 2nd order polynomials (144 solutions); [II] calcu-
lating income tax for a given income profile (155); and [III]
checking if a given sentence contains a palindrome, and if the
sentence is a pangram (139). The ‘TextCheck’ dataset con-
sists of 68 student solutions which solve the above-mentioned
task [III]. Here, class labels were provided by tutoring ex-
perts who were asked to determine meaningful groups in
the solution set. The experts distinguished them accord-
ing to 3 design choices very similar to the ones used in the
Artificial set (which was subsequently created). This re-
sulted in 8 classes corresponding to distinct strategies to
solve the task. In general, solutions are very heterogeneous
and classes are highly imbalanced. Therefore, this dataset
represents a state-of-the-art challenge for a real ITS.

After preprocessing as described, we applied four variants of
proximity measures, evaluating the accuracy of a 3-NN clas-
sifier, see Tab. 1. The results show that with all measures
the solutions from the Artificial and Tasks dataset are clas-
sified rather reliably, which indicates that the measures are
semantically meaningful. Accuracies for the TextCheck data
are generally low, as expected from the challenging scenario.
However, the measures based on fragmentation, δtfidf and
δalign, showed a performance increase as compared to their
simpler counterparts dtfidf and dalign. A rigorous evaluation
of the approach is the subject of ongoing work.

Dataset #fragments dtfidf δtfidf dalign δalign

Artificial m = 4 0.94 0.92 0.94 0.94
Tasks m = 6 0.98 0.83 0.98 0.98

TextCheck m = 6 0.34 0.32 0.41 0.54

Table 1: Classification accuracies of a 3-NN classi-

fier with different proximity measures on the exper-

imental datasets. The number of fragments m in the

measures δtfidf and δalign was chosen with regard to

the average size of graphs in the respective dataset.

4. REFERENCES
[1] T. Gog and N. Rummel. Example-based learning:

Integrating cognitive and social-cognitive research
perspectives. Edu. Psych. Rev., 22:155–174, 2010.

[2] S. Gross, B. Mokbel, B. Hammer, and N. Pinkwart.
Feedback provision strategies in intelligent tutoring
systems based on clustered solution spaces. In DeLFI
2012, pages 27–38. Köllen, 2012.

[3] D. Gusfield. Algorithms on Strings, Trees, and
Sequences. Cambridge University Press, 1997.

[4] C. Lynch, K. D. Ashley, N. Pinkwart, and V. Aleven.
Concepts, structures, and goals: Redefining ill-def-
inedness. Int. J. of A.I. in Edu., 19(3):253 – 266, 2010.

[5] G. Salton and C. Buckley. Term-weighting approaches
in automatic text retrieval. Inf. Process. Manage.,
24(5):513–523, Aug. 1988.

[6] U. von Luxburg. A tutorial on spectral clustering. Stat.
Comput., 17(4):395–416, 2007.

