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ABSTRACT 
Knowledge tracing (KT) is widely used in Intelligent Tutoring 
Systems (ITS) to measure student learning. Inexpensive portable 
electroencephalography (EEG) devices are viable as a way to help 
detect a number of student mental states relevant to learning, e.g. 
engagement or attention. This paper reports a first attempt to 
improve KT estimates of the student’s hidden knowledge state by 
adding EEG-measured mental states as inputs.  Values of learn, 
forget, guess and slip differ significantly for different EEG states. 
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1. Introduction 
Knowledge tracing (KT) is widely used in Intelligent Tutoring 
Systems (ITS) to measure student learning. In this paper, we 
improve KT’s estimates of students’ hidden knowledge states by 
incorporating input from inexpensive EEG devices. EEG sensors 
record brainwaves, which result from coordinated neural activity. 
Patterns in these recorded brainwaves have been shown to 
correlate with a number of mental states relevant to learning, e.g. 
workload [1], associative learning [2], reading difficulty [3], and 
emotion [4]. Importantly, cost-effective, portable EEG devices 
(like those used in this work) allow us to collect longitudinal data, 
tracking student performance over months of learning. 

    Prior work on adding extra information in KT includes using 
student help requests as an additional source of input [5] and 
individualizing student knowledge [6]. Here we use students’ 
longitudinal EEG signals as input to dynamic Bayes nets to help 
trace their knowledge of different skills. An EEG-enhanced 
student model allows unobtrusive assessment in real time. The 
ability to detect learning while it occurs instead of waiting to 
observe future performance could accelerate instruction 
dramatically. Current EEG is much too noisy to detect learning 
reliably on its own. However, as this paper shows, adding EEG to 
KT may allow better detection of learning than using KT alone.  

2. Approach 
KT is a Hidden Markov Model using a binary latent variable (K(i)) 
to model whether a student knows the skill at step i. It estimates 
the hidden variable from its observations (C(i)’s) in previous steps 
of whether the student applied the skill correctly. KT usually has 
4 (sometimes 5) probabilities as parameters: initial knowledge 
(L0), learning rate (t), forgetting rate (f) (usually assumed to be 

zero, but not in this paper), guess rate (g), and slip rate (s).
We 
add another observed variable (E(i)), representing the EEG 
measured mental state estimated from EEG signals and time-
aligned to the student’s performance at step i. 

    EEG-derived signals are often described as a type of measure of 
human mental states. For example, NeuroSky uses EEG input to 
derive proprietary attention and meditation measures claimed to 
indicate focus and calmness [7]. We hypothesize that a student 
may have a higher learning rate t and/or a lower slip rate s when 
focusing or calm at a given step. Thus EEG-KT, shown in Figure 
1, extends KT by adding variable E(i) computed from EEG input. 

 
Figure 1.  EEG-KT uses a binary EEG measure in KT 

3. Evaluation and Results 
To evaluate this approach, we compare EEG-KT to the original 
KT on a real data set. Our data comes from children 6-8 years old 
who used Project LISTEN’s Reading Tutor at their primary 
school during the 2013-2014 school year [8]. We measure the 
growth of oral reading fluency by labeling a word as fluent if it 
was accepted by the automatic speech recognizer (ASR) as read 
correctly without hesitating or clicking on it for help. 

    EEG raw signals are collected by NeuroSky BrainBand at 512 
Hz, and are denoised as in Chang et al. [3]. We use NeuroSky’s 
proprietary algorithm to generate 4 channels: signal quality, 
attention, meditation, and rawwave. We then use Fast Fourier 
Transform to generate 5 additional channels from rawwave: delta, 
theta, alpha, beta, and gamma. In total, excluding signal quality, 
we obtain 8 EEG measures. We also compute a confidence-of-
fluency (Fconf) metric as our 9th EEG measure by using training 
pipeline similar to [9]. It pre-balances the data by under-sampling, 
computes the average and variance of each channel’s values over 
each word’s duration as 16 features, and trains Gaussian Naïve 
Bayes classifiers to predict fluency (61.8% accurate, significantly 
above chance with p < 0.05 in Chi-squared test). We compute 
Fconf as Pr(fluent | 16 features) – Pr(disfluent | 16 features).  

    We normalize each of the 9 measures within student, discretize 
it as a binary variable (TRUE if above zero; FALSE otherwise), 
and use it to fit an EEG-KT model. We also evaluate Rand-KT, 
which replaces EEG with randomly generated values from a 
Bernoulli distribution. We use EM algorithms to estimate the 
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parameters, and implement the models in Matlab Bayesian Net 
Toolkit for Student Modeling (BNT-SM) [10, 11]. 

    The data has 6,313 observations from 12 students, with 83% 
labeled as fluent. We use leave-1-student-out cross-validation 
(CV), which trains word-specific models on 11 out of 12 students 
and tests on the remaining single student. To maintain enough 
data for EM to estimate the parameters, we keep 4 students who 
have many more than 500 observations in the training data and 
cross-validate only the other 8 students. We use AUC (area under 
the curve) to assess model prediction, as shown in Table 1. Fconf-
KT and Theta-KT beat KT, but not significantly. The other 7 
models did worse than KT, the bottom 5 significantly so. 

Table 1. AUC scores by 8-fold CV 
(underlined if p <0.05 in pair[1]ed t-test comparison to KT) 

Models AUC Models AUC 
Fconf-KT 0.6613 Gamma-KT 0.6317 
Theta-KT 0.6568 RAW-KT 0.6275 
KT 0.6479 MED-KT 0.6230 
ATT-KT 0.6435 Delta-KT 0.6224 
Alpha-KT 0.6429 Rand-KT 0.6146 
Beta-KT 0.6355   

Table 2 reports the estimated parameters for the two most 
interpretable EEG measures, meditation and attention. Students in 
a meditative state according to EEG were significantly less likely 
to forget, guess, or slip.  Students in an attentive state according to 
EEG were significantly less likely to forget or slip. 

Table 2. Avg. estimated parameters in EEG-KT across words  
(underlined if p < 0.05 in paired t-test across high/low state) 

 
Parameters 

Meditation Attention 
High Low High Low 

te 0.32 0.33 0.38 0.43 
fe 0.10 0.25 0.15 0.30 
ge 0.53 0.62 0.55 0.56 
se 0.03 0.07 0.03 0.08 

4. Conclusion and Future Directions 
To improve KT’s estimates of students’ hidden knowledge 

states, we tried adding different binary EEG measures as an input. 
This simple approach produced significantly different estimates of 
forgetting, guessing, and slip rates according to the attention and 
meditation indicators, but did not improve model fit significantly.  
Our subsequent approach achieved much higher accuracy (AUC 
.7665) by using logistic regression to merge EEG measures [12]. 

With months of data and many words per minute, fluency 
development offers a rich domain for studying EEG-enriched KT, 
but it can apply to other types of learning as well. Another future 
direction is to analyze its practical impact on learning. As Beck 
and Gong [13] pointed out, tiny improvements in predictive 
accuracy don't matter -- actionable intelligence does. We want to 
estimate the possible speedup in learning from using EEG to 
detect it as it occurs rather than wait to see it in later performance. 
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