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ABSTRACT 
Studies comparing virtual and physical manipulative environ-
ments (VME and PME) in inquiry-based science learning have 
mostly focused on students’ learning outcomes but not on the 
actual processes they engage in during the learning activities. In 
this paper, we examined experimentation strategies in an inquiry 
activity and their relation to conceptual learning outcomes. We 
assigned college students to either use VME or PME for a goal-
directed physics inquiry task on mass-spring systems. Our 
analysis showed that the best predictors of learning outcomes 
were experimental manipulations that followed a control of 
variable (CV) strategy, with a delay between manipulations 
(“systematic inquiry”). Cluster analysis of the prevalence of these 
manipulations per participant revealed two distinct clusters of 
participants, systematic inquiry or not. The systematic inquiry 
cluster had significantly higher learning outcomes than the less 
systematic one. Furthermore, the majority of the participants using 
the PME belonged to the more systematic cluster, while most of 
the participants using the VME fell into the non-systematic 
cluster, likely because of the specific affordances of the real and 
virtual equipment they were using. However, beyond this impact 
on inquiry process, condition had little effect. In light of these 
results, we argue that investigating processes displayed during 
learning activities, in addition to outcomes, enables us to properly 
evaluate the strengths and weaknesses of different learning 
environments for inquiry-based learning.  
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1. Introduction 
Over the past decades, the science teaching community has 
adopted the view that “students cannot fully understand scientific 
and engineering ideas without engaging in the practices of inquiry 
and the discourses by which such ideas are developed and 
refined” (NRC, 2012, p.218). Inquiry-based instruction requires 
students to model the practices of scientific inquiry to actively 
develop their conceptual understanding [1,2]. While physical 
laboratories were the traditional environments for such inquiry-
based learning, there is accumulating evidence that virtual 
laboratories are similarly well suited to meet the goals of science 
investigation [3,4]. In particular, they are considered to be at least 
equally conducive to active manipulations for experimentation 
[2,3], which is seen as the crucial aspect of inquiry learning 
[5,6,7].  

A major limitation of the research comparing physical and virtual 
manipulative environments (PME and VME) for science learning 
was the predominant focus on the learning outcomes rather than 
the learning processes when students engage in inquiry activities. 

This has not changed with recent work that shifted from treating 
the environments as two competing entities to examining how to 
best combine them for increased learning benefits [4]. We argue 
that research on how learners engage with these manipulative 
environments could provide a more comprehensive understanding 
of how the interaction of a learner with an environment impacts 
the learners’ construction of knowledge, and in turn what design 
features of these environments foster desired manipulative 
behaviors in the context of science inquiry learning.  

The present study lies at the intersection of research on learning 
environments and research on inquiry behaviors in order to study 
the characteristics of productive experimentation strategies in 
open-ended science investigation tasks, and how such strategy use 
might be influenced by the different affordances of the learning 
environments. For this purpose we encoded the actual 
experiments students ran, which allows us to basically replay their 
processes. This allows us to explore customized 
operationalizations of inquiry behaviors of interest. This approach 
integrates data-driven methods with relevant theoretical concepts. 
As a result, we found a robust characterization of experimentation 
strategies that meaningfully predicts learning outcomes, and show 
how participants’ strategy use differs between the learning 
environments. This study is part of a larger research project with 
the goal of developing automated detectors of systematic inquiry 
in open-ended science investigation activities for formative 
assessment and for the design of productive learning 
environments. 
 

2. Inquiry Behaviors 
2.1. Control of Variable Strategy 
Scientific learning through self-directed inquiry activities depends 
on the actual inquiry behaviors employed [8,9]. In particular, 
adequate experimentation strategies are required that result in 
interpretable observations, i.e. evidence that facilitates drawing 
valid inferences. Research has particularly focused on the abilities 
to systematically combine variables and to design unconfounded 
experiments, i.e. experiments that modify variables such that 
competing hypothesis can be ruled out. The design of 
unconfounded experiments requires the ability to employ the 
control of variables strategy (CVS), that is, to create experiments 
with a single contrast between experimental conditions [10]. This 
is in contrast to inadequate strategies such as changing multiple 
variables at the same time, which hampers valid inferences and 
subsequent knowledge [11]. 
Previous research has examined a host of individual and 
contextual factors of strategy use [8]. However, only a very small 
number of studies have explicitly examined the impact of 
affordances of learning environments on strategy use in 
experimentation activities [2,12]. While Triona & Klahr [2] 
focused on the impact of physicality of manipulatives alone on 
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learning outcomes, Renken & Nunez [12] had students engage in 
an inquiry activity on pendulum motion using either a PME or a 
VME that differed in both ease of manipulation and freedom of 
choice: while the PME provided participants with only three 
different levels for either pendulum length or mass, the VME 
allowed participants to modify the variables smoothly by means 
of continuous valued sliders. Even if there was no difference in 
conceptual understanding between the VME and PME conditions, 
participants using the computer simulation ran more trials and 
were less likely to control variables. Renken and Nunez [12] 
argued that the additional flexibility and breadth of choice in 
experimentation in VME was detrimental to participants’ use of 
adequate experimentation strategy. 

While this study suggests that indeed strategy use in inquiry-based 
learning activities is influenced by affordances of the learning 
environments, it is difficult to generalize these results to less 
structured and scaffolded inquiry activities.  
 

2.2. Operationalization of Inquiry 
Strategies 
As most studies cited mainly focused on CV strategy, they used 
highly structured tasks where either variables were dichotomous, 
or there was only one outcome variable, or the activity was 
restricted. In order to develop a more nuanced characterization of 
inquiry strategies, we need more complex inquiry tasks. Data 
mining techniques employed in such contexts have been 
successful at discovering groups of similar users [13,14,15]. Most 
of these data-mined systems are based on the user interaction logs 
[16]. While they achieve good predictive power, such machine-
learned detectors of interaction behaviors often come at the cost of 
interpretability [17]. However, it is crucial to develop data-mined 
models of inquiry strategies that are interpretable in order to 
advance our understanding of learning processes through inquiry 
activities. We apply a different approach, where we do not use 
labelled action logs but code the actual experiment configurations 
of each participant. Based on video data, we extract each 
configuration a participant tried and feed it into a database of 
experiments of all participants. This allows us to quickly extract 
and explore relevant variables of inquiry, such as the number of 
spring-only or mass-only changes, the number of unique 
configurations, repetitions, etc. That way, we can integrate 
relevant theoretical concepts into the operationalization of inquiry 
behaviors. 

In the context of this study, we focused on experimentation 
strategies only. We collected data on the number of experiment 
trials, the experiment configurations, and the time between 
manipulations, and coded the type of manipulation per 
experiment. Particular focus is given to “control of variable” 
manipulations, “deliberate” manipulations, and “deliberate 
control” of variable manipulations. Deliberate manipulations 
(DM) are manipulations into which a participant has put some 
thought, as measured by dwell time between two consecutive 
manipulations. We assume that participants who are cognitively 
engaged – reflecting on evidence from a preceding manipulation, 
trying to make sense of it in the context of previous observations, 
or taking notes or planning the next manipulation(s) – will spend 
more time before executing the next change than those who are 
cognitively less engaged.  

For this reason, we include the third category of manipulations 
that lies at the intersection of the prior two categories, deliberate 
control of variable manipulations (DCVM). As prior research on 

experimentation strategies in inquiry-based activities 
characterized them as solely CVS or not, activities were designed 
such that controlling variables in an experiment had to be a 
deliberate choice of participants [19,20,21]. However, in less 
structured, open-ended inquiry like those used in this study, it is 
possible in some cases to manipulate variables according to a CV 
strategy without the deliberate intention to do so. For example in 
the computer simulation for our mass & spring activity, one could 
change the value of the spring constant continuously by means of 
a slider, without having to interrupt an ongoing experiment. 
Inherently, this corresponds to a control of variable manipulation 
(CVM) but not necessarily to a deliberate control of variable 
manipulation (DCVM). 
 

3. Present Study 
The study reported here was part of a larger study examining 
participants’ inquiry behaviors in different scientific domains 
using either PME or VME as learning environments. Participants 
engaged in two activities; the first one was on mass and spring 
oscillation (see Figure 1), and the second one on basic electric 
circuits. The current paper presents analysis of the first inquiry 
activity. During the first activity, participants were either asked to 
simply think-aloud while engaging in the inquiry or were trained 
to implement the Predict-Observe-Explain framework (POE) [18]. 
The training session of the POE framework was highly structured 
and guided: During the entire activity, before each intended 
manipulation, participants were asked to predict its result, then 
observe the actual results of the manipulation, and finally explain 
their observation in light of the initial prediction. On the other 
hand, the think-aloud group did not receive any scaffolds or 
guidance by the experimenter. Therefore, for the purposes of this 
paper, we report only data for the participants in the think-aloud 
condition, as the difference in guidance might have altered the 
nature of the activity, and masked the effect of medium on inquiry 
processes of the participants. 

The main research questions that guided the present study were: 
• How can we operationalize inquiry strategies in less well-

structured and more complex activities? 

• What inquiry strategies are related to better learning outcomes? 

• How does strategy use differ between participants using either 
the physical or the simulation environment?  
 

3.1. Sample 
For Mass and spring activity in think-aloud condition, we had 36 
community college students (24 female, 12 male, average 
age=20.5, SD=3.6).  
 

3.2. Design 
The study reported here is a between subject design with two 
levels. We randomly assigned participants to use either physical 
(PHY) or computer simulation (SIM) to engage in an inquiry-
based activity on mass and spring oscillation (nPHY=18, nSIM=18). 
The task was to discover how the mass and the spring constant 
affect both the amplitude and the frequency of oscillation of a 
mass-spring system. We administrated a conceptual test before 
and after the activity. The post-test scores were the dependent 
measures of the experiment, while the pre-test scores were used as 
covariates in the corresponding statistical analyses. The relevant 
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behavioral measures were treated as independent within-subject 
variables since they were expected to predict learning outcomes. 
 

3.3. Materials 
3.3.1. Learning Environment  
Physical Learning Environment. The physical toolkit consisted 
of the PASCO1 Demonstration Spring Set and Mass and Hanger 
Set. There are four pairs of springs, each with a spring constant 
between 4 N/m and 14 N/m. The masses consist of hangers to 
which slices of weights can be attached, ranging from 5 to 20 g. 
The environment consisted of two hooks, each being able to hold 
one spring, see Figure 1. For measuring extensions and duration, 
we provided a measuring tape and a stopwatch.  
Simulation Learning Environment. The computer simulation 
we used was created by PhET [22], see Figure 1. It consists of 
three springs, two of which have a fixed and equal spring 
constant. The spring constant of the third spring can be changed 
continuously by means of a slider. It further entails seven weights, 
four of which are 50g, 100g, 100g and 250g respectively. The 
other three have no indication of their actual weight. The weights 
can be attached to and removed from the springs by simple drag-
and-drop. The simulation comes with a displaceable measuring 
tape as well as a stopwatch.  
Differences in Learning Environment. Instead of designing the 
learning environments ourselves, we selected the ones that we 
considered as state of the art of their respective domains. This 
prevented us from setting up the necessary control of the 
differences in affordances of the environments for making causal 
claims about the relation of learning environment and 
experimentation strategies. However, we can reason about the 
potentially relevant differences based on the specific user 
interfaces and interaction designs. The main differences are the 
following ones: 1. The VME allows participants to use up to three 
                                                
1 PASCO scientific, 10101 Foothills Boulevard, P O Box 619011, 
Roseville, Ca 95678-9011, USA.Web: http://www.pasco.com. E-
mail: sales@pasco.com. National representatives of PASCO can 
be reached through the USA office. 

springs, compared to two in the PME; 
2. In the PME, participants could 
change the spring constant of both 
springs if needed, while the VME 
allowed to change the spring constant 
of only the third spring; 3. In the 
VME, manipulating the spring 
constant is easier as it requires only 
changing the value of a continuous 
valued slider. Participants could 
change its value on the fly, without 
interrupting an ongoing experiment. 
In order to change the spring 
constants in the PME, participants 
had to stop an experiment, and 
physically replace a spring with 
another one. 
 

3.3.2. Subject Knowledge 
Assessment Questionnaire 
The pre-test and the post-test consisted 

of four qualitative questions, each with two sub-questions. The 
first two questions addressed the impact of changing either the 
spring constant or the mass on the amplitude and frequency of 
oscillation. The third question targeted the understanding of force 
and speed in an oscillating spring-mass system. The fourth 
question was a near-transfer question inspired by the 
generalization questions of Renken & Nunez [12].  

3.3.3. Procedure.  
Students participated individually in the study. They were 
assigned randomly to either the PHY or the SIM condition. Prior 
to taking the pre-test, each participant was introduced to the 
nature and goal of the activity, and to definitions of relevant 
variables. Possible experiments were restricted only by the given 
set of weights and springs. The definition sheet contained basic 
definitions, both verbal and visual, of relevant concepts of 
harmonic oscillation of mass-spring systems. After the pre-test, 
the experimenter explained how to manipulate the variables and 
how to perform measurements, depending on condition using 
either the physical toolkit or the computer simulation. Participants 
were instructed to adjust only the settings related to the two 
variables of interest. They were further asked to think-aloud 
during the activity. The maximal duration of the inquiry task was 
10 minutes. Participants then completed the post-test. Both pre-
test and post-test took 5 minutes each. 
 

3.4. Coding 
3.4.1. Conceptual Tests 
Pre-test and post-test items received a score of 1 if they were 
correctly answered, and 0 otherwise. Questions that required 
participants to explain their reasoning were given 0.5 for partially 
correct answers. The maximum score was 8. Besides the overall 
aggregate score, we calculated also sub-scores for the two 
conceptual categories, spring constant (two items) and mass 
dependence (two items).  

3.4.2. Inquiry Behaviors 
In a first pass, we extracted every experiment a participant ran 
from the corresponding video records of the experiment. This was 
done manually. Once the database was established, we could code 
every experiment computationally based on customized rules for 

Figure 1. Experimental Setup: Left: Physical toolkit in action: The first hook is just next to the 
measure tape. Right: Computer Simulation: Participants were only allowed to change the 
“softness spring 3”. 
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extracting relevant variables such as number of manipulated 
objects, etc. Even if the initial step was done by hand, the 
extraction procedure was operationalized such that we can 
automatize this process for future iterations: An experiment was 
characterized by the state of each relevant variable. A new 
experiment started when either one or more variables of the 
system were manipulated, or when a current experimental setup 
was re-initiated, either by touching a mass-spring system with the 
hand or with the mouse. The type of performed manipulation was 
then extracted from the contrast between two experiments. All 
variables representing inquiry behaviors are coded proportionally, 
relative to the total number of experiments run per activity. 

An experiment consisted of the number of springs used, their 
spring constants, and the weights attached to the springs. The 
possible manipulations were (1) change of the spring constant, (2) 
change of the weight, (3) change both, (4) repeat an experiment, 
and (5) start a new experiment by changing the number of springs 
used. Changing either the mass only or the spring only 
corresponded to a control of variables manipulation (CVM), 
while a confounded manipulation referred to changing both 
variables at the same time. In cases participants used only one 
mass-spring configuration, we defined an experimental 
comparison through the contrast set up by the configurations in 
two consecutive runs. When two configurations were used 
simultaneously, the experimental comparison was defined by the 
contrast of those two sets of masses and springs. When 
participants in the SIM condition used all three springs, we 
defined the experimental comparison by the most optimal contrast 
out of the three possible pairwise combinations (optimal being the 
mass-spring configurations that differ only in one independent 
variable).  
  

Note: Standard error are in parentheses; † (p ≤ 0.1), * (p ≤ 0.05),  
** (p ≤ 0.01) ), *** (p ≤ 0.001); each model regresses post-test  
scores on the given independent variables. 

As explained before, just looking at whether an experiment was 
unconfounded or not misses out on other relevant aspects. In 
particular, such a perspective does not provide any insights into 
how deliberately or considered participants executed and reflected 
on an experiment. Therefore, we additionally captured the 
duration of each experiment as the dwell time between two 
succeeding experimental manipulations. Based on the dwell time, 
we developed a measure of deliberateness; any manipulation that 
had a dwell time bigger than first quartile of all dwell times of all 
participants was coded as a deliberate manipulation.  
 

3.5. Data Analysis. 
3.5.1. Analysis of Learning Outcomes 
In order to analyze the relation between inquiry behaviors and 
learning outcomes, we ran multiple linear regressions on post-test 
scores, with condition as independent factor, pre-test scores as 
covariate, and the corresponding measures of inquiry behavior as 
independent variables. For pairwise comparisons between 
variables within the same category that violated the normality 
assumptions, we report results from the nonparametric Mann-
Whitney-Wilcoxon test.  

3.5.2. Analysis of Inquiry Behaviors 
We applied a cluster method on all experimental manipulation 
variables to group participants by their inquiry behaviors. We 
used portioning around medoids (PAM) as the clustering 
algorithm, which is a more robust version of the standard k-means 
clustering algorithm, as it minimizes a sum of dissimilarities 
instead of a sum of squared Euclidian distances [23]. The quality 
of the clustering result was evaluated based on the silhouette score 
[24], a measure of similarity between points and the clusters they 
are assigned to. The larger the silhouette value, the better the 
clustering. However, instead of selecting the clusters that 
maximize the silhouette score, we have to make a trade-off 
between silhouette score and number of clusters in order to have 
theoretically relevant results. Ideally, we could set the number of 
clusters to 2, as we were interested in analysis of behaviors with 
respect to condition.  
 

4. Results 
4.1. Baseline Knowledge 
Participants in the two conditions did not differ significantly in 
pre-test scores, t(32) = 1.49, p = 0.15 (PHY: M = 3.53, SD = 1.59; 
SIM: M = 4.23, SD = 1.15). However, the high overall pre-test 
score average of about 52.5% of the maximal possible score 
indicates that participants had relevant prior knowledge with 
regards to the subject. We excluded two participants who scored 
perfectly on the pre-test. In terms of prior knowledge related to 
impact of the spring constant versus the mass on harmonic 
oscillations, there were no significant differences in pre-test 
scores on the corresponding subcategories (Spring constant: M = 
41.2%, SD = 31.3%; Mass: M = 52.9%, SD = 30.0%), paired  
t(33) = -1.54, d = 0.38, p = 0.13. However, as the trend in data 
nevertheless points in the expected direction, we classify 
experiments that involve spring manipulations as less familiar 
than those involving mass manipulations.   
 

4.2. Effect of Condition on Learning Gain 
The two conditions were not significantly different in terms of 
average learning outcomes as condition was not a significant 

Variables / Models 1 2 3 4 5 

(Intercept) 3.79*** 3.12**  

 

1.09 

 

2.07* 

 

2.01* 

 
  (0.68) (0.24) (1.38) 

 

(0.16) 

 

(0.96) 

 
Pre-test Scores 0.32† 0.32† 0.29† 0.32† 0.34* 
 (0.17) (0.17) (0.16) (0.16) (0.16) 
Condition 0.33 0.49 -0.05 

 

0.38 0.36 

 
 (0.33) (0.44) 

 

(0.35) 

 

(0.37) 

 

(0.37) 

 
% Control of Variable  0.89 

 

   
  (1.60) 

 

   
% Confounded  1.28 

 

   
  (2.17) 

 

   
% Delib. Manip.   3.33* 

 

  
   (1.50) 

 

  
% Delib. CV    

 

3.17*  
    (1.44)  

% Delib. Confounded    3.21 3.29 
    (2.09) (2.06) 
% Delib. Spring-Only     

 

3.95** 
     

 

(1.52) 
% Delib. Mass-Only     1.46 

 
     (1.86) 

 
R2 0.113 0.127 0.238 

 

0.254 

 

0.304 

 
adj. R2 0.056 0.007 0.162 0.151 0.179 
N 34 34 34 34 34 

Table 1. Regression Models of Post-Test Scores 
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factor for post-test scores, controlling for pre-test scores, β = 0.33, 
t(32) =  1.01, p = 0.32,  ηp

2 = 0.03 (see Figure 2.B.). 
 

4.3. Learning Outcome by Inquiry 
Behaviors 
We examined how various measures of inquiry behaviors related 
to learning outcomes by multiple linear regression analysis. The 
baseline variables of each regression model were condition as 
independent factor, and pre-test score as covariate. All the 
corresponding regression models are shown in Table 1.  

4.3.1. Time on Task and Number of Experiments  
While time on task was the same across conditions, t(32) = 0.28, p 
> 0.5, the total number of experiments per participant was higher 
for the SIM condition (M = 18.7, SD = 8.3) than for the PHY 
condition (M = 13.7, SD = 7.3), d = 0.64, t(32) = 1.87, p = 0.07. 
Additionally, pre-test scores were not correlated with number of 
experiments, r(32) = -0.05, p >0.5. An ANCOVA suggests that 
the number of experiments was not a significant factor for post-
test scores, controlling for pre-test scores, F(1, 30) = 0.02, p > 0.5, 
ηP

2 < 0.01. Overall, participants performed 533 different experi-
ments, based on which we built the database. 

4.3.2. Control of Variables Manipulations 
We did not find a significant effect for overall CVM on post-test 
scores, β = 0.89, t(31) = 0.33, p > 0.5 (see model 2 in Table 1). 
Even when looking at mass-only or spring-only manipulations, 
the respective regression coefficients are not significantly 
different from zero. These results indicate that performing control 
of variable manipulations of either the spring or the mass does not 
necessarily lead to better learning outcomes per se, which is in 
contrast to the prior literature [8]. We find that control of variable 
manipulations alone cannot explain the variability in learning 
outcomes both within and across conditions.  

4.3.3. Deliberate 
Manipulations 
We coded the deliberateness of an 
experimental manipulation by 
means of the time spend on an 
experiment. We extracted the 
duration between manipulations 
across all participants, and defined 
the cut-off value between a rapid 
and a deliberate manipulation as 
the 25th percentile of the duration 
histogram (Mdn = 20 seconds). 
This was at 11 seconds.  

Overall deliberate manipulations 
was a relevant positive predictor of 
post-test scores, β = 3.33, t(31) = 
2.21, p = 0.03, ηP

2 = 0.14 (model 3 
in Table 1). While CVM was not 
relevant for learning outcomes, 
deliberate control of variable 
manipulations (DCVM) was a 
significant factor in the regression 
model 4 in Table 1, β = 3.17, t(31) 
= 2.19, p = 0.04, ηP

2 =0.15. This 
effect was mainly driven by 
deliberate spring-only manipula-
tions (see model 5 in Table 1). On 
the other hand, deliberate 

confounded manipulations had a comparably high coefficient 
value, even if it was not significant. With an adjusted R2 = 0.18, 
F(5,28) = 2.44, p = 0.06, model 5 did not explain a higher 
proportion of variance than model 3, F(1,2) = 1.32, p = 0.28.  

None of the manipulation types correlated with pre-test scores (all 
correlation coefficients were lower than 0.1 in absolute value). 
The lack of correlation supports the claim that the manipulations 
were context-dependent variables of inquiry behavior. 
 

4.4. Inquiry Behavior by Condition 
4.4.1. Control of Variables Manipulations and 
Deliberate Manipulations 
The physical and the simulation condition did not differ in terms 
of control of variables manipulations, d = 0.14, t(32) = -0.08, p = 
0.94 (SIM: M = 0.51, SD = 0.13; PHY: M = 0.53, SD = 0.16). In 
contrast to that, the two conditions differed significantly in the 
amount of deliberate control variable manipulations (DCV), d = 
0.77, t(32) = 2.23, p = 0.033 (SIM: M = 0.35, SD = 0.15; PHY: M 
= 0.47, SD = 0.18). There is a significant drop in CV when 
considering the deliberate manipulations for the SIM condition 
only.  In line with the hypothesis that the simulation environment 
was easier to manipulate, there were significantly more rapid 
manipula-tions in the SIM condition (Mdn = 17.6%,  
CI.95 = ± 24.5%) than in the PHY condition (Mdn = 0% ,  
CI.95 = ± 12.9%), U = 219.5, r = 0.46, p = 0.007.  

4.4.2. Cluster Analysis of Inquiry Behaviors 
Overall, DCV manipulations were a significant predictor for 
learning outcomes, in particular the deliberate spring-only 
manipulations. However, even if there was a significant difference 
in the amount of these manipulations between the PHY and SIM 
conditions, learning outcomes did not differ significantly by 

Figure 2. A. Boxplot of proportions of deliberate spring-only (DSO), deliberate mass-only 
(DMO), deliberate confounded (DCo), and non-deliberate (NonD) manipulations, repetitions 
(REP) and start of new experiments (Start). B. Comparison of pre-test and post-test scores by 
cluster as well as condition. Bars indicate standard errors. 

A. B. 
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condition. It appears that individual differences in inquiry 
strategies of participants within each condition washed out the 
actual impact of the learning environment on average post-test 
scores. There might be people in the physical and the simulation 
condition that deviated from the average inquiry behaviors for the 
condition towards the other condition’s characteristics. We 
address this question by grouping all participants by considering 
all inquiry variables simultaneously instead of grouping them by 
condition, and then see how the groups distribute across the 
conditions. This can be done by means of cluster analysis.  

Clustering was performed on the 6 possible manipulation types 
(see Figure 2.A) of the entire sample, which resulted in 2 clusters 
with 17 participants in each cluster. The average silhouette score 
was 0.30. While this score is not high enough to exclude the 
possibility of artificial data structures, an examination of the 
clusters in terms of variables confirms the clusters reasonably 
distinguish people by the level of systematicity of their inquiry 
behaviors: Generally, the participants of Cluster 1 (“non-
systematic”) were less strategic and less deliberate in their 
manipulations than Cluster 2 (“systematic”) (see Figure 2.A). 
Cluster 2 had a higher proportion of deliberate spring-only 
manipulations than Cluster 1, U = 58, r = 0.51, p = 0.002, a lower 
proportion of non-deliberate manipulations than Cluster 1, U = 
262.5, r = 0.72, p < 0.001, and a lower proportion of confounded 
manipulations, U = 240.0, r = 0.57, p < 0.001. There was no 
significant difference in the other variables. Additionally, even if 
the clustering was not performed on overall DCV, there is a large 
difference between the clusters; participants in the systematic 
cluster proportionally performed significantly more DCV (Mdn = 
49.8%, CI.95 = ±16.3%) than in the non-systematic cluster (Mdn = 
30.7%, CI.95 = ±12.1%), d = 1.33, t(32) = 3.89, p < 0.001. 

The two clusters meaningfully differ in learning outcomes, as 
indicated by a regression of post-test scores on the cluster 
variable, with pre-test scores as covariates, which revealed a 
significant main effect of cluster, β = 1.03, t(31) = 2.39, p = 
0.015, ηP

2 =0.16. As expected, participants in the systematic 
scored higher than those in the non-systematic cluster (see Figure 
2.B). The regression model explained a significant proportion of 
variance, adjusted R2 = 0.18, F(2,31) = 4.55, p = 0.02. 

Table 2. Conditions distributed across clusters 

Condition 
Non-Systematic 

(n = 17) 

Systematic 

(n = 17) 

Physical     (n = 17) 3 (17.6%) 14 (82.4%) 

Simulation (n = 17) 14 (82.4%) 3 (17.6%) 

 
Finally, Table 2 shows that the majority of participants in the 
systematic cluster used the physical toolkit, while the majority of 
participants that belonged to the non-systematic cluster were in 
the simulation condition, as confirmed by a Fisher’s exact test, p < 
0.0001. 
 

5. DISCUSSION 
Considerable attention has been given separately to research on 
the impact of virtual and physical learning environment [4] and of 
inquiry behaviors on the learning outcomes in science discovery 
activities [8,9]. The aim of the present study was to link these two 
realms by (1) studying the relation of strategy use and learning 
outcomes, and (2) comparing strategy use between learning 

environments in order to shed light on how different affordances 
of the learning environments might influence strategy use.  
 

5.1. Nuanced View of Experimentation 
Strategies in Open-Ended Inquiry Tasks 
One main finding from this study was that one of the strongest 
predictors for learning outcomes when controlling for prior 
knowledge was the manipulation type that (a) created a single 
contrast in experiment conditions, (b) targeted the problem type 
that participants generally were less familiar with, and (c) was 
deliberate. In the context of the mass and spring activity, these 
were deliberate manipulations that changed only the spring 
constant from one mass-spring system to the other.  
Importantly, this further implies that the control of variables (CV) 
in experiment design was a necessary but not sufficient condition 
for developing conceptual understanding through 
experimentation. This is in contrast to prior research that has 
predominantly focused on the ability to design unconfounded 
experiments as the main factor of knowledge acquisition in 
inquiry learning [2,10,12]. Using control of variable strategy as an 
important factor for characterizing experimentation strategies 
works when the student has to make a conscious decision to 
actually apply this strategy. It fails if the affordances of the user 
interface do not require that.  In the computer simulation, one 
could change the spring constant continuously using a slider, even 
during an ongoing experiment. In the physical condition however, 
an experiment had to be interrupted in order to change either the 
mass or the spring, which required the participant to deliberately 
decide what to manipulate, but both changes are coded as CV 
manipulations. As a consequence, we not only found that there 
was no difference in CV manipulations between conditions, but 
also that these manipulations did not have predictive value for 
learning outcomes.  
This picture changed when accounting for the deliberateness of 
experimental manipulations. It turned out to that in contrast to CV 
manipulations, the percentage of deliberate CV manipulations 
significantly predicted learning outcomes, as well as differed 
between conditions. The drop from CV to deliberate CV 
manipulations was significant only for the SIM condition. This is 
in line with our reasoning that the user interface for the computer 
simulation did not make the control of variables a deliberate 
choice. Even by itself, deliberate manipulations were among the 
strongest predictor for post-test scores. We suggest that time 
between manipulations as a measure of deliberateness is not just 
reflective of the ease of manipulation in a learning environment, 
but also of the level of cognitive engagement of a participant with 
an experiment.  

Finally, only manipulations targeting the less familiar concept 
(spring) contributed to conceptual learning, while those targeting 
the more familiar one (mass) did not seem to impact the learning 
outcomes, which seems reasonable given that the participants 
tended to know less about the springs’ role in the harmonic 
oscillation. However, contrary to previous studies [12] that 
consider confounded manipulations as detrimental to developing 
conceptual understanding, we found a relatively large though 
insignificant positive regression coefficient for confounded 
manipulations on post-test scores. At this point, we can only 
speculate as to why this is the case; for example, it could be that 
people with low prior knowledge ran preliminary experiments to 
get a sense of the physical phenomenon. Further investigation is 
needed to understand this process.  
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5.2. Differences in Inquiry Behaviors by 
Learning Environment 
We found that conditions did not differ in terms of learning 
outcomes. In line with previous research that showed equal 
knowledge gains for virtual and physical manipulative 
environments [2, 3, 5, 7], we could have argued that there is no 
difference in benefits of learning environments for developing 
conceptual understanding in inquiry tasks on mass-spring systems. 
However, as indicated by the results of the cluster analysis of 
inquiry behaviors, this would have been the wrong conclusion. 
The cluster analysis revealed that participants across both 
conditions could be grouped into two clusters according to how 
systematic their inquiry behavior was, and that the more 
systematic cluster had significantly higher learning outcomes than 
the less systematic cluster. Importantly, almost all of the 
participants in the physical condition belonged to the more 
systematic cluster, while most of the participants in the simulation 
condition fell into the less systematic cluster. This suggests that 
the learning environments did differ in terms of benefits for 
developing conceptual understanding. It is important to note that 
this is not in contradiction to the multiple regression models that 
show no significant effect for condition. Both analyses show that 
inquiry strategies had a strong influence on learning outcomes. 
However, enough participants deviated from their peers in the 
same condition in terms of inquiry behaviors such that the overall 
differences in learning outcomes between conditions were 
canceled. By using more than one variable of inquiry behavior for 
grouping participants, cluster analysis better accounts for between 
subject differences in overall inquiry behaviour in each condition. 
Thus, at least for activities that span a short period of time, we 
think that measures of experimentation strategies have to be 
incorporated in studies of the impact of learning environments on 
learning outcomes in open-ended science inquiry learning. 
A possible explanation for these differences in experimental 
manipulations between conditions is that the ability to employ 
systematic experimentation strategies is not necessarily a stable 
domain-general skill but a context-dependent behavior. It is likely 
that specific affordances of the two learning environments are 
related to these differences in experimentation strategies, such as 
the need to pause the experiment to change the spring constant in 
the real but not virtual environment. While there is consensus on 
the impact of different affordances of virtual and physical 
environments on learning outcomes [4], we argue in light of these 
results that we also need to study the impact of these affordances 
on the experimentation processes during science inquiry activities. 
However, as we did not manipulate the specific affordances in the 
learning environments, we can currently only make educated 
guesses. 

For example, the fact that participants in the SIM condition ran 
more experiments than in PHY, while spending the same amount 
of time at the task, supports the claim that it was easier to 
manipulate variables in the computer simulation than in the 
physical setup. As argued by Renken and Nunez [12], it might be 
that systems that enable quick changes with various options 
prompt participants to get into “play” mode, in which they revert 
to simple heuristic methods such as trial-and-error and spend less 
effort on setting up valid experiments. This could explain why 
proportion of deliberate manipulations was higher for participants 
using the physical systems.  

Another difference in affordances is that in the computer 
simulation, participants could change the spring constant even as 
experiments were running, which led to short perturbations in the 

oscillations that were due to the change, and not necessarily due to 
the actual spring-mass configurations. Especially in cases “non-
deliberate” manipulations that were too short for the perturbations 
to vanish, participants might have wrongly interpreted these 
fluctuations.  
 

5.3. Limitations and Future Directions 
While the study provided evidence that an investigation of inquiry 
strategies is more informative than merely looking at outcomes, it 
only offered hints as to what determines the use of those 
strategies.  These appear to be influenced by the different 
affordances of a learning environment, but studies with longer 
interaction times, and a greater range and control of environments 
is needed to understand the characteristics of these relationships in 
more detail. Future studies should better control and match the 
virtual and physical environments in order to focus on one or two 
specific affordances. Studies that manipulate design features 
within a learning environment to assess its impact on inquiry 
processes are also needed. 

Further studies should incorporate the assessment of hypothesis 
generation and inference processes to examine the impact of 
affordances of learning environments not just on experimentation 
strategies, but on these other critical inquiry behaviors as well. 

We found that time between manipulations was an important 
correlate of learning outcomes; however, wit the current study, we 
can make only educated guesses as to what cognitive processes 
longer dwell times correspond to. Dwell time could signify the 
time spent on comparing the current with the prior experiment 
configuration, on reflecting on existing confusions, on planning 
the next steps to be taken, or it could just represent the time it 
takes to perform a manipulation in the learning environment. 
Additionally, the lack of difference on learning outcomes between 
media seems to contradict prior research on virtual versus 
physical learning environments in comparable inquiry tasks [12]. 
However, as the tendency of the data goes into the expected 
direction, we believe that a larger sample size would provide the 
required power to detect the learning outcome differences.  

We currently did not employ automated tracking of participants’ 
behaviors to extract their experiment configurations. However, 
novel computer vision algorithms, as well as logging systems 
would address this limitation. Our data organization scheme can 
be easily integrated with automatized tracking systems. 
 

6. CONCLUSION 
Drawing on work on scientific reasoning and inquiry, we 
developed a novel operationalization of systematic experi-
mentation strategies that predict learning outcomes in open-ended 
inquiry-based learning activities. We further showed that strategy 
use is context-dependent, in that participants using the physical 
system went about the inquiry activity differently than participants 
using the computer simulation.  

These findings suggest that we have to broaden the notion of what 
counts as “systematic experimentation” from mainly consisting of 
the design of unconfounded experiments and the performance of 
optimal heuristic search to a more comprehensive views that 
integrates contextual and cognitive factors (e.g. deliberateness). 
Data mining algorithms are particularly well suited for exploring 
such behaviors. However, it is crucial to develop data-mined 
models of inquiry strategies that are interpretable in order to 
advance our understanding of learning processes in more complex 
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inquiry activities. We suggest that any machine-learned model of 
inquiry behaviors should incorporate semantic representations of 
what participants’ actually explore in inquiry activities, in order to 
meaningfully extend the data from interaction logs of users 
engaging in the learning environment.  

A further implication of our results is that research on learning 
environments for science inquiry learning should focus on 
developing a broader framework that focuses on the affordances 
as relevant dimensions, irrespective of medium and examines how 
under what circumstances they benefit learning. 
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