
Modeling Classroom Discourse: Do Models that Predict 
Dialogic Instruction Properties Generalize across 

Populations? 
Borhan Samei1     Andrew M. Olney1    Sean Kelly2    Martin Nystrand3     

Sidney D’Mello4    Nathan Blanchard4    Art Graesser1 
1 University of Memphis   2 University of Pittsburgh        3 University of Wisconsin     4 University of Notre Dame   

bsamei@memphis.edu 

 

ABSTRACT 

It has previously been shown that the effective use of dialogic 

instruction has a positive impact on student achievement. In this 

study, we investigate whether linguistic features used to classify 

properties of classroom discourse generalize across different 

subpopulations. Results showed that the machine learned models 

perform equally well when trained and validated on different 

subpopulations. Correlation-Based Feature Subset evaluation 

revealed an inclusion relationship between different subsets in 

terms of their most predictive features.  
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1. INTRODUCTION  
Previous research on classroom instruction has shown the positive 

influence of dialogic instruction on student achievement [2].  

Dialogic instruction is a classroom discourse strategy based on the 

free and open exchange of ideas between teachers and students. It 

is hypothesized that dialogic instruction improves achievement by 

increasing student engagement in classrooms [3, 5].   

Previous efforts to carefully quantify teachers’ use of dialogic 

instruction include three major studies by Nystrand and colleagues 

[6]. Nystrand et al.’s approach included coding discourse moves 

with a focus on the nature of question events, which are defined by 

the discourse context preceding and following a question. Question 

events include the question along with the response and optional 

evaluation/follow up. They follow a pattern that mirrors the well-

known initiation response, and evaluation sequence (IRE). This 

coding scheme treats questions as sites of interaction and takes into 

account the response and evaluation. As a result, the questions 

alone do not uniquely determine the dialogic properties of the 

event; instead, they create a context through which dialogic 

properties may be realized.    

In this research, question events were coded with five properties 

that were hypothesized to relate dialogic instruction to student 

achievement: authenticity, uptake, level of evaluation, cognitive 

level, and question source. However, Nystrand and Gamoran found 

that among these variables, authenticity and uptake were the most 

strongly related to student achievement [2, 8]. A question is defined 

as having authenticity when the asker does not have a pre-scripted 

answer, i.e. an open-ended question, which creates a context for 

students to contribute to an open ended discussion.  Uptake occurs 

when one asks a question about something that another person has 

said previously. When teachers exhibit uptake, they incorporate 

student contributions into the discussion, potentially encouraging 

additional student contributions.  

Question properties were live-coded by observers in Nystrand et 

al.’s study, a time-consuming and expensive process requiring 

trained classroom observers. To facilitate research into dialogic 

instruction, we recently developed a machine learning model to 

investigate the extent to which question properties can be 

automatically coded [9]. This previous study showed that machine 

learned models can predict authenticity and uptake as accurately as 

human experts in a setting where the questions are presented 

without the preceding and following context, which was the 

information available to the machine learned model. 

Machine learned models, often referred to as predictors or 

classifiers, are sensitive to the properties of the data set on which 

they are trained. However, in order to perform large scale analysis, 

these models must be applicable to new, larger, and more diverse 

data. An important question in this work is whether the models 

systematically vary their predictions with different subpopulations 

in the data (e.g. different demographics). This systematic variation, 

essentially bias, could lead to incorrect predictions and flawed 

conclusions when the model is applied to a sample drawn from the 

same subpopulation as opposed to different subpopulations and 

indeed any sample where the individuals are spatially or temporally 

correlated may potentially have problems of generalizability.  

Some recent research has focused on examining generalizability of 

EDM models. For example, Baker and Gowda studied the 

difference in student behaviors associated with disengagement in 

urban, suburban, and rural schools and found that urban students 

went off-task more often and exhibited significantly more careless 

behaviors than students in the rural and suburban schools [1]. 

Furthermore, Ocumpaugh et al,  found that models trained on a 

population drawn primarily from one demographic grouping (rural, 

urban, or suburban) do not always generalize to populations drawn 

primarily from the other demographic groupings [7]. 

Generalization can sometimes occur across seemingly distinct 

contexts. For example, San Pedro et al. (2011) found that their 

models of detecting student carelessness were generalizable among 

different tutor interfaces (i.e. with and without an embodied 

conversational agent), as well as different school settings (i.e. 

Philippine high school and US middle school) [10].  

In this paper we investigated the generalizability of two previously 

developed models for predicting authenticity and uptake in 

classroom discourse [9]. 

2. METHOD 
We trained and tested our models using data collected from the 

Partnership for Literacy Study (Partnership). The data set consists 

of question events as recorded by the classroom observers. 

Partnership was a study of professional development, instruction, 

and literacy outcomes in middle school, in which 120 classrooms 

in 21 schools were observed twice in the fall and twice in the spring 
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over two years. The Partnership data set consists of observational 

data which were coded using the CLASS 4.24 computer-based data 

coding program [9]. Inter-rater agreement was approximately 80% 

on question properties with observation-level inter-rater 

correlations averaging approximately .95 [6].   

Some of the teachers received special training in the first year and 

their classes were observed again in the second year. We used 

teacher training to split the data into Pre-training (N=7082) and 

Post-training (N=13655) groups. The school location was coded 

into categories of large and mid-size central city, urban fringe of 

mid-size city, small town rural outside MSA (metropolitan 

statistical area), and rural inside MSA. Based on the number of data 

points in each category, we split the data in two categories: Urban 

(i.e. Mid-size and Large Central City, N=13126) vs. Non-urban (the 

rest of categories, N=10911). Table 1 shows the distribution of 

authenticity and uptake across the different splits.  

Table 1. Proportion of Authenticity and Uptake in different 

subsets and the full data set. 

Category % Authenticity % Uptake 

Non-urban : Urban 54 : 47 23 : 20 

Pre-training : Post-training 39 : 52 15 : 24 

Full-set 50 21 

 

As seen in Table 1, authentic questions were more frequent than 

uptake in general, and the Non-urban group had higher rates of both 

authenticity and uptake than Urban. Overall the distribution of 

authenticity and uptake was similar among Non-urban, Post-

training, and Full-set. Pre-training had the lowest rate of 

authenticity and uptake compared to others. It is also worth noting 

that teacher training was apparently quite effective at increasing 

both authenticity and uptake, as shown by the increase from Pre- to 

Post-training. 

Based on our previous work on automating coding the questions 

with authenticity and uptake [9], we applied machine learning to 

train separate classifiers for authenticity and uptake on each of the 

above subsets. The models use linguistic features utilized in the 

classification of question types [8], including parts of speech, 

manually constructed bags of words (e.g., causal antecedent 

words), and positional information. 

Most of the features are binary and indicate the presence/absence 

of certain keywords or part of speech tags in the question. Other 

features include attributes that show the position of the target 

keyword in the question in addition to presence/absence using four 

values: middle, beginning, end, and none.  For example, if a 

question consisted of four words, e.g. “word1 word2 word3 word4” 

the position of “word1” is captured as beginning and “word4” as 

end, furthermore “word2” and “word3” are both captured as middle 

and if there were only two words in the question, we consider the 

first one as the beginning and the other as the end.  

An example of a feature is causal consequent words, which include 

“outcomes,” “results,” “effects,” etc. Similarly, procedural words 

are defined as a set of keywords including “plan,” “scheme,” 

“design,” etc.  Moreover, part of speech tags, such as determiner, 

noun, pronoun, adjective, adverb, and verb, and certain words such 

as “What,” “How,” and “Why,” were also included in the feature 

set. More complete descriptions and justifications of these features 

for question classification can be found in the mentioned 

references. 

We first trained models on each subset and evaluated their 

performance using 10-fold cross validation within the subset. Next, 

we tested generalizability by training on one subset and testing on 

its dual. For example, a model trained on Urban subset was tested 

on the Non-urban subset and vice versa. Moreover, the models 

trained on the full set of data were also tested on each subset. This 

methodology allows for the following contrasts. First, cross 

validation within a subset establishes a reasonable upper bound on 

performance since training and testing instances, while distinct, still 

come from the same subset. Second, training on one subset and 

testing on its dual subset establishes a reasonable lower bound on 

performance, since accuracy would be determined by shared 

features between the subsets rather than by distinctive properties to 

each subset.  Training on the full data set and testing on subsets 

(thus training and testing on those subsets) allows similar 

comparisons of bias. For example, if training on the full set and 

testing on set A has higher accuracy than testing on set B, we may 

hypothesize that the features of the full model are better aligned 

with the features of A, or the prevalence of category distribution in 

the full set better matches that of A. 

3. RESULTS & DISCUSSION 
We first trained separate models to predict authenticity and uptake 

and evaluated the models using on 10-fold cross validation for each 

subset. For each category (e.g. Urban, Non-urban, etc.) separate 

decision tree models were trained and evaluated using WEKA [4]. 

The models for predicting uptake were trained on a random 

subsample of the data to obtain an even (50-50) distribution. Table 

2 shows the performance of the models along with the performance 

of a model trained on the full set of data.  

Table 2. Performance of the decision tree models trained on 

different data subsets using 10-fold cross validation. 

Training 

Data 

Authenticity Uptake 

Accuracy Kappa Accuracy Kappa 

Non-urban 0.61 0.21 0.59 0.19 

Urban 0.62 0.24 0.60 0.20 

Pre-

training 
0.64 0.24 0.61 0.23 

Post-

training 
0.63 0.26 0.61 0.22 

Full-set [9] 0.64 0.28 0.62 0.24 

 

As seen in Table 2, the models on different splits show comparable 

performances, where the maximum difference on their accuracy is 

0.03 (3%). To examine performance of these models and their 

generalizability across different subsets, we trained models on one 

subset and tested on its dual subset, e.g. Urban – Non-Urban. In 

Table 3, the performance of each model is tested on its dual. 

Additionally, the models trained on full set of data are tested on 

different subsets.  

 

Table 3. Generalizability of models on different splits of data 

(trained on one tested on other). 

Train Test Authenticity  Uptake 

Accuracy  Accuracy  

Non-urban Urban 0.60 0.63 

Urban Non-urban 0.62 0.62 
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Full-set Non-urban 0.70 0.68 

Full-set Urban 0.68 0.68 

    

Pre-training Post-training 0.59 0.62 

Post-training Pre-training 0.60 0.64 

Full-set Pre-training 0.70 0.68 

Full-set Post-training 0.72 0.67 

 

In Table 3, training on one subset and testing on its dual is never 

more than 2 percentage points away from the reverse. Thus the 

results are fairly stable. However there are several patterns of 

differences of interest. First, accuracy for the authenticity models 

when trained on Urban and tested on Non-urban is slightly higher 

than when trained on Non-urban and tested on Urban, however the 

uptake model performs slightly better when trained on Non-urban 

and tested on Urban than the reverse. Moreover, uptake and 

authenticity accuracy were higher for models trained on Post-

training and tested on Pre-training compared to the reverse.  

These results show that the model’s performance when trained on 

one subset and tested on its dual is comparable to the results 

presented in Table 2. These results suggest that Pre-training and 

Non-urban are more likely to be proper subsets of Post-training and 

Urban respectively than the reverse. In other words, Post-training 

and Urban models may (by virtue of having better training data for 

their duals) include features that are effective on Pre-training and 

Urban, however this could also be due to the base rate or prevalence 

of authenticity and uptake in these subsets which needs further 

investigation.   

In order to further examine the models, we compared the confusion 

matrices to illustrate the bias/prevalence of the models. Using the 

confusion matrices of models presented in Table 2 (i.e., 10-fold 

cross validated), we subtracted the confusion matrix when training 

on the Full-set from the others (Figures 1 and 2.) The resulting 

matrices represent the extent to which the confusion matrix of a 

model is different from the baseline model (i.e. Full-set). Each of 

the confusion matrices were separately proportionalized (before 

subtraction) by size of the corresponding subset to make the values 

comparable. Positive values in the figures indicate that the 

associated category occurred more often in the subset than in the 

Full-set. Likewise negative values mean that the category occurred 

less often in the subset than the Full-set.  

 

 

Figure 1. Normalized distance of confusion matrices of 

Authenticity models on subsets from full-set (A=Authenticity, 

N= Non-authentic). 

 

It is seen in Figure 1 that the Urban and Post-training authenticity 

models are the most similar to the Full-set model because their 

differences with the Full-set are close to zero. This suggests that 

these models are not biased with respect to the Full-set. However, 

the Non-urban and Pre-training have larger differences with the 

Full-set model. Non-urban and Post-training subsets have more 

true-positives (Actual=Predicted=A) and less true-negatives 

(Actual=Predicted=N) than the Full-set while the opposite is true 

for Urban and Pre-training. This contrast in true-positive and true-

negatives creates a trade-off in the models which previously 

appeared to be consistent. Specifically, Figure 1 reveals that Pre-

training is more biased towards predicting N (non-authentic 

instances) than A (authentic instances) which may be due to the fact 

that there are fewer authentic instances than non-authentic in the 

Pre-training subset (39% vs. 50%, see Table 1). Conversely, the 

Non-urban model is biased towards A at the expense of N reflecting 

the higher distribution of A in the Non-urban subset (54% vs. 50%, 

see Table 1). Overall, the trade-off between true-positive and true-

negative is symmetric which explains why the overall accuracy of 

the models is not particularly affected despite the differences in 

error patterns. 

 

Figure 2. Normalized distance of confusion matrices of Uptake 

models on subsets from full-set (U=Uptake, N= Non-uptake). 

 

Similar to Figure1, Figure 2 shows the distance between confusion 

matrices of uptake models. The overall distance of uptake models 

on subsets compared to Full-set is lower than the distance of 

authenticity models. Note that the uptake models were trained and 

10-fold cross validated on a subsample with an even distribution 

(50-50) which removes the effect of prevalence on the models. 

Notably, the Non-urban model sacrifices more true-positives at the 

expense of false-negatives which explains the lower accuracy of 

Non-urban in predicting uptake (59% vs. 62%, see Table 2) while 

the rest of models are very close to the Full-set and hold a balanced 

tradeoff between true-positive and true-negative.  

We examined the models in more detail using Correlation-Based 

Feature Subset evaluation (CFS). Specifically, we analyzed the 

frequency of each CFS feature to determine the most important 

CFS features for each subset. Table 4 shows the CFS results for 

each model. The features are presented in groups to show whether 

they were common between the models (shared) or exclusively 

included in one model only.  
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Table 4. CFS results, most predictive features of each model 

grouped based on inclusion.  

Models Authenticity  Uptake 

Urban & Non-Urban 

Shared  Wh, What Why 

Urban only  Be, Judgmental, 

Enablement 

Neg, Pron, 

Causal_Antecedent 

Non-urban only  Disjunction 

Pre-training & Post-training 

Shared  Judgmental, 

What 

Neg, Metacog, 

Pron, Judgemental, 

Why 

Pre-training only  Comparison What 

Post-training only Be, Wh, 

Enablement 

Modal, No, 

Causal_Antecedent 

 

Although the models show similar performance, the most 

predictive features of each model is different, as seen in Table 4. 

However there are also marked commonalities among the groups. 

The features for authenticity on the Non-urban subset, for instance, 

are fully included in the Urban authenticity subset. Thus this 

analysis further supports the interpretation of inclusion suggested 

by the pattern of results in Table 3.  

Similarly most of the features of pre-training are included in the 

post training features, which implies that although teachers’ 

language changed after they received training, the result was that 

their linguistic behavior broadened with training such that their pre-

training behavior was still evident.  

4. CONCLUSION 
We investigated the generalizability of previously presented 

models that predict authenticity and uptake in classroom discourse. 

Overall the results showed that the proposed models’ performance 

is consistent among different subsets of the data set.  However, we 

also found that some subpopulations were potentially more 

representative of the nature of dialogic instruction than others, 

making them better for classifier training.  

The inclusion relationship between our subsets was investigated by 

comparing the confusion matrices of our models which revealed 

that authenticity models of supersets (i.e. Urban and Post-training) 

were closer to the full-set model than their duals. The consistent 

accuracy of the models on different subsets was attributed to the 

tradeoff between true-positive and true-negative predictions which 

was also explained by the prevalence and bias of the subsets 

towards one category. 

We plan to apply our model to new data which is being collected 

currently. The proposed models will be applied with the ultimate 

goal of recording and coding classroom interaction in a fully 

automatic way and generating statistical reports to show effective 

instructional strategies. While the models proposed in this paper 

showed generalizability, another direction of future work is to 

improve the accuracy by adjusting current features and adding new 

predictive features to our models. 
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