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ABSTRACT 
Research has shown that supporting tinkering and exploration 
promotes a wide range of STEM related literacies. However, the 
open-endedness of tinkering environments makes it difficult to 
know whether learners’ exploration is productive or not. This is 
especially true in museum spaces, where dwell times are short and 
facilitators lack a history of engagement with individual visitors. 
In response, this study uses telemetry data from Oztoc – an open-
ended exploratory tabletop exhibit in which visitors embody the 
roles of engineers who are tasked with attracting and cataloging 
newly discovered aquatic creatures by building working electronic 
circuits. This data is used to build Hidden Markov Models 
(HMMs) to devise an automated scheme of identifying when a 
visitor is behaving productively or unproductively. Evaluation of 
our HMM was shown to effectively discern when visitors were 
productively and unproductively engaging with the exhibit. Using 
a Markov model, we identify common patterns of visitor 
movement from unproductive to productive states to shed light on 
how visitors struggle and the moves they made to overcome these 
struggles. These findings offer considerable promise for 
understanding how learners productively and unproductively 
persevere in open-ended exploratory environments and the 
potential for developing real time supports to help facilitators 
know how and when to best engage with visitors. 
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1. INTRODUCTION 
While there is evidence that digitally-augmented museum spaces 
can enhance science learning [36, 11], there is increased interest 
in how less-structured, open-ended designs can support new forms 
of STEM-based (science, technology, engineering, and math) 
reasoning and collaboration [18, 19]. Tinkering, in particular, 
often characterized by playful, experimental, iterative styles of 
engagement, and iterative, investigative processes of learning and 
discovery, has shown considerable promise in helping novices 
develop engineering and computer science literacies [5, 26].  

Tinkering is an ideal complement to the kinds of learner-centered 
constructivist pedagogy found in many hands-on science 
museums [1]; however, in the open-ended and exploratory tasks 
that typify tinkering, assessment and feedback is particularly 
difficult [8]. This is especially true in museum environments, as 
visitors often do not have the expertise or confidence to conduct 
the coherent, in-depth investigations required to answer their 
questions on their own [2]. As such, within open-ended 
environments there is a growing need to develop methods for 
understanding learners’ tinkering and exploration. 

Digitally mediated museum spaces, when properly instrumented, 
can capture data on visitors’ tinkering and experimentation in 

real-time (known as telemetry data), allowing researchers to 
identify and analyze temporal patterns in visitor interactions. We 
can then begin to investigate which patterns might be classified as 
productive (e.g., moving towards the broader learning goals of the 
exhibit) or unproductive (e.g., [23]). However, by their very 
nature, productive and unproductive states within open-ended 
tinkering activities are inherently difficult to classify.  

One approach to understanding the state of a learner is through 
Markov Modeling [4]. Markov modeling is used to characterize 
patterns of sequential activity, but first-order Markov models only 
consist of sequences of known states, and we are often more 
interested in more complex relationships than just sequences of 
concrete data. One approach to finding hidden states in learners’ 
activities is the use of Hidden Markov Models (HMM – [25]). 
Applying HMM to learning processes allows us to consider a 
learner as being in one of a fixed set of (“hidden”) states at any 
moment in time. These models, are particularly well suited for 
museums as individual visitors’ states are particularly hard to 
capture and pre- and post-tests are problematic if we want to 
ensure a naturalistic setting [9]. In response, the paper advances a 
research trajectory in which we attempt to highlight productive 
and unproductive patterns of visitor interactions by mining their 
telemetry data from an interactive tabletop exhibit at a large urban 
interactive science museum. In particular, this research addresses 
the following questions: 1) Can a Hidden Markov Model 
accurately predict if visitors are productively or unproductively 
engaged in an open-ended museum activity? 2) Can we identify 
the patterns of exploration and tinkering visitors engage in when 
they move from unproductive to productive states?  

2. BACKGROUND & PRIOR WORK 
Within the context of this study, it is important to understand what 
we consider to be “productive” or “unproductive” patterns of 
practice. Within the learning sciences, there is interest in practices 
that can be considered productive for novices who are learning 
computer sciences and engineering [5]. With its focus on the 
processes of creative and improvisational exploration and making, 
tinkering is recognized as a means for developing a wide range of 
STEM literacies [22, 13]. Tinkering is predicated on engaging 
learners in activities centered on the use of scientific tools, 
processes, and phenomena to explore a problem space through 
experimentation, trial and error, and refinement [6, 10, 5]. 

With tinkering’s focus on open exploration and learner-defined 
goals, understanding how and when a learner is engaged in 
productive tinkering is a challenge. For instance, making mistakes 
in “traditional” learning environments is often viewed as failure, 
but in tinkering environments, failure is not only tolerated but 
celebrated [26]. At their core, tinkering-focused environments 
enculturate the notion that learners should be allowed to persevere 
through initial struggles. However, it is not simply that learners 
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persist, but why they are persisting and how they are persisting 
[27]. With persistence, it is critical that learners actively move 
towards new solutions or problem conceptualizations, or they risk 
getting stuck in cycles of unproductive perseverance [23]. 

In museum settings, understanding when visitors are engaging in 
productive versus unproductive practices and having museum 
facilitators monitor these states is a challenge. This is especially 
true in open-ended exploratory exhibits in which multiple visitors 
can engage and leave at different times (rather than having well-
defined beginning and end points) and can interact with the 
exhibit at multiple granularities (e.g., alone, in groups, or 
simultaneously with strangers). However, if we can develop ways 
for capturing visitors’ hidden productive and unproductive states, 
we open up the possibility for understanding underlying patterns 
in their tinkering and learning and providing critical information 
to researchers, designers, and museum facilitators. 

2.1 Tabletop Interfaces and Engineering  
There is significant research into the role the “programming” 
environment plays in supporting novices in exploring and 
tinkering when learning computer science and engineering [20, 5]. 
Tangible engineering platforms, such as “snap together circuits” 
(e.g., snapcircuits.net), allow novices to physically manipulate 
objects as they tinker and explore engineering concepts, providing 
clear feedback on their process (with pieces clearly fitting 
together, or lighting up when properly connected). Such interfaces 
can reduce learner overhead, freeing them to focus on exploration. 

With their ability to support multiple visitors simultaneously and 
in promoting social interactions, interactive tabletops are 
increasingly used in science and engineering museum research [9, 
1]. In general, interactive tabletops are well suited for supporting 
engineering practices as they promote greater co-awareness of 
peers’ work [35], and can provide increased opportunities for 
others to monitor and provide feedback [20, 33]. The addition of 
tangible blocks (blocks that are recognized by the tabletop when 
placed on its surface) can further support visitors’ engagement 
with engineering practices by allowing them to quickly try out 
ideas [16] and more generally explore and tinker. 
While tabletops are great for supporting collaborative engineering 
learning, they can make it more difficult for museum explainers to 
know the state of tinkering of any one visitor. Similar to the 
problems teachers face with laptop lids [29], the flat surface of the 
multitouch tabletop can obscure visitors’ interactions, forcing 
explainers to “hover” in order to know what visitors are doing. 
Even if explainers do hover, keeping track of multiple visitors’ 
states manually (to know when and where they are needed) would 
be nearly impossible. In response, we need to develop models that 
can give us insight into visitor sates, particularly in real-time. 

2.2 Markov and Hidden Markov Models 
A Markov decision process (MDP) is defined by its state set S, 
and transition probabilities P [41] – assuming identical actions 
between states, and identical rewards for each transition. This is 
represented as a graph, called a Markov Model, which depicts that 
given a state s, the probability of transitioning to any of the other 
states s’ is T(s, s’). In a Markov model, transition probabilities are 
calculated given a sequence of user states. Calculating (and then 
visualizing) the likelihood of a transition between states has many 
potential uses: identifying optimal action sequences in Intelligent 
Tutoring Systems towards success and using these to provide 
hints to users [3]; or classifying and identifying common student 
errors and technical problems to reduce their occurrence [15].  

Hidden Markov Models (HMMs), as their name suggests, are 
Markov Models of hidden states. These are not directly observed 
in the input sequences, but, rather, they exist as aggregated 
“descriptions” of a user’s visible states or “action events” [17]. 
These have been used to classify users through their navigation or 
content access patterns [12] and characterize student behaviors in 
computer-based inquiry learning environments [17]. HMMs 
require: an input sequence of visible states; an initial transition 
table providing a starting estimate for the transition probabilities 
between the hidden states; and an emission table with the 
probabilities of each of the visible states given each hidden state. 
Initialization and verification for an HMM-based learning model 
is an important step, as inappropriate initialization might result in 
the model getting stuck in local minima [7]. After appropriate 
initialization via the transition and emission tables, the HMM 
labels each input state with the corresponding hidden states, and 
gives the transition probabilities between the hidden states. 

3. DESIGNING AN OPEN-ENDED 
TABLETOP ENGINEERING EXHIBIT 
3.1 The Oztoc Exhibit 
In order to address our research goals, we are building upon an 
existing multitouch tabletop exhibit at a large urban science 
museum. The exhibit, named Oztoc [19], situates visitors as 
electrical engineers called in to help fictional scientists who have 
discovered an uncharted aquatic cave teeming with never-before 
documented species of aquatic life (Figure 1). The creatures who 
live in this cave are bioluminescent, and visitors are asked to help 
design and build glowing “fishing lures” to attract the “fish” so 
that scientists can better study them. Visitors place wooden 
blocks, which act as electrical components (i.e., batteries, 
resistors, Light Emitting Diodes or LEDs, and timers), on the 
interactive table to create simple circuits (which the table 
recognizes the blocks via fiducial symbols – see Figure 1). 

 
Figure 1. Visitors assemble virtual circuits using wooden blocks 
that represent resistors (1), batteries (2), timers (3), and different 
colored LEDs (4). Visitors make circuit connections (depicted as 
lines on the tabletop - 5) by bringing the positive and negative 
terminals of the blocks (augmentations displayed by the table) in 
contact with one another. Creating a successful circuit (one that 
has the correct ratio of resistors, batteries, and LEDs) causes 
LEDs to glow and lures creatures attracted to it for cataloging. 
Oztoc’s narrative aims to give learners a situated context in which 
to engage in engineering practices. To avoid many of the 
problems of other engineering and making exhibits [19], we 
wanted Oztoc to give visitors some freedom in choosing their own 
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goals (e.g., which types of fish to target) while still giving them a 
common set of materials and processes. 

4.  METHODOLOGY AND VISITORS 
Oztoc is installed in an enclosed exhibit space just off the main 
floor of a large urban science center. A lollipop sign just outside 
the exhibit space indicates when videotaping will take place in the 
exhibit, allowing visitors to decide to enter or to return when data 
collection is not active. Researchers were present for technical 
support to museum staff only. Video data was collected via 
cameras placed in the exhibit space, audio from a boundary 
microphone, and telemetry data using the ADAGE system [31]. 

Visitors in this study come from a wide range of backgrounds and 
SES. Visitors were also multi-generational and came to the exhibit 
alone, as families, and in large groups. 

4.1 Establishing Visitor Start and Stop Times 
Unlike many other exhibits, Oztoc does not have pre-determined 
start and stop events (such as the beginning or end of a simulation 
or game) – it is a continual process in which visitors enter and 
leave, often at different times. Therefore, in order to accurately 
separate visitors’ sequences of activities, we developed a method 
for determining when visitors entered or exited the exhibit. Given 
all actions performed at each of the table’s four “zones” over a 
single day, we found that if a zone was inactive and empty over a 
set period of time – the “inactivity interval” (InI), the next event 
in that zone indicated a new visitor. We evaluated an InI ranging 
from 10-120 seconds, and the InI did not change significantly 
between 45-120 seconds. As such, we validated the 45-second InI  
with hand-labeled data. Our 45 second InI achieved full accuracy 
for the 2-hour sample of video data that we hand-labeled.  

4.2 Coding Visitor Events 
We needed to establish a granularity of the telemetry data that 
would allow us to understand the state of visitors’ tinkering at any 
moment. Based on previous research on visitors’ interactions with 
the exhibit [19], we chose to look at the events when visitors 
successfully created a circuit (denoted in the logs as 
MakeCircuitCreate). This state was particularly useful as a circuit 
was logged in ADAGE even if the circuit “didn’t work” (i.e., the 
LEDs were not supplied correct voltage), giving us insight into 
visitors’ process exploring different circuit configurations, 
solution states, and goals. By leveraging visitors’ histories at the 
table, we could mine for more complex relationships between 
their current circuit, previously made circuits, and those made by 
others at the table since their arrival. We then automatically coded 
each visitors’ MakeCircuitCreate event using four binary codes 
(see Table 1). 
 
Table 1. Binary codes for MakeCircuitCreate events 

4.2.1  Is the circuit complex? (coded S or C) 
Earlier analysis of visitors’ interactions with the exhibit showed 
that most visitors (if they made any circuits) only made the basic 
three-component circuit (one LED, one resistor, and one battery) 
[34]. As such, the building of a complex (more than three 
component) circuit was a key indicator that visitors were trying 
out more complex configurations. If a circuit had three or less 
components we scored it an S (indicating it was “simple”), any 
circuit that had more than three components was scored a C 
(indicating it was a complex circuit). It is important to note that 
this code is not concerned with whether or not the circuit works, 
only the number of components used. 

4.2.2 Does the circuit work? (coded N or W) 
Understanding the relationship between the individual 
components and making a working circuit is a critical factor in 
determining the success of an exploration. As such, each 
completed non-working circuit was coded with an N and each 
completed working circuit with a W.  

4.2.3 Is the circuit unique for self? (coded R or U) 
Because problem solving through tinkering is characterized by 
exploration and iteration [26], we coded if a circuit created by a 
visitor was “unique” for them (i.e., had they constructed the exact 
same circuit earlier). A visitor who received a W on the does the 
circuit work code might seem to be engaging in productive 
tinkering; however, if they are simply repeating their first circuit 
over and over, this might indicate a failure to try out new ideas or 
expand their problem definition. To mark if a visitor’s circuit was 
unique we coded it with a U, if it was a repeat of a past circuit we 
assigned it an R.  

4.2.4 Is the circuit unique at the table? 
Finally, Oztoc is designed to support visitors in collaborating with 
and building off others’ to advance their own exploration. This 
use of others’ constructed artifacts as a basis for one’s own work 
has been termed “echoing” and has been shown to be an important 
part in open-ended and exploratory tinkering [34]. We considered 
a circuit to be an echo if it had the same number of each 
component type (battery, resisters, and LEDs). If a visitor’s circuit 
echoed of one of their peers’, we assigned it an E (for echo); if the 
circuit was unique to the table, we assigned it an O (for original). 

The process described above resulted in every MakeCircuitCreate 
event for each visitor receiving an easily interpretable four-digit 
code. For instance, a MakeCircuitCreate that was assigned a code 
of SWRO means that it was a simple (S), working circuit (W) 
that was a repeat of a past circuit made by the visitor (R), but had 
not been created by anyone else at the table since this visitor 
started playing (O). These codes provided a rich and detailed 
source of data for passing into a Hidden Markov Model to see if 
we could identify if visitors were productive or unproductive at 
any point during their engagement with the exhibit. Since the 
MakeCircuitCreate events were chronologically ordered and 
separated per visitor, we could further examine which created 
circuits led to important state shifts. 

4.3 Coding for productive behaviors 
Using the coded descriptions of the circuits created by the visitors, 
we wanted to make an HMM that identifies when a visitor was 
behaving “productively”, or not. For this purpose, building off of 
previous research [19], two members of the research team 
discussed and identified patterns of MakeCircuitCreate that were 
indicative of productive and unproductive tinkering. 

Marker Code Description 

Is the circuit 
complex? S/C The completed circuit has 3+ 

components 

Does the circuit 
work? N/W The circuit successfully lights up  

Is the circuit 
unique for self? R/U This is the first time the visitor 

has made this circuit 

Is the circuit 
unique at the 

table? 
E/O 

No one else at the table has made 
a circuit with the same set of 

components 
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One of the key patterns identified focuses on visitors trying out 
new circuit configurations to fix errors in their existing circuits or 
to develop new circuits (denoted by a U in codes). For instance, if 
a visitor attempted a few different non-working circuits – seen as 
a sequence of SNUO, SNRO, SNUO, SNUO (with the second 
circuit being a duplicate of a past circuit) – the sequence seems to 
indicate that while the visitor’s circuits do not work (indicated by 
the Ns), they are trying out new approaches and expanding their 
exploration. This sequence of activities was coded as productive 
behavior. If the visitor’s continued exploration results in cycle of 
repeated circuits coded with Rs (repeats) or did not eventually 
make a working circuit (coded with a W), we coded these actions 
as falling into unproductivity, as the visitor seems to have failed to 
figure out how to make a working circuit. 
Similarly, a visitor might make a working circuit (indicated by a 
W in their circuit code) and repeat it over and over again (e.g., a 
series of circuits such as SWRO, SWRO, SWRO). This would 
seem to indicate that the visitor is repeating past success and is 
failing to consider new problem spaces or avenues for exploration. 

A change of SNRO to SNOE – trying a new (U = self-unique) 
circuit that someone else on the table has made (E = table-echo), 
might be an attempt at gaining understanding by looking at what 
other visitors are doing – and was coded as productive depending 
on how many failed attempts the visitor had already made.  

With this understanding, the first two authors first coded 200 
circuit creates, and established reliability with 91% agreement. 
They then coded 644 of the (total of 3952) circuits made in player 
one’s zone (one of the four game quadrants) on the table.  

4.4 Training the Hidden Markov Model 
We used our manually coded states to calculate appropriate values 
for the emission table for our HMM. The emission table was 
calculated by seeing how often a certain circuit code was marked 
as productive (or unproductive) as a proportion of all the circuits 
coded with the same hidden state. For instance, of all the circuits 
coded as productive, 5.6% of those were coded as CWUO and 
6.49% were coded as CWUE (from the list of 16 circuit-codes), 
these values were then used to populate the HMM emission table. 

We needed to identify when new visitors started playing at the 
table to ensure that the new visitors circuits were not considered 
as a continuation of earlier visitors. To do this we added events (a 
0000 code) in the sequence of circuit-codes to signify new 
visitors. This brought up the question of whether the HMM should 
code new visitors as unproductive, productive, or another state 
altogether. To be able to show what state people tended to leave 
and begin at in the final transition table, we chose to make the 
visitor change a distinct state in our HMM even though it was not 

a hidden state, and is equivalent to a direct observation. 

We used Python’s hmmlearn package to create our HMM, which 
has the limitation of only looking for local optima in calculating 
the probabilities of transitioning from one hidden state to another. 
To account for this, different initial transition table values were 
tried. Results showed that the HMM stably converged to the final 
transition table (Figure 3). 

 
Figure 3. HMM for productive/unproductive states in Oztoc 

5. FINDINGS 
This study has two important findings, with the first finding acting 
as the scaffold for the second: First, the recognition of when 
visitors are engaged in productive or unproductive exploration; 
and second, the understanding of which sequences of events 
typically lead visitors from prolonged (at least three) consecutive 
unproductive states to a productive state. 

5.1 Running HMM on Visitors’ Circuits 
The result of the HMM’s final transition table revealed several 
interesting results (Figure 3). The HMM model shows that the 
probability of a new visitor beginning productively is 68%, versus 
32% for beginning unproductively. Being unproductive appears to 
be a more stable state than being productive (89% versus 69%, 
respectively), and moving from unproductivity to productivity is 
also rarer than the reverse (3% versus 15%). The model also 
shows that the chances of leaving the table while being productive 
is higher than of leaving while unproductive (16% versus 8%).  

To validate the predictive accuracy of the HMM’s classification 
we used a general agreement score, the calculated the area under 
the curve (AUC) of the model’s receiver operating characteristic 
(ROC) and Cohen’s Kappa as compared to our 644 hand-coded 
labels. Our HMM had 94% agreement, scored an ROC/AUC 
score of 0.79, and a Cohen’s Kappa of 0.59, which were 

Figure 4. Markov model for visitors who transition from three consecutive unproductive states to a productive state 
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satisfactory measures to consider the HMM’s coding reliable. 

5.2 Developing Markov Models of Moving 
from Unproductive to Productive States 
After the HMM tagged the circuits as productive or unproductive, 
we wanted to understand what patterns of activity preceded 
visitors becoming productive. We were particularly interested in 
sequences in which visitors struggled (had several unproductive 
moves) and then moved to a productive state. For this, we built a 
list of when a visitor had three consecutive unproductive circuits 
immediately followed by a productive circuit. We pruned the 
sequences that only happened once (as they were uninformative).  

Once we had a list of the 4 step chains, we made a Markov model 
depicting the sequences of actions visitors followed when moving 
from unproductive to productive (Figure 4). This model also 
showed the likelihood that a visitor making a certain coded circuit 
would make another specific circuit next. The thickness of the 
lines between nodes indicates how many times a path occurred.  

6. DISCUSSION 
This paper outlined how the combination of Hidden Markov 
Models (HMMs) and Markov chains could be used to effectively 
predict when visitors were engaging productively or 
unproductively in an open-ended, exploratory museum exhibit. A 
closer examination of the HMM revealed several unexpected 
visitor behaviors. Visitors more often than not (68%) begin 
productively, but are less likely to stay productive (69%) than 
unproductive (89%) once in that state (Figure 3). The first finding 
is not entirely surprising, as our model considers open, thoughtful 
exploration as productive and it is hard to consider a visitor’s 
“first move” as anything more than a first “exploratory step”. This 
view is partially validated by the lower likelihood of staying 
productive – indicating many visitors fail to make thoughtful 
adjustments to their tinkering or explore new definitions of the 
problem space. This is compounded by instances where visitors 
make a successful circuit then “settle into” making the same 
circuit over and over. These findings are supported by the high 
percentage of visitors who either stay unproductive (89%) or 
leave the exhibit (8%). It should be noted that 69% is still a very 
high number of visitors staying productive and is probably further 
understated by the “first circuit” effect described above. 

Another interesting finding is the high likelihood of leaving the 
table while being productive (16% compared to leaving the table 
while unproductive – 8%). On the surface this is surprising, as one 
would expect visitors to give up due to frustration more often than 
while ‘succeeding’. The results may indicate that visitors who 
“figure out” multiple facets of the exhibit continue to engage 
productively until they leave – some of these effects have been 
covered in other research on this project [19]. Another possible 
explanation is that visitors started to engage in productive 
behaviors (such as trying something new that they had not done 
before or echoing the work of another visitor) that didn’t 
immediately result in positive feedback from the system (e.g., 
capturing a fish) and they gave up. 
When looking at the Markov model of unproductive to productive 
states we uncovered several interesting sequences (see Figure 4). 
For instance, unproductive circuits coded as CNUO (complex, 
not-working, unique, original) always went to CNRO (complex, 
not-working, repeated, original), followed by another CNRO, 
which finally led 15% of the time to a productive SWUE – a 
simple, working circuit that they had never made earlier, but had 
been made on the table in front of them by someone else! This is 
an interesting phenomenon – that a visitor, after some initial 

failures at making working circuits with a high level of 
complexity, likely saw a simple working circuit made by someone 
else, and then switched to echoing that circuit. The ability to see 
the work of others helped them overcome their own unproductive 
exploration. We see similar patterns in the Markov chain 
sequences SNUO -> SNRO -> SNRO -> SWUE; and SNUE -> 
SNRE -> SNRE -> SWUE, highlighting the role that making the 
work of others engaged in parallel tasks visible can serve in 
helping visitors move from unproductive to productive states. 

7. CONCLUSIONS AND NEXT STEPS 
Tinkering and exploration are powerful ways for learners to 
engage in science and engineering practices [24]; however, 
supporting leaners to productively engage in open-ended learning 
is inherently difficult, especially in museums [13]. Much of this 
has to do with the inherent chaos of the museum environment – 
hundreds (even thousands) of visitors interact with an exhibit in a 
day, coming and going at different times, and with different 
expectations and goals. For facilitators in exploratory exhibits, 
keeping track of the flow of participants and the state of their 
individual and collective tinkering efforts is nearly impossible.  

This paper illustrates how data mining and analytics can help 
disambiguate the actions of visitors in such exhibits and uncover 
the hidden states of their tinkering. In addition to shedding light 
into how visitors productively and unproductively tinker, this 
work holds considerable potential for developing new ways to 
support facilitators. Knowing when and how visitors are engaging 
in unproductive exploration can help us develop complementary 
applications to help facilitators know when and how they are most 
needed. Knowing how visitors tend to move from unproductive to 
productive states can further guide us in developing strategies and 
scaffolds to help facilitators better engage with visitors.  

While tablet applications have been used to provide added 
contextual information and alert museum facilitators about the 
visitors’ interactions with exhibits in real-time [30], they have 
done so only using surface features, without understanding 
visitors’ exploration ‘states’. By uncovering the particular ways 
that a visitor is struggling, and understanding the subtle ways they 
can be “nudged” towards more productive exploration, there is the 
potential for dramatically influencing visitors’ exploration and 
learning. By interceding at moments where visitors are struggling 
or are likely to give up, we may increase visitors dwell time, 
which has been shown to increase their collaboration with others, 
and domain learning [9]. In response, we are developing a tablet 
application that uses our models to support facilitators in real-time 
to understand how such applications compare to approaches that 
rely only on surface measures and unmodeled log data. 
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