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ABSTRACT

The incorporation of prerequisite skill structures into educa-
tional systems helps to identify the order in which concepts
should be presented to students to optimize student achieve-
ment. Many skills have a causal relationship in which one
skill must be presented before another, indicating a strong
skill relationship. Knowing this relationship can help to pre-
dict student performance and identify prerequisite arches.
Skill relationships, however, are not directly measurable; in-
stead, the relationship can be estimated by observing differ-
ences of student performance across skills. Such methods of
estimation, however, seem to lack a baseline model to com-
pare their effectiveness. If two methods of estimating the
existence of a relationship yield two different values, which is
the more accurate result? In this work, we propose a method
of comparing models that attempt to measure the strength
of skill relationships. With this method, we begin to iden-
tify those student-level covariates that provide the most ac-
curate models predicting the existence of skill relationships.
Focusing on interactions of performance across skills, we use
our method to construct models to predict the existence of
five strongly-related and five simulated poorly-related skill
pairs. Our method is able to evaluate several models that
distinguish these differences with significant accuracy gains
over a null model, and provides the means to identify that
interactions of student mastery provide the most significant
contributions to these gains in our analysis.

Keywords
prerequisite structures, skill relationships, feature selection,
model comparison

1. INTRODUCTION

Many educational systems like ASSISTments and Khan Academy

already implement a prerequisite structure as a suggested or-
dering in which skills should be presented to students. These
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structures are often developed by domain experts and teach-
ers in the field of study, and are likely to hold ground-truth.
It is clear, for example, that relationships can be identi-
fied by observing skills at the problem-level; by viewing the
steps required for students to complete each item, it can be
known that any skills required to complete such problems
can be considered prerequisites. For example, Multiplying
Whole Numbers may act as a prerequisite to Greatest Com-
mon Factors, as is used in our analysis. While causality
suggests a strong relationship, it is possible for two skills to
relate to each other in other ways. Such relationships are
less intuitive, perhaps requiring a similar thought process or
sequence of steps to solve, even if the content of such tasks
differ. Many causal skill arches are identifiable by domain
experts by observing content, but as described, other such
relationships may be missed due to their non-intuitive struc-
tures. By observing strong skill relationships identified by
domain experts, we construct a method of measuring the
factors that are most predictive of their existence.

We also argue that identifying strong relationships is not
enough for a method of prediction to be considered ade-
quate. Such a method should also be able to identify weak
or non-existent skill relationships. It is likely that while
much attention and research is placed on structuring pre-
requisite links, some of these are false-positives. In other
words, a skill may be listed as a prerequisite, but has no
true relationship to its supposed post-requisite skill. In such
a case there is little or no interactions of performance. Such
links must also be identified and removed or reordered in
learning platforms to benefit the students.

A significant amount of research has looked at measuring
the strength of skill relationships [1],[4], and even the ef-
fects such relationships have on measuring student perfor-
mance [3],[10], but without understood ground truths, it
is difficult to compare across these methods. Furthermore,
many of these methods represent similar conceptualizations
of performance inherently, or through variations of repre-
sentation such as aggregation or centering. For example,
“student achievement” is likely a predictor of skill relation-
ships (achievement on a prerequisite skill will likely influ-
ence achievement on a post-requisite skill), but can be rep-
resented as the percent of problems answered correctly, mas-
tery speed (the number of items needed to complete an as-
signment as is commonly used in intelligent tutoring sys-
tems), or countless other combinations of features. It will be
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important to distinguish between these generalized compo-
nents to avoid incorporating features that capture the same
types of conceptualizations into predictive models.

This work provides a method to evaluate models that mea-
sure the strength of skill relationships, and with this model
we attempt to identify which features best indicate a strong
relationship between two skills. This analysis will incorpo-
rate a method of generalizing and distinguishing features
that measure different aspects of learning and performance.
With this methodology, we seek to answer the following two
research questions:

1. What link-level features, expressed in this paper as in-
teractions of performance between skills, are significant in
predicting the existence or non-existence of skill relation-
ships?

2. Which features are the strongest predictors of skill rela-
tionships, and does combining them make for a more accu-
rate predictive model?

The next section of this paper will discuss some of the pre-
vious research performed on skill relationships and prereq-
uisite structures. Then, we will discuss our theory and
methodology to provide a baseline model of comparing meth-
ods of measuring skill relationships. Using this model, we
then compare several commonly-used student-level features,
and of the most accurate, compare several different repre-
sentations of those features. Finally, we will discuss our
findings and suggested future works.

2. PREVIOUS WORKS

The discovery and refinement of prerequisite skill structures
has been an important research question in recent years.
The impact of this research on educational systems cannot
be overemphasized. Domain experts who design these struc-
tures need data centered methods to support the decisions
they make; it is vital to have empirical data to support hy-
pothesis regarding the order in which skills are presented as
it can have a large impact on student achievement and either
aid or impede the learning process. Additionally, identify-
ing the best prerequisite skill structure will enhance student
modeling; knowing a student’s prior performance on prereq-
uisite skills can help estimate that student’s performance on
the post-requisites. This can lead to earlier interventions for
struggling students, or even help redefine mastery perhaps
students who perform very well on a prerequisite requires
less practice on a post-requisite, or can be given more ad-
vanced examples.

Tatsuoka, defined a data structure called the Q-Matrix, that
represents the mapping of problems to skills: the rows of this
matrix represent the problems, and the columns represent
the skills [9]. Though the goal of the research was to diag-
nose the misconceptions of students, they set in motion a
number of studies that have used this data structure as the
first step to find prerequisite structures [2],[5],[8].

Desmarais and his colleagues developed an algorithm that
finds the prerequisite relationship between questions, or items,
in students’ response data [6]. They compare pairs of items
in a test and determine any interactions existing between
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each pair. Depending on the interactions and a set of interaction-

related criteria, they determine whether the two items have
a prerequisite relationship between them. This approach
was applied by Pavlick, et al. to analyze item-type covari-
ances and to propose a hierarchical agglomerative clustering
method to refine the tagging of items to skills [7]. Brunskel
conducted a preliminary study in which they use students’
noisy data to infer prerequisite structures [4]. Further re-
search by Scheines, et al. extended a causal structure dis-
covery algorithm in which an assumption regarding the pu-
rity of items is relaxed to reflect real data and to use that
to infer prerequisite skill structure from data [8].

3. DATASET

The dataset® used for this study consists of real-world stu-
dent data from the ASSISTments online learning platform.
The raw data contains student problem logs pertaining to
ten math skills from the 2014-2015 school year. These ten
skills represent five skill pairs, listed in Table 1, for which
domain experts identified as having a strong prerequisite
relationship. While we are not limiting the usage of our
proposed baseline model to just prerequisite relationships,
these are the most reliable to identify due to the causal ef-
fect of content (if problems in skill B require the use of skill
A to complete, a strong relationship can be identified).

Table 1: The strong skill pairs as determined by
domain experts
Prerequisite

Post-requisite

Multiplication of Greatest
Whole Numbers Greatest Common Factor
Subtracting Order of
Integers Operations

Division of
Whole Numbers
Volume of Rectangular
Prisms Without Formula
Nets of
3D Figures

Dividing Multi-
Digit Numbers
Volume of
Rectangular Prisms
Surface Area of
Rectangular Prisms

In order to identify believable ground-truth skill pairs, a sur-
vey containing 24 skill pairs for which we had sufficient stu-
dent data (greater than 50 student rows) was administered
to 45 teachers and domain experts who use ASSISTments.
Each was asked to rate on a scale of 1 to 7, indicating the
perceived qualitative strength of the relationship of each skill
pair. From the survey results, five skill pairs were selected
to be the strongest related links with the smallest variance
in opinion scores. As we are treating these links as truth,
we wanted to be highly selective of these pairs.

The resulting dataset consists of 1838 total student rows
from 896 unique students. This includes two rows of data per
student for each of the five skill pairs included. The first row
contains information of that student’s performance on the
pre- and post-requisite skills, while the second row contains
student performance on the prerequisite and a simulated
post-requisite described further in the next section.

IThe full raw and filtered datasets are available at the fol-
lowing link: http://tiny.cc/veqgdx
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For each student, a feature vector was selected using com-
mon performance metrics to compare within our model. This
feature vector contained eight link-level features represent-
ing the interactions between student-level prerequisite and
post-requisite performance metrics. The generated link-level
features observed are as described below:

Percent Correct
The mean-centered? percentage of correct responses in
the prerequisite skill multiplied by the mean-centered
percentage of correct responses in the post-requisite
skill.

First Problem Correctness (FPC)
The binary correctness of the first response in the pre-
requisite skill multiplied by the binary correctness of
the first response on the post-requisite skill.

Mastery Speed

The mean-centered mastery speed of the prerequisite
skill, defined as the number of problems required for
each student to achieve three consecutive correct re-
sponses, multiplied by the mean-centered mastery speed
of the post-requisite skill. In addition to centering,
these values were also winsorized to make the largest
possible value 10, chosen as this is often the maxi-
mum number of daily attempts allowed within AS-
SISTments. All centering and winsorizing occurred
before multiplying the two values.

Z-Scored Percent Correct
The z-scored® value of mean-centered percentage of
correct responses in the prerequisite skill multiplied
by the z-scored value of mean-centered percentage of
correct responses in the post-requisite skill.

Binned Mastery Speed (Bin)
The numbered bin of mastery speed as described in [3]
of the prerequisite skill multiplied by the bin of mas-
tery speed in the second skill. Students were placed
into one of five bins based on mastery speed if the as-
signment was completed and based on percent correct
if the assignment was not completed.

Z-Scored Mastery Speed
The z-scored value of mean-centered, winsorized mas-
tery speed in the prerequisite skill, multiplied by the
z-scored value of mean-centered, winsorized mastery
speed in the post-requisite skill.

Bin X FPC
The binned mastery speed value in the prerequisite
skill multiplied by the binary correctness of the first
response in the post-requisite skill.

Percent Correct X FPC
The mean-centered percentage of correct responses in
the prerequisite skill multiplied by the binary correct-
ness of the first response in the post-requisite skill.

2All centering of features was performed at the skill-level.
3All z-scoring was performed at the class-level.
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4. METHODOLOGY

The ultimate goal of this work is to provide the means of
comparing models predicting the existence, or non-existence
of skill relationships. Our approach to this is through the
comparison and identification of features that most accu-
rately predict these relationships. Using principal compo-
nent analysis, we group similar features into more general-
ized conceptualizations to both compare which types of fea-
tures matter when predicting relationships, but also to avoid
problems of multicollinearity that may bias our estimates.
Once this baseline model is established, we can construct
new predictive models from the significant features and ob-
serve their accuracy in predicting the existence of skill rela-
tionships when compared to a simple null, or unconditional
model.

In order to compare the usage of features against a weak
or non-existent relationship, we simulated a new skill using
students from the existing prerequisite skill by generating
random sequences of responses. For each existing student,
we randomly assign him/her a probability between 0.5 and
0.9 in order to create a random sequence of answers. For ex-
ample, a student given a probability of 0.5 has a 50% chance
of answering each given problem correctly. We simulate stu-
dent answers until either mastery is achieved, defined as
three sequentially correct responses, or the student reaches
10 problems without mastering; a value of 10 is chosen here,
as many assignments in ASSISTments are given a daily limit
of 10 problem attempts before asking the student to seek
help or try again on another day. While we acknowledge
there are many ways to accomplish this simulation step, we
feel this simple method sufficiently creates a skill that has no
relationship to the original prerequisite as intended. As our
proposed method is intended to be used in the future to help
identify undiscovered pre- or post-requisite links, we chose
to use a simulated skill rather than a random existing skill
to avoid the possibility of randomly selecting an undiscov-
ered related skill. Again, we wanted to be highly selective
and consider several such scenarios as we are attempting to
create ground-truth values to which we can make our com-
parisons.

Using these two skill-pairs, one link representing a strong
relationship while the other representing a non-existent re-
lationship, we can calculate a feature vector for each student
in the prerequisite skill with values from each skill-pair. We
use a binary logistic regression with the existence of a re-
lationship as the dependent variable and several link-level
covariates to predict whether a skill relationship exists for
each student row. The existence of a relationship can be
determined then simply by majority ruling, but such cal-
culation is not included in this work and instead observes
accuracy at the student-level for a more accurate compari-
son.

We begin to compare commonly used student-level features
in this study through two levels analysis. The first step
attempts to compare groups of features, generalizing differ-
ent representations of similar features into conceptual group-
ings. As such, we are able to view the predictive power of
what we denote as initial performance, mastery, and correct-
ness. The second experiment looks at the individual features
as different representations of the overall group to compare
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Component
1 2 3
Percent Correct 821
First Problem Correctness
.839
(FPC)
Mastery Speed .969
7-Scored Percent Correct .865
Binned Mastery Speed
renyspeed 1 o7
(Bin)
Z-Scored Mastery Speed
Bin X FPC .873
Percent Correct X FPC 612

Figure 1: The results of the PCA analysis. All fea-
tures except Z-Scored Mastery Speed mapped to
one of three generalized components.

these predictors at a closer level. We can take each factor
of mastery, for example, and compare their usage in several
models to determine which is the most accurate predictor of
the existence of skill relationships.

4.1 Comparing Link-Level Features

In order to compare representations of student-level features,
we must first be able to compare general conceptualizations
of features to determine which provide more accurate predic-
tions of the existence of skill relationships. We want to cap-
ture the true representations of each metric and attempt to
interpret these generalizations as types of features. In order
to accomplish this grouping of predictors, we use principal
component analysis (PCA) to identify which student-level
features correlate to and are representative of more general-
ized components. PCA is primarily used for dimensionality
reduction as we are doing here and gives us the ability to
create new variables from the component mappings. The
resulting feature alignment can be seen in Figure 1. As is
the case in our study, and was mentioned in the previous
section, we have multiple metrics of mastery speed as well
as several other features. As we can represent “mastery” in
several ways, we want to know if the overall concept of mas-
tery, as captured by the metrics used, is reliably predictive
of the existence of skill relationships.

Creating a new set of predictors of these groupings, we are
able to incorporate these into a binary logistic regression
model to view the predictive power of each. While PCA
groups similar features together based on their correlations,
by viewing which features are grouped we are able to inter-
pret and label each. From this process, we found that most
of our features fell into three categories for which we have
given the names “mastery,” as this consists of representations
of mastery speed, “correctness,” as this consists of represen-
tations of the percentage of correct student responses, and
“initial performance,” as this consists of representations of
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student performance on the initial items of each skill. In ad-
dition to these three categories, we are also left with student
mastery speed z-scored within student classes as a variable
that did not fall under either of the three aforementioned
categories; while a derivation of mastery speed, we believe
that this did not correlate to the “mastery” category due to
the method of standardization as it is capturing this metric
in relation to students’ peers. We will readdress this case in
our section of discussion.

Once these predictors are identified and created, we con-
struct a binary logistic regression model to predict, for each
student row, whether a relationship exists or not. This
model will give us a significance value and coefficient for
each predictor in the model, as well as an overall predictive
accuracy of the model which will be used more for the next
analysis.

4.2 Comparing Feature Models

After being able to compare which generalized groups of
features are significant predictors of the existence of skill re-
lationships, we are able to compare the individual student-
level features that fall into each category by incorporating
them into separate models to observe predictive accuracy.
The analysis of the first experiment is used to determine
which categories are significant in predicting the existence
of skill relationships. Using that information, we are able to
focus on those groupings with significance to construct mod-
els that utilize factors from each grouping. The grouping of
“mastery,” for example contains the factors of mastery speed
and binned mastery speed, so we can construct models using
each to compare differences in predictive power. To avoid
problems of collinearity, no single model contains more than
one factor from a single grouping. This significantly reduces
the number of combinations of features to test compared to
running this experiment without first grouping like features
and identifying those that are significant as we did in the
first experiment.

Using the significant groupings, we are able to create 17
models consisting of single, pairs, and triplets of features.
A logistic regression is run on each of these models to pre-
dict the existence of a skill relationship. Of the 17 mod-
els, 10 of them produce a statistically significant prediction
when compared to a null model. Ideally, our null model
should produce a 50% accuracy as there is an equal number
of good and bad link rows in our dataset. This is not always
the case, however, as depending on the feature observed, in-
formation may be missing for a particular student; mastery
speed, for example, as the number of items attempted by a
student before reaching 3 consecutive correct answers, would
be missing for any student that did not complete the assign-
ment. For this reason, the predictive power of each model is
described as gains in predictive accuracy, or rather, the accu-
racy of each model minus the accuracy of the corresponding
null model.

5. RESULTS

The results of the first analysis are expressed in Table 2.
Each of the three feature groupings of Mastery, Correctness,
and Initial Performance created using PCA in addition to
the Z-Scored Mastery are compared within the same model,
predicting the existence of a skill relationship. As these
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Table 2: The coefficients and significance values of
the generalized components analyzed. From this we
can focus on models that exclude features contained
in the components with no significance.

Component Coefficient Value | Significance
(log-odds units)

Mastery -.251 <.001%%*

Correctness .015 .802

Initial

Performance 129 .037*

Z-Scored
Mastery Speed -.129 <.001%%*

again are link-level features describing interactions between
student-level performance on prerequisite and post-requisite
skills, it is difficult to draw tangible interpretations from
the coefficient value, expressed in log-odds units. This co-
efficient, used in the logistic regression to make the predic-
tions, describes each component’s effect on the dependent
variable. For example, for each unit increase in “Mastery,”
the probability that the link exists decreases. Again, as this
component is an aggregation of interaction features, it is re-
ally describing an aggregation of differences of differences
between student-level features making it difficult to make
definitive claims regarding these values alone and were in-
cluded purely to display a general trend of these components
on the prediction.

From the table, we are able to determine the significance of
each component on the overall prediction by viewing the cor-
responding p-values in the third column. Looking at these
values, we can claim that the overall grouping of “Correct-
ness” seems to have less of an impact on the predictive ac-
curacy of the model. As this term is not significant, we can
focus the remainder of our study on the remaining three
components.

Table 3 illustrates the results of our second analysis com-
paring the models that we are able to construct with the re-
maining features once the “Correctness” grouping has been
disregarded. This figure shows the comparative predictive
accuracy of the 10 models that give statistically significant
predictions as seen in Table 3. Again, these values are ex-
pressed as accuracy gains, or rather the percent accuracy
increase over the null model run for each predictive model.

6. DISCUSSION

This work provides a baseline model of comparing student-
level performance across skills to measure the strength of a
skill relationship and compare the accuracy of both features
and models that estimate this value. Such a model, in our
experience, has not existed prior to this study. Our method
attempts to identify not only the individual features that
contribute to better predictions of these relationships, but
also moves to generalize similar features into conceptualiza-
tions for comparison in order to minimize multicollinearity.

The principal component analysis step of our model found
that all but one feature mapped to one of three components
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that we have interpreted as mastery, correctness, and initial
performance. It was found the z-scored mastery speed, con-
trary to our intuition, did not map well to the grouping of
mastery. We can speculate the reason for this occurrence
by altering our interpretation of the feature. Mastery speed
itself is an interesting metric as it attempts to capture two
dimensions of performance: a level of understanding and a
rate of learning. Also, to reiterate a prior distinction, these
metrics are interactions of performance across skills. By z-
scoring the metric, it is capturing a contextual effect of each
student in comparison with other students in the class, a
distinction that appears to have a significant effect.

Observing the resulting model components from the prin-
cipal component analysis in Table 2, we were able to focus
our attention to those components with significant values.
Correctness was the only component of that model that was
found to have no statistical significance on the dependent
variable. This is certainly interesting, as percent correctness
and other such measures are among the most common met-
rics of performance. Perhaps the interaction between pre-
and post-requisite percent correct is losing some predictive
power from when the metric is used for other predictions of
performance.

This aspect illustrates one other important finding that the
distinct representations of one metric or another each con-
tribute differently to the predictive accuracy of the models
studied. Models incorporating mastery speed, for example,
had no significant accuracy gains over a null model, while
mastery speed binning showed considerable gains as seen in
Table 3. The baseline model of comparison proposed in this
study provides the means to make that distinction regard-
ing features contained within the same generalized compo-
nent grouping. As is seen in that figure, combinations of
features outperform any single feature, illustrating a more
robust model by capturing multiple representations of per-
formance.

7. FUTURE WORK

While we have shown that our model is able to compare
and identify features that contribute to higher accuracy in
predicting the existence of skill relationships, we also need
to stress the importance of the usage of this information.
The ability to compare features is only the first step of our
model’s goal. By identifying strong predictors of skill rela-
tionships that we know exist, we can apply it to other skills
within ASSISTments and other systems to identify poten-
tially new prerequisite arches, and also to better measure
and predict long-term student performance, learning, and
retention. Having an accurate estimate of skill relationships
can help restructure prerequisite structures to provide skill
sequences in an order that optimizes student learning and
achievement.

The work in this paper incorporated several skills into a sin-
gle dataset to make predictions. In this case, we wanted to
create a method that is generalizable to some degree. While
our selective skill set allows us to make some claims in terms
of the accuracy these models over all skills, it may likely be
the case that skill relationships are measurable in different
ways for different skills. Further analysis could repeat the
steps here on each one of the acquired skills in the dataset.
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Table 3: The models constructed from features in the significant generalized components. No one model
contains more than a single feature from each generalized component.

Model Null Accuracy | Model Accuracy | Accuracy Gain | Significance
Mastery Speed (MS) 0.63 0.62 0.00 1.000
Z-Scored Mastery Speed 0.63 0.63 0.00 0.888
First Problem Correctness (FPC) 0.50 0.56 0.06 <0.001***
Binned MS 0.50 0.69 0.19 <0.001***
Bin X FPC 0.50 0.56 0.06 <0.001***
Bin, Z-Scored MS 0.50 0.71 0.21 <0.001***
MS, FPC 0.63 0.62 0.00 1.000
MS, Bin X FPC 0.63 0.62 0.00 1.000
Bin, FPC 0.50 0.69 0.19 <0.001%**
Bin,Bin X FPC 0.50 0.69 0.19 <0.001%**
MS, FPC, Z-Scored MS 0.63 0.63 0.00 0.754
MS, Bin X FPC, Z-Scored MS 0.63 0.63 0.00 0.979
Bin, FPC, Z-Scored MS 0.50 0.71 0.20 <0.001%**
Bin, Bin X FPC, Z-Scored MS 0.50 0.71 0.21 <0.001%**
MS, Z-Scored MS 0.63 0.63 0.00 0.843
FPC, Z-Scored MS 0.50 0.64 0.14 <0.001%%*
Bin X FPC, Z-Scored MS 0.50 0.61 0.11 <0.001%**
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