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Abstract

In this paper we introduce a finite automaton called
partial finite automaton to recognize partial lan-
guages. We have defined three classes of partial lan-
guages, viz., local partial languages, regular partial
languages and partial line languages. We present an
algorithm for learning local partial languages in the
limit from positive data. The time taken for the al-
gorithm to identify the regular partial languages is
O(l) where l is the length of a sample from positive
data. Further, we have shown that the class of reg-
ular partial languages is learnable in the limit from
positive data and restricted subset queries. We pro-
vide another learning algorithm to infer partial line
languages.

Keywords : Partial words, partial finite automaton,
partial languages, identification in the limit, learning
algorithm.

1 Introduction

Partial words are strings of symbols from a finite al-
phabet that may have a number of “do not know”
symbols. While a word can be described by a total
function, a partial word can be described by a partial
function.

Partial words were recently introduced by Berstel and
Boasson [3] in the context of gene (or protein) com-
parison. Alignment of two genes (or two proteins) can
be viewed as a construction of two patial words that
are said to be compatible. The main motivation for
the introduction of partial words came from molec-
ular biology of nucleic acids. There, among other
things, one tries to determine properties of the DNA
or RNA sequences encountered in nature. Quite re-
cently, Blanchet-Sadri [4] has made a first step to-
wards investigating languages of partial words by in-
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troducing the concept of pcodes, which are sets of
partial words preserving the uniqueness of factoriza-
tion of partial words.

On the other hand within computational learning the-
ory, there are three major established formal models
for learning from examples, namely Gold’s model of
inductive inference or identification in the limit [5],
the query learning model of Angluin [1] and the prob-
ably approximately correct (PAC) learning model of
Valiant. Each model provides a learning protocol and
a criterion for the success of learning. Inductive in-
terference introduced by Gold is a model which treats
learning as an infinite process.

Gold [5] has shown that any class of languages con-
taining all the finite languages and at least one infinite
language cannot be identified in the limit from posi-
tive presentations. According to this result, the class
of context-free langauges (even the class of regular
languages) cannot be learnt from positive presenta-
tion. Angluin [1] has given several conditions for a
class of languages to be learnable in the limit from
positive data and presented some learnable classes.

A linear time learning algorithm in Gold’s framework
of identification in the limit from positive data is
given for the class of local languages and another al-
gorithm additionally with restricted superset queries
for the class of regular languages by Yokomori [10].
Motivated by the work of [4] in this paper we intro-
duce a language of partial words. This takes us more
in the direction of classical formal language theory.
Partial languages are collection of partial words over
(Σ∪{♦})∗. In section 3, we introduce a new automa-
ton called partial finite automaton both deterministic
and non-deterministic to recognize partial languages
and define regular partial grammar. Motivated by
the work of [10] in section 4 we define a local par-
tial automaton to recognize local partial languages.
We present an algorithm for learning of local partial
languages from positive data. The time taken for the
algorithm to identify the local partial langauge is O(l)
where l is the length of a sample from positive data.
In section 5, we have shown that the class of regular
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partial languages is learnable in the limit from posi-
tive data and restricted subset queries. Line languages
and its geometrical representation are introduced in
[8]. In section 6, the concept of line langauges is ap-
plied to partial words and their properties are dis-
cussed. Partial line languages can be inferred using
IAL algorithm [9] for line languages.

2 Preliminaries and Basic Definitions

In this section we deal with basic concepts on words,
partial words, finite automaton and local languages.

Let Σ be a finite non-empty set of symbols called an
alphabet. Symbols in Σ are called letters and any
finite string over Σ is called a word over Σ. The empty
word is denoted by λ. The set of all words over Σ is
denoted by Σ∗. The collection of all infinite words
is denoted by Σω and Σ∞ = Σ∗ ∪ Σω. A word u is
primitive, if it is not of the form vk, for some word
v 6= u with k > 1.

A partial word is very much like a conventional word,
only at some positions we do not know, which letter
it has. Similar to the definition of a word as a total
function from {0, . . . , |w| − 1} to Σ, a partial word w
is defined as a partial function from {0, . . . , |w| − 1}
to Σ. The positions, where w(n) (the nth letter of w)
is not defined for n < |w| are called the word’s holes.
If D(w) stands for the domain of w, then the set of
holes of w denoted by h(w) is the set of numbers in
{0, . . . , |w| − 1}\D(w).

A word over Σ is a partial word over Σ with an
empty set of holes (we sometimes refer to words as
full words). For any partial word u over Σ, |u| de-
notes its length. In particular |λ| = 0.

We denote by W the set Σ∗, and for every integer
i ≥ 1, by Wi the set of partial words over Σ with
exactly i holes. W =

⋃

i≥0

Wi, the set of all partial

words over Σ with an arbitrary number of holes.

If u is a partial word of length n over Σ, then the
companion of u (denoted by u♦) is the total function
u♦ : {0, 1, . . . , n − 1} → Σ ∪ {♦} defined by

u♦(i) =

{

u(i) if i ∈ D(u)
♦ otherwise

When it is more convenient, we will also refer to the
companion as a partial word to simplify the syntax
of our sentences. Thus we will say for example the
partial word ♦a♦b instead of the partial word with

companion ♦a♦b.

For a subset X of W , we denote by X∗ the submonoid
of W generated by X . It consists of all partial words
which are obtained by concatenating of elements of
X .

A partial word u is a factor of the partial word v if
there exist partial words x, y such that v = xuy. The
factor u is called proper if u 6= v. The partial word u is
a prefix (respectively suffix) of v if x = λ (respectively
y = λ). For a subset X of W , we denote by F (X) the
set of factors of elements of X .

F (X) = {u|u ∈ W and there exist x, y ∈ W

such that xuy ∈ X}.

Definition 2.1 If u and v are two partial words of
equal length then u is said to be contained in v, de-
noted by u ⊂ v, if D(u) ⊂ D(v) and u(i) = v(i) for all
i ∈ D(u). The partial words u and v are compatible,
denoted by u ↑ v if there exists a partial word w such
that u ⊂ w and v ⊂ w.

As an example u = aba♦aa and v = a♦♦b♦a are two
partial words that are compatible.

Definition 2.2 An infinite partial word u over Σ is
a partial map
u : N → Σ. For 1 ≤ i < ∞, if u(i) is defined,
then we say that i belongs to the domain of u (denoted
by D(u)), otherwise we say that u(i) is defined and i
belongs to the set of holes of u (denoted by H(u)). An
infinite word over Σ is an infinite partial word over Σ
with an empty set of holes.

Example 2.1 An infinite word u = aabab♦abω is the
infinite partial word with
D(u) = {1, 2, 3, 4, 5, 7, 8, 9, ...} and H(u) = {6}.
The compatibility of two infinite partial words can be
defined in a way similar to that of compatibility of two
finite partial words.

Definition 2.3 A partial language over Σ is the set
of partial words over Σ.

Example 2.2

1. a♦b(ab)∗ is a partial language of finite partial
words.

2. (ba)∗♦(ba)ω is a partial language of infinite par-
tial words.



3 Partial Finite Automaton

In this section a partial automaton to recognize a par-
tial language is introduced.

Definition 3.1 A finite deterministic finite partial
automaton (DFPA) is a 7-tuple
PA = (Q, Qh, Σ, Γ, δ, q0, F ), where Q is a finite set of
states, Qh is a finite set of hole states, Σ is a finite in-
put alphabet, Γ = {♦}, where ♦ is the don’t care sym-
bol not in Σ corresponding to a hole position in a par-
tial word, Σ∩Γ = φ and Q∩Qh = φ, q0 in Q is the ini-
tial state, F ⊆ Q is the set of final states, δ is the tran-
sition function mapping (Q∪Qh)×(Σ∪{♦}) → Q∪Qh

such that (i) δ(p, a) = q, q ∈ Q, p ∈ Q∪Qh, a ∈ Σ, (ii)
δ(qh, ♦) = qh, qh ∈ Qh, ♦ ∈ Γ, (iii) δ(p, ♦) = qh, p ∈
Q, qh ∈ Qh, ♦ ∈ Γ.

A partial word w is said to be accepted by a finite de-
terministic partial automaton
PA = (Q, Qh, Σ, Γ, δ, q0, F ) if δ(q0, w) = p for some p
in F . The partial language accepted by PA is desig-
nated L(PA) = {w|δ(q0, w) is in F}. This is called a
regular partial language.

Example 3.1 The following deterministic finite
partial automaton accepts the partial language
(a♦b)n, n ≥ 1.
PA1 = (Q, Qh, Σ, Γ, δ, q0, F ) where Σ = {a, b},
Q = {q0, q1, q2, q3}, Qh = {qh}, Γ = {♦} and
F = {q3}. The transition diagram is shown in fig-
ure 1.
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Figure 1: DPFA accepting (a♦b)n, n ≥ 1.

Definition 3.2 A non-deterministic finite partial au-
tomaton (NPFA) is a 7-tuple (Q, Qh, Σ, Γ, δ, q0, F )
where Q, Qh, Σ, Γ, q0 and F have the same meaning as
for a deterministic finite partial automaton, but δ is
a mapping from (Q∪Qh)× (Σ∪{♦}) to 2Q∪Qh where
2Q∪Qh is the set of all subsets of Q ∪ Qh. Here (i)
δ(p, ♦) = qh, p ∈ Q, qh ∈ Qh. (ii) δ(qh, ♦) = qh, qh ∈
Qh.

Example 3.2 The following non-deterministic fi-
nite partial automaton accepts the partial language
a∗(a♦b)n.
PA3 = (Q, Qh, Σ, Γ, δ, q0, F ) where
Q = {q0, q1, q2}, Qh = {qh}, Γ = {♦}, Σ = {a, b) and
F = {q2}. The transition diagram is shown below
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Figure 2: NFPA accepting a∗(a♦b)n

4 Local Partial Languages

In this section we introduce local partial automaton
to recognize local partial languages. Informally speak-
ing, a local language is described by the factors of
length two of its words and we exhibit an algorithm
to identify a local partial language in linear time in
the length of a sample string from the positive data
which is a subset of a local language.

We need the following notations. Let
P1(w) be the Prefix of w of length 1 in (Σ ∪ {♦})
S1(w) be the suffix of w of length 1 in Σ
F2(w) be the set of subwords of w of length 2.
PF2(w) be the set of subpartial words of w of length
2.
We denote by PL the set of all local partial languages.

Definition 4.1 A partial language PL of finite par-
tial words over Σ is called local, if there exists a
four tuple (I, C, H, J) where I, J ⊆ Σ, C ⊆ Σ2,
H ⊆ (Σ ∪ {♦})2, such that

PL = {w ∈ (Σ ∪ {♦})∗ : P1(w) ∈ I, F2(w) ⊆ C,

PF2(w) ⊆ H, S1(w) ∈ J},

Example 4.1 The partial language
PL = {(a♦b)n, n ≥ 1} over Σ∪{♦}, where Σ = {a, b}
is a local partial language. Here I = {a}, J = {b},
C = {ba}, H = {a♦, ♦b}, P1(PL) = a ∈ I,
S1(PL) = b ∈ J , F2(PL) = {ba} ⊆ C,
PF2(PL) = {a♦, ♦b} ⊆ H.

Example 4.2 The finite partial language
PL = {(a♦a)n, n ≥ 1} is non-local.

Definition 4.2 A partial finite automaton
M = (Q, Qh, Σ, Γ, δ, q0, F ) is said to be local, if for
every



1. a ∈ Σ, the set {δ(q, a) : q ∈ Q ∪ Qh} contains at
most one element

2. ♦ ∈ Γ, the set {δ(q, ♦) : q ∈ Q ∪ Qh} contains at
most one element from Qh.

It is called standard, if it contains no transition ar-
riving on the initial state.

Example 4.3 The following local partial automaton
accepts the local partial language
PL = {(a♦b)n/n ≥ 0}.
Let Q = {[λ], [a], [a♦], [♦b], [ba], [b]}; q0 = [λ]
F = {b}; δ[[λ], a] = [a]; δ[[a], ♦] = [a♦]
δ[a♦, b] = [♦b]; δ[[♦b], λ] = [b];
δ[[b], a] = [ba]; δ[[ba], ♦] = [a♦]
IRL = {P1(w)/w ∈ RL} = {a}
CRL = {F2(w)/w ∈ RL} = {ba}
JRL = {S1(w)/w ∈ RL} = {b}
HRL = {PF2(w)/w ∈ RL} = {a♦, ♦b}
The transition diagram of the local partial automaton
is shown in figure 3.

[λ] [a] [a♦] [♦b] [b]

[ba]

a

a

♦

♦

λb

Figure 3: Local partial automaton accepting (a♦b)n

Theorem 4.1 A partial local language PL ⊆ (Σ∪Γ)∗

is local if and only if PL is recognized by the standard
local partial automaton.

4.1 Characteristic Sample for Local Par-
tial Languages

Let PL be a local partial language such that PL ⊆
(Σ ∪ Γ)∗. A finite subset R of (Σ ∪ Γ)∗ is called char-
acteristic sample for PL iff PL is the smallest local
partial language containing R.

4.2 Test Vector Set

For a partial word w, an ordered tuple t(w) defined
by t(w) = 〈 P1(w), F2(w), PF2(w), S1(w) 〉 is called
test vector of the partial word w. A test vector set
(TVS) VE over Σ∪Γ is any finite subset of {t(w)/w ∈
(Σ ∪ Γ)∗}.

We now present a learning algorithm to learn the un-
kown local partial language U , from positive data.

Theorem 4.2 There is an algorithm, which given
any unknown local partial language U , learns in the
limit a TV S VE such that L(VE) = U .

Input : a sequence of positive presentation of U
Output : a sequence of TVSs for local partial

languages
Procedure

Initialize E = φ
Construct the initial TVS VE = φ
Repeat (for ever)

let VE be the current TVS;
read the next positive example w,
scan w to compute

t(w) = 〈P1(w), F2(w), PF2(w), S1(w)〉
E = E ∪ {w}
VE = VE ∪ {t(w)}

Output VE as a conjecture.

Theorem 4.3 The algorithm may be implemented to
run in time O(N), where N is the sum of the lengths
of all positive samples of the data E provided in the
learning process.

5 Towards the General Learning of

Regular Partial Sets using Positive

Data

It is well-known that the (full) class of regular lan-
guages of words is not learnable in the limit from only
positive data [5]. So, the question arises: besides pos-
itive data, what is minimally needed to learn the class
of regular languages?

Concerning the learnability on the full class of reg-
ular languages, Angluin has shown that member-
ship queries, restricted equivalence queries and sub-
set queries are insufficient for learning the class in
the sense of exact identification [2]. More exactly, it
is shown that any algorithm that exactly learns any
regular language using restricted equivalence, mem-
bership, and subset queries must make at least expo-
nential number of queries in the worst case.

We shall show that the class of regular partial lan-
guages is learnable in the limit using positive data



with restricted subset queries, ignoring the time effi-
ciency.

We prove the following theorem connecting local par-
tial languages and regular partial languages. This
theorem helps to provide the learning algorithm for
regular partial languages.

Theorem 5.1 Given any λ-free regular partial lan-
guage PL, there effectively exists a local partial lan-
guage PL′ and a coding h such that PL = h(PL′).

Proof Let PL be a regular partial language.

Let PA = (Q, Qh, Σ, Γ1, δ, q0, F ) be a deterministic
finite partial automaton which recognizes PL. Let
Γ1 = (Q ∪ Qh) × (Σ ∪ Γ) × (Q ∪ Qh)
I = {q0} × (Σ ∪ Γ) × (Q ∪ Qh)
C = {(q1, a, q2)(q2, b, q3) ∈ Γ2

1 : q2 = δ(q1, a),
q3 = δ(q2, b)}

H = {{(q1, a, q2)(q2, ♦, qh) ∈ Γ2
1 : q2 = δ(q1, a),

qh = δ(q2, ♦)},∪{(q1, ♦, qh)(qh, a, q2) ∈ Γ2
1 :

qh = δ(q1, ♦) and q = δ(qh, a)},
∪{(q1, ♦, qh1

)(qh1
, ♦, qh2

) ∈ Γ2
1 :

qh1
= δ(q1, ♦), qh2

= δ(qh1
, ♦)}}

J = (Q ∪ Qh) × (Σ ∪ Γ) × F .
Let PL′ = {w ∈ Γ∗

1 : P1(w) ∈ I, F2(w) ⊆ C,
PF2(w) ⊆ H, S1(w) ∈ J}.
Then PL′ is a local partial language.
Define h : Γ1 → Σ ∪ Γ by
(i) h(q1, a, q2) = a, q1 ∈ Q ∪ Qh, q2 ∈ Q.
(ii) h(q1, ♦, qh) = ♦, q1 ∈ Q ∪ Qh, qh ∈ Qh.
We show that h(PL′) = PL.
Let w ∈ h(PL′). Then w = h(u0) for some u0 ∈ PL′.
Since P1(u0) ∈ I, F2(u0) ⊆ C, PF2(u0) ⊆ H ,
S1(u0) ∈ J ,
we can take u0 = (q0, y0, q1)(q1, y1, q2) . . .
where qi ∈ Q ∪ Qh, yi ∈ Σ ∪ Γ such that
δ(qi, yi) = qi+1 for i = 0, 1, 2, . . . , n − 1 and if yi = ♦

then qi+1 = qh.
Then w = h(u0) = y0y1y2 . . . yn and

σ : q0

y0
→ q1

y1
→ q2

y2
→ · · ·

yn

→ qn is a run of PA for w.
S1(u0) = yn ∈ J . qn ∈ F . Hence w ∈ PL. Thus
h(PL′) ⊆ PL.

Conversely, assume that
w = w1w2 . . . wn ∈ PL, wi ∈ Σ ∪ Γ
Let σ : q0

w1→ q1

w2→ q2

w3→ · · ·
wn→ qn, where

q0 ∈ Q, qi ∈ Q ∪ Qh, qn ∈ Q, be the run of PA for w
with qn ∈ F . Consider the partial word
u0 = (q0, w1, q1)(q1, w2, q2) . . . (qn−1, wn, qn)
Clearly P1(w) ∈ I, F2(w) ⊆ C, PF2(w) ⊆ H , S1(w) ∈
J . Thus w ∈ PL′.

Also h(u0) = w1w2 . . . wn = w.
Therefore w = h(u0) ∈ h(PL′) which gives
PL ⊆ h(PL′). Hence h(PL′) = PL. �

Example 5.1 Consider PL = {(a♦a)n/n ≥ 1}. PL
is a regular partial language over Σ ∪ Γ, where Σ =
{a, b} and Γ = {♦}. But PL is not a local partial
language.

A partial automaton accepting PL is
PA = (Q, Qh, Σ, Γ, δ, q0, F ) where Q = {q0, q1, q2},
Qh = {qh} and F = {q2}. The transition diagram of
the partial automaton PA defining δ is given below:

a
q0 q1 qh q2

a

♦ a

Figure 4: Partial automaton accepting (a♦a)n

By theorem 5.1, we can construct a local partial lan-
guage PL′ such that PL = h(PL′) as follows:
I = {(q0, a, q1)},
C = {(qh, a, q2)(q2, a, q1) : q2 = δ(qh, a),

q1 = δ(q2, a)}
H = {(q0, a, q1)(q1, ♦, qh), (q1, ♦, qh)(qh, a, q2) :

q1 = δ(q0, a), qh = δ(q1, ♦), q2 = δ(qh, a)},
J = {(qh, a, q2)}.
Then PL′ = {(q0, a, q1)(q1, ♦, qh)(qh, a, q2)}

+ which is
a local partial language.

Remark 5.1

1. The alphabet Γ1 contains at most mn2 elements,
where n is the number of states of minimum par-
tial deterministic finite automata MU for
U, m = |Σ|.

2. For w in U , let
d(w) = (i0, a1, i1)(i1, a2, i2) . . . (it−1, at, it) be a
partial word over Γ1 where ai ∈ Σ ∪ Γ, i0 = q0,
ir ∈ Q ∪ Qh and it ∈ F , representing a sequence
of state transititions for w = a1 . . . at by MU . We
call this a valid partial word for w. Let V al(w) =
{d(w) ∈ Γ∗

1/d(w) is a valid partial word for w}.

3. Let PL be a local partial language over Γ1 such
that U = h(PL), and let RL be a characteristic
sample for PL. Then, there exists a finite set of
positive data SU of U such that RL ⊆ V al(SU ) =
⋃

w∈SU
V al(w) ⊆ h−1(SU ), where h−1 is the in-

verse of the mapping h.



4. If U is a target regular partial language the re-
stricted subset query “if L ⊂ U or not” takes as
an input a set L and produces an output ‘yes’ of
L is a subset of U and ‘no’ otherwise.

5.1 Learning Algorithm for Regular Par-
tial Languages (IAPL)

Input : Positive presentation of U , n is the number
of states of the minimum DFPA for U ,

Output : A sequence of conjectures of the form
h(PL(Si)), where PL(Si) is a local
partial language generated by Si.

Query : restricted subset query.
Procedure :

Initialize E = φ
Construct the initial

tuple S0 = (φ, Σ2, (Σ ∪ Γ)2, φ)
Repeat (for ever)

let Si = (Ii, Ci, Hi, Ji) be the current tuple;
read the next positive example w;
let val(w) = {α1, . . . , αt}
scan αj to compute P1(αj), F2(αj),

PF2(αj), S1(αj)
Ii+1 = Ii ∪ P1(αj)
Ci+1 = Ci ∪ F2(αj)
Hi+1 = Hi ∪ PF2(αj)
Ji+1 = Ji ∪ S1(αj)
let Si+1 = (Ii+1, Ci+1, Hi+1, Ji+1)
for all i, ask if h(PL(Si+1)) ⊆ U or not
val(w) = val(w) − {αj | the answer is ‘no’ }
Ei = Ei ∪ val(w)
Ii = Ii ∪ {P1(α)|α ∈ val(w)}
Ci = Ci ∪ {F2(α)|α ∈ val(w)}
Hi = Hi ∪ {PF2(α)|α ∈ val(w)}
Ji = Ji ∪ {S1(α)|α ∈ val(w)}
output Si = (Ii, Ci, Hi, Ji)

6 Partial Line Languages

In this section we deal with partial line languages and
their properties.

Definition 6.1 Let u be a partial word over Σ, then
the Generalized Parikh Vector (GPV) of u is P(x) =
{(p1, p2) ∈ [0, 1]2,

p1 =
∑

j∈A1

1

2j
, p2 =

∑

j∈A2

1

2j

where A1 and A2 denotes the positions of a and b
in u, where the positions representing the holes are
neglected.

Definition 6.2 A partial language PL is called a
partial line language if there exist a partial language
line pl in R2 such that the GPV’s of partial words
of PL lie on pl. The partial line pl is called partial
language line.

Correspondingly a language L is called a line language
if there exist a line l in R2 such that the GPV’s of
words of L lie on l. The line l is called a language
line.

A partial language is said to be an infinite partial line
language if it contains only infinite partial words.
A partial language is said to be finite partial line lan-
guage if it contains only finite partial words.

Example 6.1 The infinite partial line language
(ba)∗♦(ba)ω lies on line y = 2x.

Remark 6.1

1. All partial words have their GPV’s in the region
bounded by the lines x = 0, y = 0 and x + y = 1.
This region is called PL-region, shown in Figure
5, where no partial word lies on the line x+y = 1.

2. Partial words of length n lie on the lines

x + y =
2n − 3

2n
where n = 2, 3, ...

3. Partial words are densely packed in the PL re-
gion.

Theorem 6.1 If the line language is of the form
L = {w∗

2} ∪ {w4} where w4 ∈ Σω and |w2| > 1, then
the corresponding partial line language is of the form
w∗

2♦w4 only when the language line intersects the lines
x + y = 2

n−1

2n at
n = 1, n1 + 1, 2n1 + 1, ... where |w2| = n1.

Proof Let L = {w∗
2} ∪ {w4}, where |w2| = n1 > 1 be

a line language.
Let |w2| = n1 > 1, then the primitive word exists for
n = n1.
For n = n1, 2n1, 3n1, ... the points of intersection of `,
language line of L with x+ y = 2

n−1

2n gives full words.
Since |w2| > 1, n = 1 does not give a full word and
the point of intersection lie on x + y = 1/2. Hence
the first position becomes a hole and the entire word
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Figure 5: Diagrammatic representation of partial
words

w2 ∪ w4 is shifted by one place. Hence the partial
word is of the form ow4.

The next partial word of this form exists for n = n1 +
1. Since there is a full word for n = n1, the point of

intersection of ` with x + y = 2
n1+1−1

2n1+1 gives a partial
word. The full word w2 is retained and a hole occurs
in the n1 + 1th place and the remaining words are
shifted by one place. Hence the partial word is of the
form w2♦w4. Continuing this process, we obtain the
partial words are of the form w∗

2♦w4. �

Example 6.2 y = 2x
L = {(ba)∗} ∪ {(ba)ω}, where n1 = 2
For n = 1, we obtain ♦(ba)ω

For n = 2, we obtain ba
For n = 3, we obtain ba♦(ba)ω

For n = 1, n1 +1, 2n1 +1, ... the corresponding partial
words obtained are ♦(ba)ω , ba♦(ba)ω, baba♦(ba)ω, ...
Hence in general, we get PL = (ba)∗♦(ba)ω.

Theorem 6.2 If line language is of the form
{w1(w2)

∗}∪{w4}, w4 ∈ Σω where |w2| = 2 and |w1| =
1 then the corresponding partial line language is of the
form w1(w2)

∗♦w4 only when the language line inter-
sects the lines x+y = 2

n−1

2n at n = 1, n1+1, 2n1+1, ....

Proof Let L = w1(w2)
∗∪w4 be a line language where

|w2| = 2 and |w1| = 1. Let ` be the corresponding lan-
guage line. The primitive word exists for n = 1. Since

|w1| = 1 the remaining words exist for n = 3, 5, 7, ....
Hence when the language line intersects x+y = 2

n−1

2n

at n = 2, 4, 6, ..., the partial words exist. Since there
are full words at n = 1, 3, 5, ... those full words are
retained followed by a hole and the remaining part
of the entire word is shifted by one place hence the
partial words will be of the form w1(w2)

∗♦w4. �

7 Learning of Partial Line Languages

In this section, we present a learning algorithm IAL
for partial line languages.

The following notations are used in the algorithm.

• common-prefix (x1, x2) denotes the string, which
is the longest common-prefix of x1 and x2.

• remove-prefix (x, y) denotes the string β such
that x = yβ.

• common-suffix (x1, x2) denotes the string, which
is the longest common-suffix of x1 and x2.

• common-subword (x1, x2) denotes the string,
which is the longest subword x1 and x2.

• remove subword (x, s) denotes the string αβ such
that x = αsβ.

• mod (x1) denotes the length of the string x1.

Identification Algorithm (IAL)

Input : A positive presentation of a line language L.
Output : The line language L and the partial

line language PL.
Procedure :

Read three positive samples x1, x2, x3.
l1 = mod(x1), l2 = mod(x2), l3 = mod(x3).
z1 = common-prefix(x1, x2),
z2 = common-suffix(x1, x2)
If l1 < l2 then

begin
I11 = remove-suffix(x2, z2),
I31 = remove-prefix(x2, z1)

end
else

begin
I11 = remove-suffix(x1, z2),
I31 = remove-prefix(x1, z1)

end



z3 = common-prefix(x2, x3),
z4 = common-suffix(x2, x3)
If l2 < l3 then

begin
I12 = remove-suffix(x3, z4),
I32 = remove-prefix(x3, z3)

end
else

begin
I12 = remove-suffix(x2, z4),
I32 = remove-prefix(x2, z3)

end
If I11 = I12 and I31 = I32 then

z5 = common-suffix (I11, I12)
If z5 = sk then

begin
w2 = s, w1 = remove-suffix(I11, s

k)
s1 = common-subword (s, I31)
If s 6= λ then

w3 = remove-prefix(I31, s
n)

else
w3 = remove-prefix(x1, w1w

m
2 )

end
else

begin
z5 = common-subword(I11, I31) = sk,
w1 = remove-suffix(I11, s

m), w2 = s
w3 = remove-prefix(I31, s

m)
end

If w1 = λ and w3 = λ then
begin

L = {w∗
2} ∪ {wω

2 }
PL = w∗

2♦wω
2

end
If w3 = λ then

begin
L = {w1w

∗
2} ∪ {wω

2 }
PL = w1w

∗
2♦wω

2

end
Output: PL = w1w

∗
2♦wω

2 .

Example Run

L = a(ab)∗ba
x1 = aabba, x2 = aabababba, x3 = aabababababba
l1 = 5, l2 = 9, l3 = 13
z1 = aab, z2 = abba, I11 = aabab, I31 = ababba
z3 = aababab, z4 = abababba, I12 = aabab,
I32 = ababba
z5 = common-subword (aabab, ababba) = abab

= (ab)2

w2 = ab

w1 = remove-suffix (aabab, (ab)2) = a
w3 = remove-prefix (ababba, (ab)2) = ba
Hence L = a(ab)∗ba.
Corresponding PL = a(ab)∗♦ba.

8 Conclusion

In this paper we have defined the three classes of par-
tial languages and we present an algorithm for learn-
ing local partial languages in the limit from positive
data. We have shown that the class of regular partial
languages is learnable in the limit from positive data
and restricted subset queries and we provide another
learning algorithm to infer partial line languages.
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