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Model Counting for 2SAT Based on Graphs by
Matrix Operators
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Abstract—Counting the models of Boolean formu-
lae is known to be intractable but pops up often in
diverse areas. We focus in a restricted version of the
problem. In particular, our results are based on ma-
trix operators and Hadamard product for counting
models of Boolean formulae consisting of chains and
embedded cycles. We obtain an efficient algorithm
such that the input is a Boolean formula ¥ in 2-CNF
and the output can be either a charged Boolean for-
mula ¥’ simpler than ¥ or the number of models of
3 (the charge of a Boolean formula ¥ is introduced
as a vector in N?, which contains information about
the number of models of ¥). In the latter case, X
belongs to a tractable class of Boolean formulae in 2-
CNF for #SAT that contains the classes 2u-2SAT and
Acyclic-2ZHORN.
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Product

1 Introduction

The problem #SAT, that consists of counting the num-
ber of models for a Boolean formula (BF) in conjunctive
normal form (CNF), arises often in diverse areas such as
logic, graph theory, and artificial intelligence [9, 10, 8, 5].
This problem is known to be intractable, even for cases
with strict restrictions such as 3u-2MON and 3u-2HORN
formulae [6]. A formula in 3u-2MON(HORN) is com-
posed of monotone(Horn) CNF formulae with clauses of
length 2 with no variable occurring more than 3 times.
There has been a growing interest to identify restricted
cases of BFs and develop efficient algorithms for them
[5, 6, 7]. The investigation in this direction is impor-
tant not only for revealing the tractability frontiers, but
also because they provide a collection of techniques use-
ful for our understanding of these problems and reach
new results [5]. In this direction, Vadhan [7] proved that
counting the number of satisfying assignments of formu-
lae in 2p-2MON can be done in polynomial time using
recurrence formulae. Roth [5] extended this result to 2u-
2SAT and Acyclic-2HORN (formula 2HORN, where ev-
ery connected component of its corresponding graph is a
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directed tree). Russ [6] proposed other way to prove the
tractability of the class 2u-2SAT, regarding the problem
as a problem on sink-free graph orientations.

In this paper, we show results for counting models of
Boolean formulae (BFs) in Conjunctive Normal Form
(CNF) containing “simple chains” and “nested cycles”.
For obtaining the number of models of a formula, we in-
troduce the concept of “charge” of a variable x in a BF
3, defined as the ordered pair (m,n), where m and n
are the number of models of ¥ with value 1 and 0 in the
variable z, respectively. Hadamard product and matrix
operators are also used by establishing relations between
the number of models of a formula ¥ and the charges of
some variables in subformulae of . These results lead
to identify a tractable class of BFs in 2CNF, denoted
by Cpg, that contains the classes 2u-2SAT and Acyclic-
2HORN. The class Cpg, is determined by the structure
(multigraph) of its members, that is, ¥ € Cpy iff £ is a
BF in 2CNF s. t. it can be disarticulate in connected
components that are either simple chain or nested cycles.

We also provide an efficient algorithm, called
#SAT 2CNF s. t. for a given BF X in 2-CNF as
input, returns two possible outputs: a charged BF free
of chains and nested cycles, or the number of models
of ¥. The algorithm #SAT_2CNF can be used for
several aims: (1) identify the class Cpg (X € Cpg iff
#SAT_2CNF return the number of models of ¥), (2)
obtain the number of models of any ¥ in Cp,g, and (3) if
Y is a BF in 2CNF s. t. ¥ ¢ Cpyg, then #SAT_2CNF
returns X’ a charged BF (see definition 2). In this case,
Y have the same number of models than ¥ (definitions
3 and 4), and it decrease in the number of its variables
when ¥ contains subformulae in the class Cpg.

The paper is organized as follows: In Section 2 are defined
some preliminaries and technical tools. Section 3, defines
the multigraph induced by a BF. Sections 4 to 5 are de-
voted to counting models of chains and nested cycles of
BFs. In Section 6, are defined the concepts of Boolean
Formula charged and #Sat-equivalent. In section 7, we
present the algorithm #SAT_2CNF and analyze its com-
plexity in time.
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2 Preliminaries

The set of natural numbers (or nonnegative integers)
is denoted by N. For every positive integer n, the set
{1,...,n} is denoted as [n] and the set {0,1} is denoted
by B. The cardinality of a set A is denoted by #A.
A Boolean formula (BF) ¥ in CNF of n Boolean vari-
ables X = {z;,22,...,2,} consists of a set of clauses
c1,Co,...,Cm, Where each clause is a set of literals over
the variables X, a literal ¢ is either a variable z, or its
negation —z. A BF ¥ in 2CNF is a formula in CNF s.t.
each clause of ¥ has at most two literals.

The set X of variables of ¥ is denoted by Var(%),
Lit(X) refers to the set of literals of X, and Var(f)
denotes the wunderlying variable of ¢ € Lit(X). Let
sgn : Lit(X) — {4, —} be the sign function, defined by
sgn(f) = + it £ = Var(l), sgn(f) = — if £ = =Var(¥).
Given z € Var(X), we define the degree of x as the
number of occurrences of z in ¥ without care of its sign,
this is denoted by degs(z).

A BF C = {c1,...,cxg—1} in 2CNF is a simple chain
iff there is ¢ : [k — 1] — [k — 1] permutation s. t.
#(Var(c,iy) N Var(cyiv1))) = 1 for each i € [k — 2]
and C is a simple cycle iff C is a simple chain and
#(Var(cony) N Var(cyx—1y)) = 1. If o is the identity,
then we say that C is a ordered simple-cycle (simple-
chain).

An assignment s for ¥ is a function s : Var(X) — B.
Given any A C Var(X), s |a denotes the restriction of s
to A(s]arA—Bst s|a(x)=s(x), forallz € A
). A literal ¢ is satisfied by the assignment s iff either
s(Var(f)) = 1 and £ = Var(¢) or s(Var(¢)) = 0 and
Var(¢) # ¢. The assignment s satisfies the clause c iff s
satisfies some literal in ¢, s satisfies the BF X iff s satisfies
all clauses of X. Sat(X) denotes the set of assignments
on Var(X) that satisfy the BF 3.

Let ¥; and 33 be BFs s.t. Var(X)NVar(X2) = 0, then
it is clear that

#Sat($1 U Sy) = #Sat(Sy)#4Sat(Ss) (1)

Given any variable € Var(X), #Sat(X, x) denotes the
ordered pair (m,n), where m = #Sat,—1(X) and n =
#Sat,—o(X). We refer to #Sat(X, x) as the charge of
in ¥, If ¥’ is a subformula of ¥ and = € Var(X'), then
the charge #Sat(X’, z) is called the partial charge of
in ¥ (or the induced charge by x in ).

Note that if (m,n) is the charge of any variable z in 3,
then #Sat(X) = m + n. The pair (m,n) is also denoted

by the 2 x 1 matrix ( m )

n
We consider the Hadamard product ” o” on N?: (my,m1)0
(m2,n2) = (m1m2,n1n2)-

Observe that 7¢” is associative, distributive and com-
mutative. If q; € N2 for i = 1,...,k, the product
q; ©qy ¢ oqy is denoted by OF_  q;. Also, we de-
fine the product "®” of a 2 x 2 matrix by a charge, as

follows:
m ® a b [ ma mb
n c d) \ nc nd

Note that if p and q are charges and T is a 2 X 2 matrix,
then

P®T)(q)=peo(Tq) (2)

3 Multigraph Induced by a Formula in
2-CNF

Given a BF ¥ in 2-CNF, one can choose an order in each
clause of ¥. So if ¢ = {¢,r} € ¥ we denote ¢ = (¢,r) or
¢ = (r,£) depending on the chosen order. If ¢ = {{} €
%, we denote ¢ = (¢,£). Let ¥’ be a BF with ordered
clauses obtained from ¥ choosing an order in each clause
of ¥, note that #Sat(X') = #Sat(X). Then, a BF ¥
in 2-CNF with ordered clauses can be considered as a
finite set of ordered pairs. Given a BF ¥ in 2-CNF with
ordered clauses, we define Gy, the multigraph induced
by 3, as the edge-labelled directed multigraph built as
follows: the set of nodes of Gy is Var(X) and the set
of edges of Gy is obtained from the set of clauses of X,
where each clause (¢, 1) defines the directed edge from the
node Var(¢) (source) to the node Var(r) (target) labelled
with the concatenation of sgn(¢) and sgn(r). We also
denote for the clause ¢ = (¢,r), Sgn(c) = Sgn(l,r) =
sgn(€)sgn(r) . Note that a BF ¥ in 2-CNF induces as
many multigraphs as the number of ways to select an
order in each of its clauses.

Example 1 Consider the BF with ordered clauses ¥ =
{(_‘1’1; 1'2)7 (’I’Q, L]5.3)7 (_‘Z27 _‘1’4)7 (xl); (xla 1'3)7 (’I’Q, _‘1'3)}.

The multigraph Gx is given in la figura 1. Note that the
unitary clause (x1) increases in 2 the degree of x1, i.e.
degs(z1) = 4.

Fig. 1 Multigraph Gy

4 Matrix Operators and Chains

To illustrate the underlying ideas, we start counting the
number of models of the BFs ¥; = {({)} and X3 =
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{(¢,7)}. For 3, it is clear that #Sat(31) = 1 and the
charge of Var(¢) in ¥4 is (1,0) if sgn(¢) = +, and is (0, 1)
if sgn(¢) = —. So, we obtain

#Sat(El,VaT(f)) - ngn(l) ( 1 )

where 71 and 7_ are the projection operators given by

(3= (21) e

Now, analyzing all the cases for Sgn(¢,r) of X,
we have #Sat(X2) = 3 and the charges of Var(¢)
and Var(r) are given by #Sat(X2,Var(()) = (2,1)
for Sgn(l,r) € {++,+—} and #Sat(Xe,Var(l)) =
(1,2) for Sgn(l,r) € {—+,——} symmetrically,
#Sat(Xo, Var(r)) = (2,1) for Sgn(r,£) € {++,+—} and
#Sat (3o, Var(l) (1,2) for Sgn(r,f) € {—+,——1}.
Summarizing, we have #Sat (X2, Var(r))=Tsgn.(1,1)
and #Sat(¥s, Var(€))=Tsgn(re(1,1), where the opera-
tors T'sgn(e,r)(chain operators) are defined as:

T++=( )7T+—=(1 (1)) (4)
(D) e

Given a BF X, following the previous idea the question is
whether it is possible to find relations between #Sat(X)
and the matrix operators gy, () and Tggp (e, in (5) and
(6). We find an answer for a class of BFs (see The-
orem 1). Let consider the BFs: X3 = {(z,y), (y,2)},
Yy = {(x,y), (_‘yaz)}a Ys = {(x,y), (—\y,—\z)} and Y =
{(z,y),(y,—z)}. We can easily obtain the relations:
#Sat(X3,2) = T4T41(1,1) = (3,2), #Sat(Xy,2) =
T T4 (1,1) = (3,1), #Sat(Xs5,2) = T-_T44(1,1) =
(1,3) and #Sat(ZG,Z) = T+_T++(171) = (2,3) If
Y = {(x1,22), (£2,23), ..., (Xn, Tnt+1)}, it is not hard to
check that #Sat(¥,z1) = T}, (1,1). Observe also that
T, 4 is the Fibonacci Q-Matrix, and that for every posi-
tive integer n, the powers of T, ; are given by

n o __ Fn+1 Fn
T++ N < Fn Fn—l > (6)
where Fy = 0,F% = 1,F,4+1 = F, + F,,_1. Then

#Sat(X,x1) = (Fny2, Fnt1). However, the powers of
T__,T,_ and T_ 4 are given by
anl Fn

Tf_z(Fn ),Tf_:(Ter)t:(Tll (1))

We can establishes a relation between the partial charges
and the total charge of one common variable of two BFs.

) =
) =

11
10

1 1
0 1

Fn+1

Remark 1 Let %1 and Yo be BFs st. Var(X:) N
Var(X2) = {z}, then #Sat(3X1 UXs, x) = #Sat(X1,2) ¢
#Sat(Eg,x).

Remark 2 Let 31 and X2 be BFs, s.t. Var(31) N
Var(32) = 0, ¢ = ({,r) a clause with Var({) = x €
Var(Xy), Var(r) = y € Var(X2) and p, g, the charges
of Var(f) and Var(r) in 31 and Xo respectively, then for
i€ B:

#Satz:i(za y) = q° (TSgn(c)Tri (p)) (7)

#Sat(zay) = q° (TSgn(c) (p)) (8)
where X =X UXoU{c}, m =7y, mp=7_ .

Using the chain operators, from remark 2 and equation
(3), we get #Sat(X).

Example 2 Let ¥ = {c1,...,c5} were ¢; = (—xy1,2),
ca = (—x5,12), c3 = (22,23), ca = (26,73), ¢5 =
(mxs3, ~xq). Gy is depicted in figure 2.

Let ¢ = (1,1) fori=1,..,6 and X; = X\ {c1, ..., ¢ } for
i=1,...,5. Then
g2 = #Sat(S1,22) = gy o T-1.q7 = (2
@y = #Sat(3a,22) = 2o T 1 q3 = (4,
g3 = #Sat(S3,23) = 3 0 Thy gy = (5
qé = #Sat(24,1'3) =43 <>T++qg = (10,4)
qa = #Sat(25,x4) = qg OT__qé = (4, 14)
therefore #Sat(X) = 18.

x5

Figure 2. Multigraph Gy, example 2.

5 Matrix Operators and Cycles

By a similar analysis as that of section 4, we obtain the
set of operators for counting the number of models of
simple cycles. The following definition summarizes this
analysis.

Definition 1 (Cycle Operators). Let Uy, , : N* — N* be
the operators defined for each combination of signs s; ; €
{++,+—,—+, ——} as follows:

ab ab ab a0
\Ij++<cd)(00)’qj+<cd><cd
ab 0b ab ab
‘I’<cd)(cd)"1’+<cd>(0d
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Example 3 Let ¥ = {(wy,ws), (—ws,ws), (w3, "w1)},
Tio=T44 and To 3 =T 4. Observe that

HSat(S, wy) = U, T Ty, < 1 >

(20 )G ()

Remark 3 Let ¥ = {c1,...,ck} a ordered simple-cycle
(as in section 2) with k > 2. Assuming that ¢; = (¢;,r;),
Var(¢;) = z; fori € [k], then

#Sat(zvxl) = (\I/Sgn(ck)(j—’k))(‘h) (9)
where Tj, = H;:ll Tsgn(c,_s) and q; = (1,1).

For each k € N and chain operators Ts,, s; €
{++,+—,—+,——}, 7 € [|k], we define the opera-
tor Cycle(Ts,,....Ts,) = Vs, (Ts,_, - Ts,). Note that
#Sat(za xl) = CyCle(TSgn(C1)v "~7TSgn(ck))(q1)'

In particular when every literal of X is positive, we have
T, = T¥!', and using (8), we obtain

#Sat(C,x1)=(V 4+ Tr)q1 = (V4175 N =

Ey Fyq LY _ ([ Frtr

Fp,1 0O 1 Frpy
where Fj 41 and Fy_; are Fibonacci numbers. Note also
that any connected component of a BF ¥ in 2u-2SAT is
either a simple chain or simple cycle. Using Theorems 1
and 2, with equation (3), we can get #Sat(%).

6 Processing Embedded Cycles

A set of simple cycles C' = {Cy, ...,C;} is a set of embedded
cycles iff there is a permutation o : [j] — [j] and e; € C,(y)
fori=1,....,75s. t.

Coy \ {e1} CCopa) \ {e2} - CCogyy \ {e5}

We say that a BF X has a structure of embedded cycles
iff there is a set of embedded cycles C's. t. ¥ = UcecC.
Observe that if 3; and Yo are two simple cycles s. t.
21 N3y = {c}, then (X1 UX3) — {c} is a simple cycle
that contains to ¥; — {c}. Indeed, we have that ¥; =
{c1, .., en-1,c} and Xo = {e1,...,em_1,c}, then (X1 U
¥o) —{c} ={c1, ., enm1, €1y s em—1}, Var(e) = {z,y}.
Also, if ¥; and Y5 are simple cycles s. t. #(21\X2) =1,
yields X1\ {c} C o\ {e} for some e € ¥p\ ¥1. Therefore,
31 UX5 has a structure of embedded cycles if some of the
following conditions is fulfilled

#F(X1NE) =1, #(X1\X2) =1, #(X2\ E1) =1 (11)

Conversely, it is not hard to check that if {¥1,Xs} is a
set of embedded cycles, then X1,Y, satisfy some of the

(10)

conditions given in (11). Therefore, ¥; U X9 has a struc-
ture of embedded cycles iff 31,39 satisfies some of the
conditions given in (11). For checking (11), we consider
all clause as a nonordered pair.

Given a set C of simple cycles to verify the set of pairs
in C' s. t. satisfies some constrains from (11), can be
done in polynomial time, since both “N” and “\ 7 are
operations that consume linear time.

Example 4 Let 1 = {a1,a2,a3,a4,a5} where a; =
{—‘CC3,$4}, az = {_‘:Clv_‘:EQ}; as = {—|934,l‘5}, a4 =
{x1, 25}, a5 = {x2, w3} and Xg = {b1,ba, b3} where
bl = {_\333,.%4}, b2 = {Ig,ﬂl‘g}, bg = {ﬂ$4,ﬂl‘2}. ChOOS-
ing o1 = (3,4,2,5,1} and o2 = (2,1, 3) permutations for
Y1 and X4 respectively, we have X1 and Yo are simple cy-
cles. Observe that a; = b1, a5 = ba and as X1\ X2 = {bs},
then X1UXq has a structure of embedded cycles (see figure

3).

a3 t x4 -+ x5 -+ x1 - x2

Fig. 3 Graph induced by X1 U Xs.

Remark 4 Given X1 and X5 simple cycles s. t. 31 UYo
has a structure of embedded cycles and ¥1NYXy = {c}, we
can obtain #Sat(X1 U X2) as follows

#Sa’t(zl U 227x) = CyCZB(U, TSgn(e1)a "'7TSgn(em))(q1)

U= Cyde(TSgn(cl)v ey TSgn(ck)a TSgn(c))

where ¢ = (I,r), © = Var(l), 1 = {c1,...,cx,c} and
Yo =Ac,e1,...,em} are ordered.

Example 5 Let 1 = {(z,2),(x,y),(y,72)} and
21 NXe = {c} where c = (y,—-z). We obtain that

U = Cyde(TSgn(z,x)a TSgn(:c,y)a TSgn(y,ﬁz)) =

) and

Cyd@(U, TSgn(y,u)a TSgn(u,w)v TSgn(ﬂw,z)) =

2 1
=V (T4 Tyy) = < 01

4
2

:)

Remark 5 Given X1 and Xo simple cycles s. t. 31U X9
has a structure of embedded cycles and X1\ X = {c}, we

4 3
=V _ (T4 T U) =0y ( 9 9 ): (
therefore #Sat(X1 U X3) = 8.
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can obtain #Sat(X1 U X2) as follows
#Sat(X1 UXs, x) = Cycle(U, Tsgn(e,), - Tsgn(en))(a1)

U= C?JCZ(f(TSgn(cl)a () TSgn(ck)7 TSgn(c))

where ¢ = (I,r), x = Var(l), 1 = {c1,...,cx,c} and
Yo ={c1, .y Ck, €1, ..y € } are ordered.

Example 6 Let ¥, = {(z,y),(y,2),(z,2)} and
21\ B2 = {c} where ¢ = (x,2). We obtain that

U = CyCle(TSgn(a:,y)a TSgn(y,z)7 TSgn(z,a:)) =

> and
Cycle(U, TSgn(z,w)v TSgn(w,l‘)) -
3 1) (31
2 1) 20
= 6.

In general, if ¥ has a structure of embedded cycles,
we use the remarks 4 and 5 recursively for obtaining
#Sat(X).

For example let ¥ = {(z,v), (y, 2), (2, z), (z,w), (w, ),
(wau)v (U,ZE)}, If¥; = {(:Ca y)v (ya Z)a (Za Z)}; Yo = {(:Ca y)a

2 1

=V (T4 Ty) = ( 1 0

=V (T U) =y
therefore #Sat(X1 U 3g)

(y,z),(z,w),(w,x)} and 23:{(Zay)a(yaz)a(zaw)a
(w,u), (u,x)}, then X;, Yo and 33 are cycles
st. X1\ X2 = {(z,2)}, 2\ 3 = {(w,2)} and

Y= 21 UEQUE?” then

U = CyCle(TSgn(a:,y)a TSgn(y,z)7 TSgn(z,a:)) =
2 1

=V (T4 Ty y) = ( 10 ) and

U' = CyCZG(U, TSgn(z,w)v TSgn(w,l‘)) -
3 1

‘I’++(T++U)‘I’++( 9 1 )‘ ( ;
(

O =
N~~~

CyCle(Ulv TSgn(w,u)v TSgn(u,:c)) =

501\
31 )7

therefore #Sat(X; UXs) = 9.

=V (T U) =y (

O =
S~~~

7 Algorithm #ChainsCycles

We can enlarge the idea showed in section 6 for comput-
ing the number of models of BF's consisting of chains and
embedded cycles. The concept of charge allows to store
the partial information of counting, in one or more vari-
ables of a BF. We see some these cases, for this, first we
consider the following algorithm.

The remarks 1, 2 and 3 allow to design an efficient al-
gorithm that, given a BF in 2-CNF, it is reduced to
a charged-formula in 2-CNF (a formula with charged
nodes and with the same number of models that the
original formula). When a BF in 2-CNF is reduced
to a charged variable, then the algorithm computes
its number of models. We refer to this algorithm as
the algorithm #ChainsCycles, that uses the procedures
chain_contraction and cycle_contraction.

Procedure chain_contraction. Given a BF, the
procedure chain_contraction trims the chains of its
associated graph, until the graph is reduced to a node or
to a graph without nodes of degree 1. The effect of this
procedure on the BF is the reduction to a BF without
variables of degree 1, or the computation of its number
of models. The minimum of the degrees of the variables
of ¥ is denoted by mindeg(X). It is not hard to see that
the complexity in time of this algorithm is O(m?), where
m is the number of clauses of ¥, since finding mindeg(X)
can be done in time of O(m), and the internal loop takes
time O(m).

Procedure chain_contraction(X)
Input: Boolean Formula ¥, ¢; for ¢ € [#Var(X)]

Output: Either &' where mindeg(X') > 2 or #Sat(X%)
B1) While ¥ # () or mindeg(X) =1 do

B2) Let (¢,7) € ¥ s.t. degs(¢) =1 then
B3) ar = (Te.rqe) © gr

B4) degs(r) = degs(r) — 1

B5) 5 =2\ {(6:1)}

B6) endWhile

B7) Return 2, gr

Procedure cycle_ contraction. A cycle s.t. all vari-
able in it, with one possible exception, are of degree 2
is called a cycle-leaf. The set of cycle-leaves of a BF X
is denoted by CI(X). Given a BF ¥ and its associated
multigraph Gy, the procedure cycle_contraction trims ev-
ery cycle-leaf of Gz, until reducing Gy, to a node or to
a multigraph without cycle-leaves. When Gy is reduced
to a node, we get the number of models of 3. The line
C2 of this procedure takes time of O(m), where m is the
number of clauses of Y. Since we can find the set of cycle-
leaves in linear time from the set of fundamental-cycles
of Gy, then the complexity of the internal loop (lines C2-
C5) is O(m?). Therefore, cycle_contraction has a time
complexity of O(m?).

Procedure cycle_contraction(X)

Input: BF X, ¢;, i € [#Var(Y2)]

Output: Either &' where CI(X) = 0 or #Sat(X),
C1) While X # 0 and CI(X) # 0 do

C2) Let (C,w) € CX
C3) qw = Cycle(C,w)
C4) degs(w) = degs(w) — 2

(Advance online publication: 17 November 2007)
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C5) Y=%\C
C6)endWhile
C7)Return Y, Qu

Algorithm #ChainsCycles. The algorithm
#ChainsCycles alternates procedures cycle_contraction
and chain_contraction for reducing the associated
multigraph of a BF to a node or to a simplified graph
without cycle-leaves and chains. So, if ¥ is a BF in Cy,g,
then X is reduced to a node.

Algorithm #ChainsCycles

Input: BF ¥ in 2 — FC

Output: Either X" where CI(X) = 0 and Sgeg1 = 0 or
#Sat(%)

S1) CX ={C: C is cycle of X}

S2) degs(z) = degree of z,Vz € Var(X)

S$3) While X # 0 and (CI(E) # 0 or Saeqr # 0)
S4) ¥ = chain_contraction(X)

S5) ¥ = cycle_prunning(X)

S6) endWhile

S7) Return 3, qu

Given a BF X with m clauses and n variables, the
time complexity of an algorithm for generating a set of
fundamental-cycles of Gy, is O(n?) [2, 4]. Therefore, the
complexity of the algorithm #Sat_2C N F' is polynomial.
This algorithm is illustrated in the following examples.

Example 7 Let 31 = {(x1, 22), (22, x3), (x3,21), (3,
x4), (4, 5), (x5, 23), (T5,26), (T6, 727), (T6, 8), (T8, T9),
(x97x10)) (1‘107$8)7 (-7310; z/Ell)) (1‘2)7 (ﬂx4)} The associ-
ated graph of Gy is depicted in Fig. 4.

1.- Lines S1-S4. We obtain that chain_contraction re-
turns $1 = X1\ {(x10, 211), (z6, 7)} updating the charges
of xg and x10 in X1, as follows: g = T—+qroqs = (2,1),
q0 =Tyrqi10q10 = (2,1).

2.- Lines S3-S5. Here, the procedure cycle_contraction
updates the formula and the charges as follows: gqo
Cycle(Cy,22) = (1,0), qu2 = Cycle(Cyyzq) = (0,1
qs = Cycle(C’5,acg) = (6, D), ¥ =% \ (CQ U Cy U Cs
g3 = Cycle(Cr,x3) = (2,0), ¥ = ¥\ (1, ¢5 =
Cycle(Cs,x5) = (2,0) and 31 = 31\ C5. So we get
cycle_contraction(X1) = {(x5, x6), (x6, xs8)}-

3.- Lines S8-S4. Finally, chain_contraction(X;) =
(28,10), since gg = Ty+q5 ¢ g6 = (2,2) ¢ (2,1) = (4,2),
de = T++q8<>q6 = (7, 5)0(4, 2) = (4, 2) = (28, 10) There-
fore, #Sat(¥X1) = 38.

)
))

Fig. 4. Graph Gy, example 7

Example 8 Let X3 = %1 U {(—x3,25)}.

Following the lines from example 4 we get essen-
tially the same, except that in step 2 from ex-
ample 5, we obtain cycle_contraction(X2) = Cs U
{(—zs3,z5) (x5, 26), (v6,28)}. Finally, from lines S3-5S4,
we get XY = chain_contraction(X2) = Cs U {(—xs,25)},
g5 = (2,0), g4 = (0,1) and g5 = (19,14). The reduced
multigraph Gsy is depicted in Fig. 5.

w

X4

Fig. 5. Graph Gyxy example 8

Algorithm #EmbeddedCycles. The algorithm
#EmbeddedCyles has as input a simplified BF ¥* with-
out cycle-leaves and chains, that is, first a BF X is pre-
processing by #ChainsCycles for obtain X*. When
3>* has a structure of embedded cycles, the algorithm
#EmbeddedCyles obtains #Sat(X). The collection of
pairs of fundamental cycles that satisfy some condition
from (11), is denoted by EmCy(X), this set is determined
in polynomial time, since the fundamental cycles and the
conditions (11) are obtained in polynomial time. Given C
and D cycles that satisfy some conditions from (11), we
denote by proCycle(C, D), the procedures given in the
remarks 4 and 5.

Algorithm #EmbeddedCycles

Input: BF X" free of simple cycles and chains
Output: #Sat(X")
E1l) While EmCy(X*) # 0 do

E2) Let (C,D) € EmCy(X")
E3) proCycle(C, D)

E4) EmCy(E*)\ (C,D)
E5) endWhile

E6) Return #Sat(E")

Example 9 Let ¥ = {(z1,x2), (z2,x3), (x3,24), (x4, x5),
(x57x6);(x67x7);(Z'?;I'S);(ZS;ZQ);(ZQ;ZIO)a(xﬁvﬂcll)}'
For simplicity, the integer i denotes the wariable x;
and i the partial charge of the wvariable x;. A cy-
cle C = {(i1,12), (i2,13), ..., (ik,ik+1)} 1s denoted by
(il,...,ik+1)
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proCycle((2',4,5), (4,5,6,7,8))
. (2/,4,5) — (4,6,7,8,9)

(4 3
Q4'—30

proCyele((8,9,10), (4/,6,7,8,9))
£ (8,9,10) — (4',6,7,9')

(21
qg'—lo

proCycle((6,11,7),(4',6,7,11,9))
6=7=11=6(6,11,7) — (4,69

(21
“=\10

proCycle((4',6',9))
(4,6',9") — (6")

(2 1) (21 31
%" =11 o 10 2 1
NEE 11 4

30 8 3

Therefore #Sat(X) = 126.

8 Conclusions and Future Work

The approach that we have taken is to consider simple
structures of BFs for concentrating the information of
model counting (charge) in one of their nodes or vari-
ables. This information is compiled by means of matrix
operators. Later, we establish a relation between count-
ing models in a 2-CNF and the Hadamard product.

We have obtained a tractable superclass C,y, 4 of 2u-2SAT
and Acyclic-2HORN, determined by the multigraph of its
formulae. An extension of this class can be achieved if we
can identify new procedures to compute in efficient way
the charges of the subformulae appearing in a formula in
2-CNF. Therefore, it is possible to extend the algorithm
#EmbeddedCycles to a new efficient algorithm that im-
proves the reduction of the output formula or counts the
number of models for the input formula.

Furthermore, it is possible to obtain improvements in
the exponential bounds for known algorithms if we

combine the #EmbeddedCycles procedure with the
Davis-Putnam-Logemann-Loveland algorithm, modified
for counting satisfying assignments.
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