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Abstract. I have analyzed reduced neutron widths (Γ0
n) for the subset of 1245 resonances in the nuclear data

ensemble (NDE) for which they have been reported. Random matrix theory (RMT) predicts for the Gaussian
orthogonal ensemble (GOE) that these widths should follow aχ2 distribution having one degree of freedom
(ν = 1) - the Porter Thomas (PT) distribution. Using the maximum-likelihood (ML)technique, I have determined
that theΓ0

n values in the NDE are best described by aχ2 distribution havingν = 0.801± 0.052, which is 3.8
standard deviations smaller than predicted by RMT. I show that this striking disagreement is most likely due to
the inclusion of significantp-wave contamination to the supposedly pures-wave NDE. Furthermore, when an
energy-dependent threshold is used to remove thep-wave contamination, ML analysis yieldsν = 1.217± 0.092
for the remaining data, still in poor agreement with the RMT prediction for theGOE. These results cast very
serious doubt on claims that the NDE represents a striking confirmation ofRMT.

1 Introduction

The nuclear data ensemble (NDE) [1,2] is a set of 1407
resonance energies consisting of 30 sequences in 27 dif-
ferent nuclides. The ensemble was assembled to test pre-
dictions of random matrix theory (RMT) [3]. Fluctuation
properties of resonance energies in the NDE were found to
be in remarkably close agreement with RMT predictions
for the Gaussian orthogonal ensemble (GOE). Hence, the
NDE often is cited as providing striking confirmation of
RMT predictions for the GOE.

Reduced neutron widths (Γ0
n) have been reported for a

subset of 1245 resonances in the NDE, consisting of 14
to 178 measurements for 24 nuclides, as given in Table 1.
Note that the number of resonances for the Gd isotopes
in Ref. [2] are incorrect, and that one resonance for182W
(at 1920.9 eV) does not have a measured neutron width,
and so there are only 40 instead of 41 resonances for this
nuclide included in my analyses.

If the GOE correctly describes the data, RMT predicts
these widths should follow aχ2 distribution having one de-
gree of freedom (ν = 1) - the Porter Thomas (PT) distribu-
tion. In Ref. [2] the maximum-likelihood (ML) technique
was used to obtain the most likely value ofν for a sub-
set of the NDE data and it was concluded that there was
satisfactory accord between theory and experiment. How-
ever, there are several problems with the analysis of Ref.
[2], which I will describe below. I find that when the data
are analyzed more carefully, they do not agree with RMT
predictions for the GOE.

For the remained of this paper when referring to the
NDE data, I will include the spin statistical factorg =

2J+1
(2I+1)(2j+1) (whereJ, I, and j are spins of the resonance,
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Table 1. NDE nuclides.

Nuclide Nres Emax (keV) νmin νp f

64Zn 103 367.55 1.35+0.24
−0.22 1.54+0.29

−0.26
66Zn 65 297.63 0.68+0.23

−0.21 0.74+0.27
−0.25

68Zn 45 247.20 0.75+0.27
−0.25 0.95+0.36

−0.32
114Cd 17 3.3336 0.35+0.54

−0.34 2.0+1.5
−1.2

152Sm 70 3.665 1.14+0.27
−0.25 1.55+0.40

−0.38
154Sm 27 3.0468 0.76+0.38

−0.36 1.32+0.65
−0.55

154Gd 19 0.2692 0.44+0.58
−0.43 0.49+0.64

−0.48
156Gd 54 1.9908 1.22+0.27

−0.26 1.44+0.51
−0.49

158Gd 47 3.9827 0.75+0.25
−0.22 1.17+0.54

−0.47
160Gd 21 3.9316 0.55+0.34

−0.33 0.83+0.75
−0.65

160Dy 18 0.4301 0.83+0.57
−0.51 1.41+1.0

−0.83
162Dy 46 2.9572 1.02+0.33

−0.32 0.99+0.47
−0.43

164Dy 20 2.9687 0.82+0.51
−0.44 2.3+1.2

−1.0
166Er 109 4.1693 0.85+0.18

−0.17 1.85+0.49
−0.45

168Er 48 4.6711 0.80+0.30
−0.27 1.32+0.62

−0.55
170Er 31 4.7151 0.36+0.34

−0.31 3.6+1.6
−1.3

172Yb 55 3.9000 0.71+0.27
−0.26 0.70+0.30

−0.26
174Yb 19 3.2877 0.80+0.44

−0.39 1.29+0.68
−0.58

176Yb 23 3.9723 0.04+0.29
−0.03 1.05+0.65

−0.55
182W 40 2.6071 0.76+0.37

−0.35 1.50+0.62
−0.55

184W 30 2.6208 0.62+0.34
−0.31 0.99+0.54

−0.48
186W 14 1.1871 1.23+0.78

−0.62 1.32+0.93
−0.75

232Th 178 2.988 0.76+0.13
−0.12 1.78+0.36

−0.34
238U 146 3.0151 0.79± 0.12 1.02+0.39

−0.34
W.A. 1245 - 0.801± 0.052 1.217± 0.092

target, and neutron, respectively) in the definition of the
reduced neutron width, replacingΓ0

n with gΓ0
n . Although

all the target nuclides considered haveI = 0, and hence
J = 1/2 andg = 1 for s-wave resonances, I will show
below that the NDE almost certainly suffers from signifi-
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cantp-wave contamination. There are two resonance spins
possible forp-wave resonances for these nuclides,J = 1/2
or 3/2, and henceg = 1 or 2, which remain undetermined.
In these cases, the reported neutron widths are essentially
gΓn, andgΓ0

n = gΓn/
√

En are ”effective” reduced neutron
widths rather that the true reduced neutron widths forp-
wave resonances.

2 Importance of threshold in ML analysis
of neutron widths

To perform a meaningful ML analysis, the data should be
complete (no missing resonances) and pure (all resonances
have the same parity), or the analysis technique must take
into account the incompleteness of the data, and at least
attempt to assess the purity of the data. Along these lines,
there are at least four important limitations of experiments
from which the NDE data were obtained that must be taken
into account.

First, every experiment has a finite threshold below which
widths are not observed. Therefore, even if a pures-wave
sequence of resonances could be obtained from a measure-
ment, it will very likely not be complete. Hence, the ne-
cessity of using a threshold in the ML analysis to obtainν
from the data was realized from the beginning [4] of such
analyses.

A second important limitation is that all experiments
have a threshold below which they cannot distinguishs-
from p-wave resonances. Therefore, unless some indepen-
dent means exists for reliably separating resonances of op-
posite parity, a threshold may again be needed to ensure
that the data are all of the same parity [5].

A third consideration related to threshold may also be
important when analyzing a set of widths comprised of
many subsets from different nuclides: Each experiment from
which the data were obtained may have had a different
threshold. Therefore, if the data are analyzed using a sin-
gle threshold, it must be at least as high as that for the nu-
clide having the highest threshold. In Ref. [2], a subset of
1182 widths from the NDE was analyzed using a common
energy-independent threshold. In Fig. 1, minimum reduced
neutron widths (gΓ0

n,min), normalized to their respective av-
erage reduced neutron widths (< gΓ0

n >) are shown for the
NDE nuclides. As can be seen, the individual data sets ap-
pear to have widely varying sensitivities. Hence, using a
common threshold in the ML analysis could lead to a sys-
tematic error in the returned value ofν, unless a threshold
at least as high as the maximumgΓ0

n,min/ < gΓ
0
n > was

used. However, using a threshold this high on the entire
data set will exclude much of the data from the analysis,
and hence will result in reduced precision.

The fourth potential problem is that the experimental
thresholds are energy dependent. This fact is evident in
Fig. 2 in which all 1245 neutron widths in the NDE are
shown as a function of resonance energy. In this figure, it
can be seen that there are fewer small widths observed as
the energy increases. Causes for this effect are explained in
Ref. [6]. Therefore, if an energy-independent threshold is
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Fig. 1. Minimum reduced neutron widths, normalized to the re-
spective averages, for each of the nuclides in the NDE, versus
mass number.
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Fig. 2. All 1245 reduced neutron widths in the NDE (X’s). Data
for each nuclide have been normalized to their respective average
reduced neutron widths and maximum energies. Circles depict
those resonances which have been identified as beingp wave or
of uncertain parity.

used, as is the case in all previous ML analyses of which
I am aware, it must be at least as high as the threshold at
the maximum energy. However, using such a high thresh-
old will exclude much of the data and result in reduced
statistical precision.

The effect of a measurement threshold on a pure set of
s-wave resonances, and the systematic error caused by as-
suming all resonances have been observed are illustrated
in Fig. 3. Integral plots ofχ2 distributions havingν = 0.5,
1.0, and 2.0 are shown in the top part of this figure. As
can be seen, the distribution narrows asν increases. The
middle part of this figure shows aν = 1 distribution be-
fore and after a threshold proportional to resonance energy
(e.g.,Γ0

n ≧ aEn, wherea is a constant) has been applied, re-
sulting in the loss of some small widths. The bottom part of
this figure shows the same incompleteν = 1 distribution,
after it has been renormalized assuming that all widths had
been observed. It is compared to the sameν = 1 and 2 dis-
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Fig. 3. Top: Threeχ2 distributions withν = 0.5, 1, and 2. Plotted
are the fraction of widths greater than the square root of a given
width versus the square root of the width (normalized to the av-
erage width). Middle: Porter-Thomas (PT) distributions before
(solid curve) and after (dashed curve) application of a threshold
of the formΓ0

n ≧ aEn, wherea is a constant. This threshold causes
small widths to be excluded. Bottom: The solid curve is the same
PT distribution as in the top two panels. The dashed curve is the
same dashed curve as in the middle panel, after being renormal-
ized assuming all widths had been observed. The long-dashed
curve is aχ2 distribution forν = 2. See text for details.

tributions in the top part of the figure. As can be seen, the
renormalized ”data” agree much better with theν = 2 dis-
tribution, hence illustrating the general result that using no
or too low an analysis threshold in an ML analysis of a
data set with missing small widths will tend to result in a
falsely large value ofν. On the other hand, using too low an
analysis threshold can, in certain circumstances, have the
opposite effect. For example, becausep-wave resonances
have, on average, much smaller neutron widths, including
a few p-wave resonances in an otherwise pure and com-
pletes-wave set will tend to result in a falsely small value
of ν. In addition, for such ap-wave-contaminated set, the
value ofν returned from a ML analysis will tend to sys-
tematically increase as the analysis threshold is raised.

To minimize the effects of the above problems I have
done separate ML analyses for each nuclide in the NDE
using separate energy-dependent thresholds. A weighted
average of these results is then compared to theory, as ex-
plained in the next section.

3 An improved ML analysis of the NDE
neutron widths

The PT distribution is a special case of the class ofχ2 dis-
tributions:

P(y, ν, y)dy =
ν

2G( ν2)
(
νy

2y
)
ν
2−1 exp(−

νy

2y
)dy, (1)

whereP(y, ν, y) is the probability,ν the degrees of free-
dom, y the reduced neutron widthgΓ0

n , y the average re-
duced width< gΓ0

n >, andG( ν2) is the gamma function for
ν
2. For the PT distribution,ν = 1. As was done in Refs.
[2,5], I assumed that reduced neutron widths were dis-
tributed according to Eq. 1 and the maximum-likelihood
technique was used to determine the most likely values of
ν and< gΓ0

n >. However, as discussed above, the method
was improved by allowing the threshold to be energy de-
pendent. Therefore, the probability distribution considered
was

F(y, yt, ν, y)dy =
P(y, ν, y)dy

∫ E2

E1

∫ ∞
yt

P(y, ν, y)dydE
(2)

whereE1 andE2 are the lower and upper neutron energy
limits of the data used, and the threshold ongΓ0

n is defined
by yt = aEb, with a andb being constants. The likelihood
function forn widthsy1,....,yn was constructed

L(yt, ν, y) =
n∏

i=1

F(yi, yt, ν, y) (3)

and evaluated on a grid ofν andy, and the maximum found.
Uncertainties inν and < gΓ0

n >, due to finite sam-
pling errors, typically [5] are determined by assuming that
each parameter (for a given value of the other parameter)
is Gaussian distributed about the optimum value; hence, it
follows that the variance inν is given byσ2

ν = −[δ2L/δν2]−1.
However, I found that this procedure tended to underes-
timate the uncertainty inν, in the direction of increasing
ν, whenν was substantially smaller than one. Therefore, I
employed an alternative, more conservative method. Curves
of L as functions ofν were calculated in both directions
from the optimum value. For each value ofν, < gΓ0

n > was
allowed to vary until the maximumL was found. These
curves were found to be very close to Gaussian in shape,
and hence two values ofσν were calculated from the points
in each direction where the function wase−1/2 of its max-
imum. In all cases, the smaller of these two uncertainties
was at least as large as that calculated using the standard
technique. When calculating the weighted average for the
NDE, I used variances in the direction towardsν = 1 as
weights.

Thresholds (ongΓ0
n) were of the formyt = aE (i.e.

b = 1) for two reasons. First, this form appeared to repro-
duce the energy dependence of the minimum widths for
most nuclides in the NDE. Second, this form eliminates,
to good approximation,p-wave contamination equally ef-
fectively at all energies. This is because the penetrabil-
ity factors fors- andp-wave resonances vary asE1/2 and
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Fig. 4. Left: normalized reduced neutron widths versus normal-
ized resonance energies for114Cd, 166Er, and232Th resonances
in the NDE. X’s depict all resonances in the NDE whereas cir-
cles show resonances previously identified as beingp wave or of
uncertain parity. Right:ν values from ML analyses versus thresh-
olds used, for the same three nuclides. Error bars correspond to
one-standard-deviation uncertainties. Dashed vertical lines corre-
spond to thresholds depicted by dashed curves in the left part of
this figure. See text for details.

(approximately)E3/2, respectively. Therefore, because the
data had already been converted to reduced neutron widths,
by dividing the widths byE1/2 (i.e., assuming they were all
s wave), any remainingp-wave resonances will retain an
underlying energy dependence proportional toE. The rea-
son for excludingp-wave resonances will become apparent
below.

Results of the maximum-likelihood analyses for three
NDE nuclides are shown in Fig. 4. On the left of this fig-
ure, reduced neutron widths (normalized to their respective
average values) are plotted as functions of resonance en-
ergy (normalized to the maximum resonance energy,Emax,
used in each case). On the right side of this figure,ν values
from the maximum-likelihood analysis are plotted versus
the threshold coefficient Tmax, whereTmax corresponds to
the threshold value ofgΓ0

n/ < gΓ
0
n > at the maximum en-

ergy. In other words, thresholds can be expressed as

gΓ0
n

< gΓ0
n >
≧ TmaxE/Emax. (4)

For the initial analysis, thresholds just below the small-
est observed resonance (in terms of Eq. 4) for each nuclide
were used; hence, it was implicitly assumed that all res-

onances above these threshold curves were observed. Be-
cause experiment thresholds might not be precisely sharp,
such an assumption might be expected to result inν values
which are systematically a bit large. However, the weighted
average of the results for the 24 nuclides in the NDE is
ν = 0.801±0.052, which is 3.8 standard deviations smaller
than the expected result ofν = 1 for the GOE. Degrees-of-
freedom values for each of the NDE nuclides at these mini-
mum thresholds are given in column four (νmin) of Table 1.
According to Ref. [7], transition strength distributions are
expected to become gradually wider (ν gradually decreas-
ing from 1) as the system becomes more regular. Hence,
the resultν = 0.801± 0.052 could be interpreted as evi-
dence that the nuclides in the NDE are more regular than
chaotic. A more likely explanation is that the NDE con-
tains sizeablep-wave contamination. In either case, this re-
sult for ν casts serious doubt on claims [1,2] that the NDE
represents a striking confirmation of RMT predictions for
the GOE.

4 Cleansing the NDE of p-waves

That the NDE is contaminated byp-wave resonances is
evident in Figs. 2 and 4. In these figures, resonances in the
NDE that have been identified (in Refs. [8] and [9] and ref-
erences contained therein) asp-wave or of uncertain parity
are shown as open circles. That many of these resonances
are in factp-wave is reinforced by the behaviour of theν
values from the ML analyses as functions of threshold, as
shown in the right side of Fig. 4. In all three cases shown,
ν steadily increases at the lower thresholds and then grad-
ually stabilizes at higher thresholds. This is just the be-
haviour expected for a population ofs-wave resonances
contaminated byp-wave resonances. Similar fractions of
previously identifiedp-wave resonances and trends inν
with threshold are seen for several of the other NDE nu-
clides. Hence, it is fairly certain that the NDE suffers from
significantp-wave contamination.

Removing effects of thesep-wave resonances from the
NDE ML analysis is a simple matter of raising thresh-
olds until they are above the largest previously-identified
p-wave resonance and/orν stabilizes as a function of thresh-
old. When this is done, the resulting weighted average is
still in conflict with the RMT prediction for the GOE, al-
beit in the opposite direction from the result using the low-
est thresholds:ν = 1.217± 0.092 (2.4 standard deviations
larger than PT). Typical ”p-wave free” thresholds for three
NDE nuclides are shown as dashed curves in the left-hand
part of Fig. 4. Degrees-of-freedom values for each of the
NDE nuclides at these ”p-wave free” thresholds are given
in column five (νp f ) of Table 1.

5 Why does the NDE agree so well with
spacing statistics?

Given the above result that reduced neutron widths in the
NDE do not agree with the GOE width distribution, and
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the fact that this data set contains many resonances that
have been assigned as being definitelyp wave using re-
liable techniques (e.g., [10]), it is natural to ask why the
same data agree so well with all the GOE spacing statistics
examined in Refs. [1,2]. The answer, I think, has to do with
how the NDE data were selected. For example, in Ref. [2]
it is stated that ”The criterion for inclusion in the NDE is
that the individual sequences be in general agreement with
the GOE.”

Data for all but three of the 24 nuclides considered
herein were obtained by the group at Columbia Univer-
sity. According to their publications (e.g., Ref.[11]), they
had ”...no specific tests fors vs p levels, so there may be
errors in these assignments.” Therefore, they relied on the-
oretical guidance, specifically measures derived from the
GOE, to perform these separations. For example, for six of
the 24 nuclides considered herein, including the two hav-
ing the largest number of resonances, separation ofp- from
s-wave resonances was accomplished [12] by first calculat-
ing the overall number ofs-wave resonances by assuming
PT was correct. Then, which small resonances to assign to
the s-wave set was determined by requiring good agree-
ment with four spacing statistics (Wigner,ρ(S j, S j+1), ∆3,
and the DysonF test) related to the GOE. Furthermore, for
several other NDE nuclides, PT again was assumed to be
correct and used to calculate the total number ofs-wave
resonances. Then, a Bayesian analysis was used to decide
which of the small resonances to assign to thes-wave set.
Such Bayesian analyses are known to be unreliable. For ex-
ample, several neutron resonances in64Zn [13] are known
to be definitelyp wave by their symmetrical shape in trans-
mission (total cross section) data, but nevertheless have a
Bayesian probability of>99 % of beings wave.

6 Hope for better data in the future

The main problem in obtaining neutron data suitable for
stringent tests of RMT is reliably separating smalls- from
largep-wave resonances. Of the data in the NDE, only for
64,66,68Zn [13–15] has this been done using a method in-
dependent of the theory being tested. In these cases, the
shape of the resonances in the transmission data was used;
s-wave resonances have a characteristic asymmetric shape
due to interference with the comparatively larges-wave
potential scattering. However, this method fails for reso-
nances having small neutron widths and, in fact, such res-
onances may not even be visible in the transmission data.

A solution to this problem can be found in better neutron-
capture measurements. It has been known for many years
[16] that information contained in theγ-ray cascade fol-
lowing neutron capture can be used to determine resonance
spins and parities. Relatively few such measurements have
been made however, mainly due to increased difficulty, and
unsuitability of the apparatus for obtaining absolute cross
sections. However, using a new technique, it recently has
been demonstrated [17] that resonance spin measurements
are relatively easy using a 4π BaF2 detector at a white neu-
tron source. Even more recently [18] it has been shown

that a much more modest detector, when coupled to a high-
resolution white neutron source, can obtain even better re-
sults; determining both resonance spins and parities. These
new developments hold the promise of solving the peren-
nial problem of separating smalls- from largep-wave res-
onances.

7 Other reported deviations from PT

There have been several other reported deviations of reduced-
neutron-width data from the expected PT distribution, which
have for the most part been ignored. Most recently, in Ref.
[17] it was demonstrated that theΓ0

n distribution fors-wave
resonances in147Sm changes from being consistent with
PT (ν = 0.91± 0.32) for theEn < 350 eV region, to incon-
sistent with PT (ν = 3.19± 0.83) for the 350< En < 700
eV region.

Similar deviations from a PT distribution have been
reported for232Th [19–22]. However, as shown in Fig. 5
the energy dependence is just the opposite: The data dis-
agree with PT at the lowest energies, but are in agreement
at higher energies. The232Th NDE data, above a thresh-
old of the form given by Equation 4 withTmax = 0.26 (the
same threshold depicted by the dashed curve in the bot-
tom left part of Fig. 4) are shown as solid staircase plots in
both panels of the figure. The energy ranges for the data in
the top and bottom panels of Fig. 5 were restricted to the
first and second 25232Th resonances in the NDE, respec-
tively. The data have been normalized assuming all res-
onances above threshold have been observed (as implied
by Equation 2) with the normalization calculated using the
optimumν value from the ML analysis (which correspond
the the long-dashed curves). The short-dashed curves cor-
respond to the best PT distributions according to the ML
analysis. In other words, the PT curves were calculated us-
ing thegΓ0

n/ < gΓ
0
n > value resulting in the largestL (see

Equation 3) forν = 1. The PT curves were normalized to
the data, once again assuming that all widths above thresh-
old had been observed. The theory curves in both panels
have been adjusted for the effect of the threshold, in the
same manner as was done for the middle panel of Fig. 3.
Using the ML technique described above, I find that theν
value changes from 3.8± 1.3 for the lower-energy set of
resonances to 0.83± 0.68 for the higher-energy set, thus
verifying the claims of Refs. [19–21] that the data are in-
consistent with PT at the lower energies and the claim of
Ref. [22] that the shape changes back to being consistent
with PT at the higher energies.

Finally, in Ref. [23] data for five odd-A nuclides (151Sm,
163Dy, 167Er, 175Lu, and177Hf) were found to disagree with
PT despite the fact that the∆3 statistic indicated that very
few resonances had been missed. In all the above casesν

was found to be significantly larger than the PT value of
1.0, just as I have shown it is for the NDE whenp-wave
contamination is eliminated. As far as I know, no explana-
tion has ever been published for these observations.

Given the new and improved experimental techniques
of the last few years, it is now possible to obtain data of
much better quality than that in the NDE. Hence, in the
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Fig. 5. Top: Observed reduced-neutron-width distribution for the
energy range corresponding to the first 25 NDE resonances for
232Th. Bottom: Same for second set of 25 resonances. In both
panels, solid staircase plots depict the data, long-dashed curves
χ2 distributions corresponding to the optimum parameters found
in the ML analysis, and short-dashed curves PT distributions in
best agreement with the data. A threshold corresponding to the
dashed curve in the bottom left panel of Fig. 4 (i.e.Tmax = 0.26)
was used in the analysis. See text for details.

near future enough data may be available to better eluci-
date the causes of the observed deviations. However, rarely
are new neutron data used to test RMT for the GOE these
days. Instead, it is almost always assumed that this theory
is correct, and then use it to apply corrections to the data.
Therefore, I urge experimentalists obtaining new and im-
proved data to use it, when possible, to test theory.
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