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Abstract. The paper is divided in two parts. In the first one a summary of the main

issues about quantum non–locality is provided. In the second part, the connections with

information and causality are considered. In particular, it is shown that a principle of

information causality implies that hyper–correlations among experimental settings are not

possible but only correlations among possible outcomes. Since a setting is for measuring

a particular observable and the eigenbasis of this observable can be considered a code,

this means that information codification is a local procedure.

1 EPR

According to EPR, the correctness of a theory consists in the degree of agreement between its con-

clusions and human experience—the objective reality, while its completeness is defined as [10]: A

theory is complete if every element of objective reality has a counterpart in it. The aim of the EPR

article is to show the incompleteness of quantum mechanics in the sense of its inability to give a sat-

isfactory explanation of entities which are considered fundamental—in a word, it is a ‘disproof’ and

not a positive proof. Indeed, theories can be disproved by experience and (even thought) experiments.

The core of the argument is constituted by the Separability principle, which we can express as fol-

lows: Two dynamically independent systems cannot influence each other. The separability principle

consists in the assumption that any form of interdependency among physical systems is of dynam-

ical and causal type. Therefore, it is important to carefully distinguish the problem of relativistic

locality—i.e., the existence of bounds in the transmission of signals and physical effects—from that

of separability, which concerns only the impossibility of a correlation between separated systems in

the case in which there are no dynamical and causal connections. Part of the EPR argument is that, in

the absence of physical interactions, the systems are also separated.

EPR state a sufficient condition for the reality of observables, which can be formulated as follows:

If, without in any way disturbing a system, we can predict with certainty the value of

a physical quantity, then, independently of our measurement procedure, there exists an

element of the physical reality corresponding to this physical quantity.

The words “without in any way disturbing a system" tells us that the systems are considered as dynam-

ically independent. The aim of EPR is to show that, assuming separability and the sufficient condition
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of reality, quantum mechanics is not complete: in logical terms, for quantum mechanics the following

statement holds:

[(Suff. Cond. Reality) ∧ (Separability)] =⇒ ¬Completeness, (1)

where ∧, ¬, and the arrow are the logical symbols for conjunction (AND), negation and implication,

respectively.

The argument of EPR is structured as follows. From (i) the definition of completeness, (ii) the

principles of physical reality and separability, and (iii) the fact that, according to quantum mechan-

ics, two non–commuting observables cannot simultaneously have definite values, it follows that the

following two statements are incompatible:

• The statement r that the quantum mechanical description of reality given by the wave function is

not complete and

• The statement s that when the operators describing two physical quantities do not commute, the

two quantities cannot have simultaneous reality.

In formal terms,

r �� s, (2)

where the symbol �� means a XOR. The meaning of the statement (2) is the following: if it is possible

to show that two non–commuting observables have in fact simultaneous reality, we can logically

conclude that quantum mechanics cannot be a complete description of reality (from the falsity of s we

infer the truth of r).

Let us consider a one-dimensional system Smade of two subsystems S1 and S2 interacting during

the time interval between t1 and t2, with momenta in the position representations:

p̂(1)
x = −ı�

∂

∂x1

and p̂(2)
x = −ı�

∂

∂x2

, (3)

with momentum eigenfunctions

〈p1 |ϕ〉 = ϕp(x1) and 〈p2 |ψ〉 = ψp(x2) , (4)

respectively. The vectors |ϕ〉 and |ψ〉 describe the states of the particles 1 and 2, respectively. The

eigenfunctions in the position representation are

ϕp(x1) =
1√
2π

e
ı
�

px1 and ψp(x2) =
1√
2π

e−
ı
�

(x2−x0)p , (5)

respectively, where x0 is a fixed position (constant) and the eigenfunction ϕp(x1) corresponds to eigen-

value +p whilst ψp(x2) corresponds to the eigenvalue −p of the second particle’s momentum (in other

words, the two particles are moving away from each other with the same direction into opposite

senses).

Therefore, the compound system is described by the wave function

Ψ(x1, x2) =

+∞∫
−∞

dpψ−p(x2)ϕp(x1). (6)

Now, I summarize the scheme of the first thought experiment [2, Chap. 16] [4, Chap. 10]:

(a) We locally measure the momentum on particle 1: let us assume that we find an eigenvalue p′.
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(b) Therefore, the state (6) reduces to

ψ−p′ (x2)ϕp′ (x1). (7)

(c) Then, it is evident that particle 2 must be in state ψ−p′ and this result can be predicted with absolute

certainty.

(d) However, we were able to formulate such a prediction without disturbing particle 2 (assumption

of separability).

(e) Then, as a consequence of (c) and (d) and of the sufficient condition of reality, p̂(2)
x is an element

of reality.

Note that steps (a)–(c) are purely quantum mechanical. Only steps (d)–(e) are connected to the specific

EPR argument.

However, if we had chosen to consider another observable of particle 1, say x̂1, whose eigenfunc-

tions are ϕx(x1) (whereas ψx(x2) are the eigenfunctions of the observable x̂2 of particle 2), then we

would have written the state Ψ of the compound system as

Ψ(x1, x2) =
1√
2π

+∞∫
−∞

dxψx(x2)ϕx(x1). (8)

Let us now repeat the previous procedure for the position measurement.

(a’) We locally measure the position on particle 1 and find the eigenvalue x′.

(b’) Now it is clear that the state (8) reduces to

ψx′ (x2)ϕx′ (x1). (9)

(c’) Then, it is evident that the particle 2 must be in the state ψx′ and this result can be predicted with

absolute certainty.

(d’) However, we have not disturbed particle 2 (assumption of separability).

(e’) Then, as a consequence of (c’) and (d’) and of the sufficient condition of reality, x̂(2) is an element

of reality.

Conclusions (e) and (e’) look incompatible on the basis of the fact that position and momentum

observables of particle 2 do not commute: going back to Propositions r and s [Eq. (2)], EPR have in

this way shown that, assuming that r (the quantum mechanical description of reality is not complete)

is false, s is proved to be false as well since both p̂(2)
x and x̂(2) have simultaneous reality. Then, the

previous assumption must be rejected, and r must be true. Therefore, according to the EPR argument,

quantum mechanics cannot be considered as a complete theory and the wave functions (6) and (8)

cannot be considered as complete descriptions of the state of the particles.

ICFP 2012

00001-p.3



2 Bohm’s reformulation
The argument as formulate in the original EPR paper is difficult tom test. However, a great step was

provided by David Bohm. Consider now two particles with spin 1
2

that are in a state in which the total

spin is zero, that is, they are in a singlet state [8]. They can be produced by a single atom radioactive

decay. After a time t0 the two particles begin to separate and at time t1 they no longer interact. On

the hypothesis that they are not disturbed, the law of angular momentum conservation guarantees that

they remain in a singlet state. Considering the projection of the spin along the z–direction, the singlet

state may be written in the form

|Ψ0〉 = 1√
2

(| ↑〉1 ⊗ | ↓〉2 − | ↓〉1 ⊗ | ↑〉2) , (10)

where the subscripts 1 and 2 refer to the particles. This implies that, if a measurement of the spin

component along the z direction of particle 1 leads to a result +1/2, that of particle 2 along the same

direction must give the value −1/2, and vice versa. This means that |Ψ0〉 is an eigenket of the z
component of the spin observables σ̂1zσ̂2z of the two systems.

Entanglement is a property of the state that is independent of the basis used. In order to see this

rotational invariance, let us write it in terms of the z–component eigenvectors as

|Ψ0〉 = 1√
2

[(
1

0

)
1

⊗
(

0

1

)
2

−
(

0

1

)
1

⊗
(

1

0

)
2

]
. (11)

Then, |Ψ0〉 turns out to be also an eigenvector of σ̂1xσ̂2x and σ̂1yσ̂2y. For example, let us consider the

y orientation. First, let us expand the z–eigenkets into the y–eigenkets:

|↑〉 =
√

2

2

(
|↑〉y + |↓〉y

)
, (12a)

|↓〉 = − ı
√

2

2

(
|↑〉y − |↓〉y

)
. (12b)

Then, we can write the singlet state (10) in the y expansion:

1√
2

(|↑〉1 ⊗ |↓〉2 − |↓〉1 ⊗ |↑〉2) =
1√
2

[
− ı

2

(
|↑〉y + |↓〉y

)
1
⊗

(
|↑〉y − |↓〉y

)
2

+
ı

2

(
|↑〉y − |↓〉y

)
1
⊗

(
|↑〉y + |↓〉y

)
2

]

=
ı√
2

[(
|↑〉y

)
1
⊗

(
|↓〉y

)
2
−

(
|↓〉y

)
1
⊗

(
|↑〉y

)
2

]
. (13)

Consequently, we have(
σ̂1yσ̂2y

)
|Ψ0〉 = ı√

2

(
σ̂1yσ̂2y

) [(
|↑〉y

)
1
⊗

(
|↓〉y

)
2
−

(
|↓〉y

)
1
⊗

(
|↑〉y

)
2

]
, (14)

which, by making use Pauli matrices and of a reformulation of expression (11) in the y basis, implies

(
σ̂1yσ̂2y

)
|Ψ0〉 = ı

2
√

2

[
0 −ı
ı 0

]
1

[
0 −ı
ı 0

]
2

×
[(

1

ı

)
1

⊗
(

1

−ı
)

2

−
(

1

−ı
)

1

⊗
(

1

ı

)
2

]

=
ı

2
√

2

[(
1

ı

)
1

⊗
( −1

ı

)
2

−
( −1

ı

)
1

⊗
(

1

ı

)
2

]

=
ı√
2

[(
|↑〉y

)
1
⊗

(
− |↓〉y

)
2
−

(
− |↓〉y

)
1
⊗

(
|↑〉y

)
2

]
. (15)
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Now, let us back–substitute this expression into the z expansion:

ı√
2

[(
|↑〉y

)
1

(
− |↓〉y

)
2
−

(
− |↓〉y

)
1

(
|↑〉y

)
2

]
= − ı√

2

1

2

[
(|↑〉 + ı |↓〉)1 (− |↑〉 + ı |↓〉)2

− (− |↑〉 + ı |↓〉)1 (|↑〉 + ı |↓〉)2

]
=

ı√
2

(ı |↑〉1 |↓〉2 − ı |↓〉1 |↑〉2)

= − 1√
2

(|↑〉1 |↓〉2 − |↓〉1 |↑〉2)

= −|Ψ0〉, (16)

where I have dropped the symbol ⊗ of the sake of simplicity.

3 Bell Theorem

Bell assumed the existence of a hidden parameter λ such that, given λ, the function Aa describing the

results obtained by measuring with a device A the spin of the first particle along a chosen direction

a (i.e., the observable σ̂1·a), depends only on λ and on a [6]. Similarly, the function Bb describing

the results when measuring with a device B the spin of the second particle along a chosen direction

b (i.e., σ̂2·b), depends only on b and λ. The separability principle denies that there can be a form of

interdependence between two systems if they do not dynamically interact (factorization rule):

AaBb = Aa(λ)Bb(λ), (17)

where therefore Aa and Bb represent two deterministic functions of the hidden parameter. Eq. (17)

expresses the fact that the probability distributions for the two particles are mutually independent. I

assume that the result of each measurement can be either +1 (representing spin up) or -1 (representing

spin down), that is,

Aa(λ) = ±1, Bb(λ) = ±1. (18)

Following Eq. (17), if ℘(λ) denotes the probability distribution of the hidden parameter λ, then the

expectation value of the product of the two components σ̂1·a and σ̂2·b is

〈(σ̂1·a) (σ̂2·b)〉 =
∫
Λ

℘(λ)Aa(λ)Bb(λ)dλ, (19)

where Λ represents the set of all possible values of λ.

In the present context, Aa(λ) and Bb(λ) are functions defining the possible measurement results

or the eigenvalues of the measured observables. Since we do not know the values of the hidden

parameters λ, we must integrate over all the possible values λ ∈ Λ. Because ℘(λ) is supposed to be a

normalized probability distribution, we have

∫
Λ

℘(λ)dλ = 1, (20)

and, given the values (18), we also have

−1 ≤ 〈a,b〉 ≤ +1, (21)
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where I have rewritten the expression 〈(σ̂1·a) (σ̂2·b)〉 in the simplified form 〈a,b〉. Our aim is to

compare the prediction of a deterministic HV theory as expressed by Eq. (19) with the quantum

mechanical expectation value, which for the singlet state |Ψ0〉 [Eq. (10)] is given by

〈a,b〉Ψ0
= 〈Ψ0 |(σ̂1·a) (σ̂2·b)|Ψ0〉 = −a · b. (22)

This result can be derived when considering the previous products between observables and vectors

as sum of Cartesian components

σ̂1 · a = ax

[
0 1

1 0

]
1

+ ay

[
0 −ı
ı 0

]
1

+ az

[
1 0

0 −1

]
1

, (23a)

σ̂2 · b = bx

[
0 1

1 0

]
2

+ by

[
0 −ı
ı 0

]
2

+ bz

[
1 0

0 −1

]
2

, (23b)

The expectation value on the singlet state (11) of these two products gives 9 terms, of which the

first three have the form

〈Ψ0 |axbxσ̂1xσ̂2x|Ψ0〉 = 〈Ψ0| axbx√
2

[
0 1

1 0

]
1

[
0 1

1 0

]
2

×
[(

1

0

)
1

⊗
(

0

1

)
2

−
(

0

1

)
1

⊗
(

1

0

)
2

]

= 〈Ψ0 |−axbx|Ψ0〉 = −axbx . (24)

Indeed, similar calculations show that we also have〈
Ψ0

∣∣∣aybyσ̂1yσ̂2y

∣∣∣Ψ0

〉
= −ayby and 〈Ψ0 |azbzσ̂1zσ̂2z|Ψ0〉 = −azbz. (25)

The remaining six cross terms are instead all zero, so that we may finally conclude that

〈Ψ0 |(σ̂1·a) (σ̂2·b)|Ψ0〉 = −(axbx + ayby + azbz) = −a · b. (26)

When the two orientations a and b are parallel, quantum mechanical calculations [see Eq. (15)] show

that

〈a, a〉Ψ0
= −1, (27)

as it should be since there is a perfect anticorrelation (spin–up versus spin–down) between the results

of the two measurements.

Since the value given by Eq. (27) for perfect anticorrelation is an experimental fact, also a HV

theory must satisfy this requirement. On the other hand, 〈a, a〉 = −1 holds if and only if we also have

Aa(λ) = −Ba(λ), (28)

for any direction a. In this case, Eq. (19) reaches the minimum value [see also Eq. (21)]. Under this

assumption, we can drop any reference to the B device and rewrite Eq. (19) as

〈a,b〉 = −
∫

dλ℘(λ)Aa(λ)Ab(λ). (29)

Now we consider two alternative orientations, say b and c, of the spin measurement of particle 2:

〈a,b〉 − 〈a, c〉 = −
∫

dλ℘(λ)[Aa(λ)Ab(λ) − Aa(λ)Ac(λ)]

=

∫
dλ℘(λ)Aa(λ)Ab(λ)[Ab(λ)Ac(λ) − 1], (30)
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because of the property (18) and since, for any orientation n, we have [An(λ)]2 = 1, which implies

Aa(λ)Ab(λ)Ab(λ)Ac(λ) = Aa(λ)Ac(λ). (31)

Then, from Eq. (30) we may prove the inequality

| 〈a,b〉 − 〈a, c〉 | ≤
∫

dλ℘(λ)[1 − Ab(λ)Ac(λ)]. (32)

This result is obtained when one considers that for any integrable function f (x), we have∣∣∣∣∣
∫

dx f (x)

∣∣∣∣∣ ≤
∫

dx | f (x)| , (33)

and, given again the property (18), we also have

|Ab(λ)Ac(λ) − 1| = 1 − Ab(λ)Ac(λ). (34)

Therefore, given the property (20) we finally obtain

| 〈a,b〉 − 〈a, c〉 | ≤ 1 + 〈b, c〉 , (35)

where

〈b, c〉 = −
∫

dλ℘(λ)Ab(λ)Ac(λ). (36)

A reformulation of the Bell inequality (35) is the so-called CHSH inequality, a widely used form,

∣∣∣〈a,b〉 + 〈
a,b′

〉
+

〈
a′,b

〉 − 〈
a′,b′

〉∣∣∣ ≤ 2, (37)

where a′ is a setting alternative to a as well as b′ to b. We may associate to this inequality the

following Bell operator:

B̂ = σ̂1 · a
(
σ̂2 · b + σ̂2 · b′

)
+ σ̂1 · a′

(
σ̂2 · b − σ̂2 · b′

)
= (σ̂1 · a) (σ̂2 · b) + (σ̂1 · a)

(
σ̂2 · b′

)
+

(
σ̂1 · a′

)
(σ̂2 · b) +

(
σ̂1 · a′

) (
σ̂2 · b′

)
, (38)

which will play a crucial role later on. I recall indeed that e.g. 〈a,b〉 is a shorthand for 〈(σ̂1·a) (σ̂2·b)〉,
which allows us to write ∣∣∣∣〈B̂〉∣∣∣∣ ≤ 2 . (39)

4 Experiments and Loopholes

Tests of the Bell theorem already started in the mid of 1970s. However, several loopholes were dis-

covered that affected these early experiments and could be dealt with step by step. The first loophole
we consider is the locality loophole. In all experiments, one should consider the possibility that the

result of a measurement obtained by using a certain polarizer direction depend on the orientation of

the other polarizer. This problem was overcome by Aspect’s team [1] as outlined in Fig. 1.

Another difficulty (second loophole) concerns the angular correlation: Because of the cosine–

squared angular correlation of the directions of the photons emitted in an atomic cascade, an inherent

polarization decorrelation is present. Hence the very polarization correlation which could result in a
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coincidence coincidence 

S 

A(a) B(b)

γ
A B 

γ

DA DB 

C A C B 

A (a )1 B (b )1 

S 
γ
A B 

γ

1 1 l

A (a )2 2 B (b )2 2

DA 2 DB 2 

DA 1 DB 1 

(a) (b) 

Figure 1. One should consider the possibility that the results obtained using a certain polarization direction could depend on

the other polarizer. (a) Friedman–Clauser experiment: The correlated photons γA, γB coming from the source S impinge upon

the linear polarizers A, B oriented in directions a,b, respectively. (b) Experiment proposed by Aspect: The optical commutator

CA directs the photon γA either towards polarizer A1 with orientation a1 or to polarizer A2 with orientation a2. Similarly

for CB for B1 and B2. The two commutators work independently (the time intervals between two commutations are taken to

be stochastic). The four joint detection rates are monitored and the orientations a1, a2,b1,b2 are not changed for the whole

experiment. l is the separation between the switches.

KDP
UV

UVF

C

NDF 90° Rot.

1C
2

Pol. θ1

Pol. θ 2

IF

IF D2

D1

i

s

Ampl.

Counter

Counter

TDC  PDP
11/23+

BS

Ampl.

M1

M2

Figure 2. Because of the cosine–squared angular correlation of the directions of the photons emitted in an atomic cascade, an

inherent polarization decorrelation is present. Outline of the Alley–Shih and Ou–Mandel’s experiment. Light from the 351.1–

nm line of an argon–ion laser falls on a non–linear crystal of potassium dihydrogen phosphate (KDP), where down-converted

photons of wavelength of about 702 nm are produced. Down–conversion can be tuned in order that linearly polarized signal and

idler photons emerge at angles of about ±2◦ relative to the ultraviolet (UV) pump beam with the electric vector in the plane of

the diagram. The idler (i) photons pass through a 90◦ polarization rotator, while the signal (s) photons traverse a compensating

glass plate C1 producing an equal time delay. The two photons are then directed from opposite sides towards a beam splitter

(BS). The input to the BS consists of an x–polarized s–photon and of a rotated y–polarized i–photon. The light beams emerging

from BS, consisting of a mixing of i-photons and s-photons, pass through linear polarizers set at adjustable angles θ1 and θ2,

through similar interference filters (IF) and finally fall on two photodetectors D1 and D2. The photoelectric pulses from D1 and

D2 are amplified and shaped and fed to the start and stop inputs of a time-to-digital converter (TDC) under computer control

which functions as a coincidence counter.

violation of one of the Bell inequalities is reduced for non–collinear photons. The problem can be

overcome by using SPDC sources instead of atomic cascade ones [14]. Pairs of photons resulting

from SPDC can have an angular correlation of better than 1 mrad, although in general they need not

be collinear. The set up is shown in Fig. 2.

A further issue (third loophole) is represented by the detection loophole. In fact, we may raise

the question of how high the detection efficiencies must be for the experimental confirmation of the
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PBS

       NL
    Type-II
Phase Match.

|v>
2

|v>
1

|h>
1

|h>
2

|v>
3

|h>
3

|v>4 |h>
4

Translatable
    mirror

PBS

Optional
   HWP

(a)

UV-blocking
      filter

HWP, α

PBS

UV pump

(b)

High-efficiency
      detectors

Collection lens

Collection lens

spatial
filters

φ

1

2

Figure 3. The question is how high the detection efficiency must be for the experimental confirmation of the quantum

predictions. In Aspect’s experiment the required is 83%. With SPDC experiments, we are obliged to discard part of the counts

(when both photons are in the same channel). Proposed experiment for solving the detection loophole. A possible solution is

to directly produce a pair of photons in a singlet–kind state avoiding in this way any post–selection.

(a) An ultraviolet pump photon may be spontaneously down-converted in either of two nonlinear crystals, producing a pair

of collinear orthogonally polarized photons at half the frequency (type–II phase matching). The outputs are directed toward a

second PBS. When the outputs of both crystals are combined with an appropriately relative phase φ, a true singlet- or triplet-like

state may be produced. By using a half-wave plate (HWP) to effectively exchange the polarizations of photons originating in

crystal 2, one overcomes several problems arising from nonideal phase matching. An additional mirror is used to direct the

photons into opposite direction towards separated analyzers.

(b) A typical analyzer, including an HWP to rotate by θ the polarization component selected by the analyzing BS, and precision

spatial filters to select only conjugate pairs of photons. In an advanced version of the experiment, the HWP could be replaced

by an ultrafast polarization rotator (such as Pockels or Kerr cells) to close also the locality loophole.

quantum theoretical predictions. The problem with SPDC–type experiments is that, even with high

detection efficiency, one must discard part of the counts, since we are obliged to discard all events

where both photons are in the same channel, and one could rise the question whether this selection

might represent a bias. Even though this is a remote possibility, in order to exclude any ambiguity a

more refined solution is required [12]. A possibility is to directly produce a pair of photons in singlet–

type state, thus avoiding any post–selection. One of the first proposals for doing this is shown and

summarized in Fig. 3. By means of this apparatus it is possible to produce output photons in the state

|Ψ〉 � |v〉3 |h〉4 + eıφ (|h〉3 |v〉4) . (40)

5 Non–Locality and Information

I have a general remark. Given any quantum system described by the density matrix ρ̂, its von Neu-

mann entropy is [11]

S (ρ̂) = −Tr(ρ̂ ln ρ̂) . (41)

In fact, the density matrix can be seen as the operator which carries maximal information about the

state of the system. If we consider an orthonormal basis {|bk〉} of eigenvectors of the density operator

ICFP 2012

00001-p.9



ρ̂ for a system S such that

ρ̂ |bk〉 = rk |bk〉 , (42)

where the rk’s are the eigenvalues of ρ̂, we may rewrite Eq. (41) as

S (ρ̂) = −
∑

j

r j ln r j , (43)

The eigenvectors |bk〉 are the possible outcomes of a measurement when we choose to measure the

observable of which they are eigenvectors. Let us define the entanglement between systems [5] 1 and

2 as

E(1, 2) = S (1, 2) − S (1) − S (2) , (44)

where S (1, 2) is the joint (total) entropy of systems 1 and 2, and

S (1) = S (
̂1) and S (2) = S (
̂2) (45)

are the entropies calculated on the reduced density matrices of the subsystems 1 and 2, respectively,

relative to ρ̂12. This reflects the fact that entanglement is a quantum form of mutual information: Two

entangled systems are correlated because they share an amount of information that is not foreseen

classically: indeed the possible outcomes are interdependent.

Are there specific quantum mechanical bounds on information acquisition? Is the bound found

with inequality (35) a necessity or are there more rigorous bounds? And if they are, what is their

meaning? Let us take advantage of the CHSH inequality (37). Since each of the terms in Eq. (37)

lies between −1 and +1 [Eq. (21)], the natural upper bound for the entire expression is +4. This is

precisely the case if we demand that the probabilities satisfy only the causal communication constraint

[16], i.e., that they do not violate relativistic locality (what is called non–signaling requirement). In

this case, we have

∣∣∣〈a,b〉 + 〈
a,b′

〉
+

〈
a′,b

〉 − 〈
a′,b′

〉∣∣∣ ≤ 4 or
∣∣∣∣〈B̂〉∣∣∣∣ ≤ 4 . (46)

Indeed, the non–signaling requirement is that the operations one can perform locally here are not

influenced by the operations one performs elsewhere, which implies in particular that the probability

to obtain a certain outcome (say 1) when choosing the direction a is independent from the outcomes

(either + 1 or -1) when elsewhere one choses a direction b or b′, that is,

℘a,b(1, 1) + ℘a,b(1,−1) = ℘a,b′ (1, 1) + ℘a,b′ (1,−1). (47)

Similar considerations hold for any direction. If we consider only this requirement, we are allowed to

build the set of probabilities

℘a,b(1, 1) = ℘a,b(−1,−1) =
1

2
, ℘a,b′ (1, 1) = ℘a,b′ (−1,−1) =

1

2

℘a′,b(1, 1) = ℘a′,b(−1,−1) =
1

2
, ℘a′,b′ (1,−1) = ℘a′,b′ (−1, 1) =

1

2
, (48)

while all other probabilities are zero and where I remark that only the ℘a′,b′ probabilities show anti–

correlation.

All the four different expectation values in inequality (46) can be formulated as the following one:

〈a,b〉 = ℘a,b(1, 1) + ℘a,b(−1,−1) − ℘a,b(1,−1) − ℘a,b(−1, 1), (49)
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where the negative sign of the latter two probabilities is due to the fact that both represent anticor-

relations. However, this expectation value in the paramount case in which all probabilities are equal

mirrors the separability condition (17), i.e., the absence of correlations (〈a,b〉 = 0) between the two

systems. Due to the above assumptions, however, the latter two probabilities are zero so that the whole

expression is reduced to

〈a,b〉 = ℘a,b(1, 1) + ℘a,b(−1,−1), (50)

and similarly for the other three correlations. In this way, taking into account the probabilities (48),

the upper bound 4 of inequality (46) is easily obtained.

Let Ôa, Ôa′ , Ôb, Ôb′ be arbitrary Hermitian operators on a Hilbert spaceH satisfying the condition

[Ôa, Ôb] = 0 and so on for the other couples (a, b′), (a′, b), (a′, b′) [17]. Moreover, each operator has

eigenvalues 1 and −1. We define a generalization of the Bell operator (38), since we are no longer

considering the spin observable only,

B̂ = ÔaÔb + Ôa′Ôb + ÔaÔb′ − Ôa′Ôb′ . (51)

From the previous assumptions, it follows that the square of each operator is equal to the identity,

which implies

2
√

2 − B̂ =
1√
2

[
(Ôa)2 + (Ôa′ )2 + (Ôb)2 + (Ôb′ )2

]
− B̂

=
1√
2

⎡⎢⎢⎢⎢⎢⎣
(
Ôa − Ôb + Ôb′

√
2

)2

+

(
Ôa′ − Ôb − Ôb′

√
2

)2⎤⎥⎥⎥⎥⎥⎦ = Â. (52)

Now, we wish to prove that B̂ can be expanded as above and that:∣∣∣∣〈B̂
〉∣∣∣∣ ≤ 2

√
2 . (53)

Let us expand the operator Â as

1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣(Ôa)2 +

(
Ôb + Ôb′

)2

2
− 2

Ôa
(
Ôb + Ôb′

)
√

2
+ (Ôa′ )2 +

(
Ôb − Ôb′

)2

2
− 2

Ôa′
(
Ôb − Ôb′

)
√

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1√
2
· 1

2
√

2

[
2
√

2(Ôa)2 +
√

2(Ôb)2 +
√

2(Ôb′ )2 + 2
√

2ÔbÔb′ − 4ÔaÔb − 4ÔaÔb′

+2
√

2(Ôa′ )2 +
√

2(Ôb)2 +
√

2(Ôb′ )2 − 2
√

2ÔbÔb′ − 4Ôa′Ôb + 4Ôa′Ôb′
]

=
1

4

[
2
√

2(Ôa)2 +
√

2(Ôb)2 +
√

2(Ôb′ )2 + 2
√

2(Ôa′ )2 +
√

2(Ôb)2 +
√

2(Ôb′ )2

+2
√

2ÔbÔb′ − 2
√

2ÔbÔb′ − 4ÔaÔb − 4ÔaÔb′ − 4Ôa′Ôb + 4Ôa′Ôb′
]

=
1

4

[
2
√

2
(
(Ôa)2 + (Ôb)2 + (Ôa′ )2 + (Ôb′ )2

)
− 4

(
ÔaÔb + Ôa′Ôb + ÔaÔb′ − Ôa′Ôb′

)]

=
1

4

(
8
√

2 Î − 4B̂
)
. (54)

This proves the expansion of B̂. Now, consider that the sum or the difference between Hermitian

operators is itself a Hermitian operator, which shows that the following two operatorial expressions

are Hermitian:

Ôb + Ôb′

√
2

and
Ôb − Ôb′

√
2

. (55)
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The last step implies that also

Ôa − Ôb + Ôb′

√
2

and Ôa′ − Ôb − Ôb′

√
2

(56)

are. Therefore, the operator

Â =
1√
2

⎡⎢⎢⎢⎢⎢⎣
(
Ôa − Ôb + Ôb′

√
2

)2

+

(
Ôa′ − Ôb − Ôb′

√
2

)2⎤⎥⎥⎥⎥⎥⎦ , (57)

which consists of the sum of squares of Hermitian operators, has clearly an expectation value

〈
Â
〉
≥ 0. (58)

Since by taking the mean value on both sides of Eq. (53) we have

〈
Â
〉
= 2

√
2 −

〈
B̂
〉
, (59)

this leads to the conclusion:〈
B̂
〉

≤ 2
√

2. (60)

A similar argument leads to〈
B̂
〉

≥ −2
√

2, (61)

which finally implies ∣∣∣∣〈B̂
〉∣∣∣∣ ≤ 2

√
2. (62)

The importance of Tsirelson result lies in the fact that it proves that quantum mechanics does not
fill the entire gap between the bounds set by Eqs. (37) and (46). The former inequality sets bounds

(i.e., 2) for classical separable theories whilst quantum mechanics satisfy the bound 2
√

2, which is

still stricter than the bound (i.e., 4) imposed by inequality (46). In other words, quantum mechanics

certainly allows for correlations that are not allowed by classical HV theories. However, there is a

wide spectrum of "hyper–correlations" that do not contradict causal communication constraints (they

satisfy the bound imposed by inequality (46)) but are nevertheless not allowed by quantum mechanics

(since they do not satisfy inequality (62)). Therefore, we need still to clarify the relations between

these different bounds.

To examine this point, let us reformulate the CHSH inequality (37) as an equality with the maximal

bound attainable, i.e., B=2, which could be rewritten as [13]

1

2
B − 1 = 0, (63)

where B expresses again the Bell operator written in terms of a numerical parameter B. However we

are interested in more general cases than those allowed by the classical separability requirement. In

those case, instead of putting a 0 on the right-hand side we write another numerical parameter, D, as

follows:

D =
1

2
B − 1. (64)

Moreover, we like to write the parameter B as a combination of correlations C jk (where j, k =
a, b, a′, b′) expressed in informational terms, that is, with j, k = 1, 0. We would also like to express the
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possible outputs when Alice and Bob measure in informational term 1,0. In other words, instead of

speaking of polarization directions a, a′, b, and b′, or of observables Ôa, Ôa′ , Ôb, Ôb′ , we would like to

introduce generic inputs a, b = 0 and a′, b′ = 1. Moreover, instead to have possible results −1, 1, we

like to introduce information outputs 0,1. With these assumptions, we rewrite the correlation 〈a,b〉 for

the non–signaling case as expressed in the formula (50) as the sum of two conditional probabilities:

C00 = ℘(11|00) + ℘(00|00), (65a)

where what follows the vertical lines are the inputs and what precedes the vertical line the outputs.

Similarly, we have

C10 = ℘(11|10) + ℘(00|10), C01 = ℘(11|01) + ℘(00|01), C11 = ℘(10|11) + ℘(01|11),

where the first equality is a reformulation of the correlation 〈a′,b〉, the second of the correlation 〈a,b′〉,
and the latter of the correlation 〈a′,b′〉, and again I remark that only the latter one is an anticorrelation.

Then we can write:

D =
1

2
B − 1

=
1

2
(C00 + C01 + C10 − C11) − 1. (66)

Let us now introduce a simplification. In the case in which

C00 = C01 = C10 = −C11 ≥ 0, (67)

we can write

C = C00 = C01 = C10 = −C11, (68)

which implies B= 4C (or C = B/4) that allows us to make the parameter D dependent on C and to

rewrite the expression (66) as

D(C) =
1

2
· 4C − 1 = 2C − 1. (69)

It is easy to see that

• When C = 1 we also have D = 1, which implies that Bns = 4, which is precisely the non–signaling

case (when only the causal requirement in the transmission of signals is observed).

• Instead, we have the classical separability Bc = 2 when C = 1/2 and D = 0.

• In the quantum case, we have Bq = 2
√

2 when C = 1/
√

2 and D =
√

2 − 1.

To have a concrete model, let us briefly consider how teleportation works [7]. The eigenbasis of the

Bell operator is given by

∣∣∣Ψ−〉
12
=

1√
2

(|↑〉1 |↓〉2 − |↓〉1 |↑〉2) , (70)

∣∣∣Ψ+〉
12
=

1√
2

(|↑〉1 |↓〉2 + |↓〉1 |↑〉2) , (71)

∣∣∣Φ−〉
12
=

1√
2

(|↑〉1 |↑〉2 − |↓〉1 |↓〉2) , (72)

∣∣∣Φ+〉
12
=

1√
2

(|↑〉1 |↑〉2 + |↓〉1 |↓〉2) . (73)
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particles 1-2

operations
on particle 3
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U

I

particle 3
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Figure 4. Scheme of teleportation: the fact that each measurement result is mapped in a certain way to the

input information I allows through the ebit that Alice classical instructs Bob about the kind of operation to be

performed. It is a code.

The state of the three particles can be described as

|Ψ〉123 =
1

2

[∣∣∣Ψ−〉
12

(−c |↑〉3 − c′ |↓〉3) + ∣∣∣Ψ+〉
12

(−c |↑〉3 + c′ |↓〉3)
+

∣∣∣Φ−〉
12

(
c |↓〉3 + c′ |↑〉3) + ∣∣∣Φ+〉

12

(
c |↓〉3 − c′ |↑〉3)] . (74)

It suffices an unitary operation (a mechanical instruction) to recover the information of Particle 1 on

3 once the Bell operator has been measured:

Û1 =

[ −1 0

0 −1

]
; Û2 =

[ −1 0

0 1

]
; Û3 =

[
0 1

1 0

]
; Û4 =

[
0 1

−1 0

]
(75)

We can assume an information causality principle which (in a teleportation protocol) relates to the

amount of information that Bob can gain about a data set belonging to Alice, the contents of which

are completely unknown to him [15]. Using all his local resources (which may be correlated with

her resources) and allowing classical communication from Alice to Bob, the amount of information

that the latter can recover is bounded by the information volume (n) of the communication. Namely,

if Alice classically communicates n bits to Bob, the total information obtainable by Bob cannot be

greater than n. Consider the easiest case in which a two-bit information has been classically transmit-

ted. Then, Bob can at most recover this information (the instruction to perform a particular unitary

operation out of four on his particle) and not the whole set of potential information from which Alice

has selected the message she has sent. Then, in this simple case, the acquired information must be

bound as

I ≤ 2, (76)

since lg 4 = 2. However, if the sole causal (non–signaling) requirement would rule this information

exchange, Bob would indeed recover 4 bits (the whole code mapping four outcomes into four opera-

tions), thus violating the information causality principle. Therefore, the amazing result that was found

by Zukowski et al. is that a hypothetical theory which fulfill the requirements of causality but exceeds

the Tsirelson bound, also violate the principle of information causality.
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Let Ô1 and Ô2 be two observables on subsystems S1 and S2 of a system S, respectively, and

℘(oa, a; ob,b) be the probability that the results of a measurement of Ô1 on S1 and Ô2 on S2 yield

oa and ob when certain settings of the measurement apparata are a and b, respectively. Since this

assumption is of absolute generality, we not need to consider the specific spin model previously intro-

duced.

According to Eberhard, the probability distribution of Ô1 (or Ô2), independently of the measure-

ment operations on Ô2 (or Ô1), obtained by integrating or summing the probabilities ℘(oa, a; ob,b)

over the possible outcomes ob (or oa), needs to be independent of the other setting b (or a), that is, the

two probabilities must depend on local settings only [9]:

∑
ob
℘(oa, a; ob,b) = ℘(oa, a) ;

∑
oa
℘(oa, a; ob,b) = ℘(ob,b). (77)

According to Eberhard, if this requirement were violated, we would have a causal non–local inter-
dependence between the two subsystems. Actually, a violation of the above requirement does not

necessarily imply a non–local causal interconnection because there could still be a form of interde-

pendence but satisfying the non–signaling requirement.

In order to prove the theorem, let

P̂oa,a = |oa, a〉 〈oa, a | and P̂ob,b = |ob,b〉 〈ob,b | (78)

be the projectors on the state |oa, a〉 of subsystem S1 when the setting is a and the outcome |oa〉, and

on the state |ob,b〉 of subsystem S2 when the setting is b and the outcome |ob〉, respectively, and ρ̂ a

density matrix which represents the compound state of S = S1 +S2. The probability ℘(oa, a) that, by

measuring the observable Ô1 on S1, we obtain the outcome |oa〉 (or the eigenvalue oa), is

℘(oa, a) = Tr
[
P̂oa,aρ̂

]
. (79)

After a measurement of Ô1 when the setting is a with result oa we obtain the transformation

ρ̂ �→ ρ̂′ =
P̂oa,aρ̂P̂oa,a

℘(oa, a)
. (80)

If we perform a second measurement on the second subsystem, the conditional probability of obtain-

ing |ob〉 (or ob) by measuring Ô2 when the setting is b, is given by

℘′(ob,b|oa, a) = Tr
[
P̂ob,bρ̂

′] = Tr
[
P̂ob,bP̂oa,aρ̂P̂oa,a

]
℘(oa, a)

. (81)

For any events A and B, the classical probability calculus tells us that the probability of their joint

occurrence can be expressed as

℘(A, B) = ℘(A)℘(B|A). (82)

Therefore, the joint probability of obtaining the two results oa and ob given the settings a and b, is

given by combining Eqs. (79) and (81):

℘(oa, a; ob,b) = ℘(oa, a)℘′(ob,b|oa, a)

= ℘(oa, a)
Tr

[
P̂ob,bP̂oa,aρ̂P̂oa,a

]
℘(oa, a)

= Tr
[
P̂ob,bP̂oa,aρ̂P̂oa,a

]
. (83)
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Given these assumptions, we can obtain the following result that is in accordance with Eqs. (77):∑
oa

℘(oa, a; ob,b) = Tr
∑
oa

[
P̂ob,bP̂oa,aρ̂P̂oa,a

]
= Tr

[
P̂ob,bρ̂

]
= ℘(ob,b). (84)

To derive this result, first note that∑
oa

Tr
[
P̂ob,bP̂oa,aρ̂P̂oa,a

]
= Tr

∑
oa

[
P̂ob,bP̂oa,aρ̂P̂oa,a

]
. (85)

Moreover, I have made use of the cyclic properties of the trace, i.e., given any three arbitrary

observables, we have

Tr
[
Ô1Ô2Ô3

]
= Tr

[
Ô3Ô1Ô2

]
= Tr

[
Ô2Ô3Ô1

]
. (86)

This property implies that

Tr
∑
oa

[
P̂ob,bP̂oa,aρ̂P̂oa,a

]
= Tr

∑
oa

[
P̂oa,aP̂ob,bP̂oa,aρ̂

]
. (87)

Moreover, P̂oa,a and P̂ob,b commute because they pertain to different subsystems, and therefore we

have

Tr
∑
oa

[
P̂oa,aP̂ob,bP̂oa,aρ̂

]
= Tr

∑
oa

[
P̂ob,bP̂oa,aP̂oa,aρ̂

]
. (88)

However, any orthogonal set of projectors {P̂oa,a} satisfies the two properties P̂2
oa,a = P̂oa,a and∑

oa
P̂oa,a = Î, from which we finally obtain

Tr
∑
oa

[
P̂ob,bP̂oa,aP̂oa,aρ̂

]
= Tr

[
P̂ob,bρ̂

]
. (89)

We may proceed in a similar way starting from the conditional probability ℘′(oa, a|ob,b) in order to

derive the second equality (77).

What would happen in a world in which the quantum bound is violated but the locality (non–

signaling) requirement is satisfied [3]? Let us now reformulate the quantum–mechanical Eqs. (77) in

analogy with Eq. (47) as

℘a,b(1, 1) + ℘a,b(1,−1) = pa(1) and ℘a,b(1, 1) + ℘a,b(−1, 1) = ℘b(1), (90)

and similarly for the other outcomes. This clearly shows that quantum mechanics requires a full

independence of the settings (here expressed by the orientation a), which need to be local operations

performed in complete separation from other operations that could be performed elsewhere. Quantum

correlations are indeed interdependencies of possible outcomes and not of settings. In other words, a

violation of the quantum mechanical bound (and of the information causality principle) would imply

that there are correlations between settings. If we consider the abstract forms (65) in which I have

written the correlations entering in the CHSH inequality, we see that they are expressed in terms of

pure conditional probabilities of the form ℘(11|00) Following the customary approach in quantum

mechanics (and our physical experience) we have naturally interpreted probabilities of this form as

expressing e.g. the probability that both Alice and Bob get the output 1 given that they have both

chosen the setting 0. In fact, if Bob knows which was the setting of Alice (whether 0 or 1) he is able

to infer which was her outcome. On this procedure is indeed based quantum cryptography.

However, nothing forbids to interpret such a probability as telling us that, in a Bayesian inversion,

Bob is able to predict that Alice has chosen the setting 1 once that he knows that he and Alice have

obtained the outcome 0. This is still allowed by the non–signaling condition (47). As a matter of fact,

given Eqs. (65), Bob is able to predict any setting of Alice if he knows her outcome:
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• If Bob choses the setting 0, obtains the outcome 0 and knows that A has also obtained the outcome

0, he knows that she has chosen the setting 0;

• If Bob choses the setting 1, obtains the outcome 0 and knows that A has also obtained the outcome

0, he knows that she has chosen the setting 1;

• If Bob choses the setting 0, obtains the outcome 0 and knows that A has obtained the outcome 1, he

knows that she has chosen the setting 0;

• If Bob choses the setting 1, obtains the outcome 0 and knows that A has obtained the outcome 1, he

knows that she has chosen the setting 1;

• If Bob choses the setting 0, obtains the outcome 1 and knows that A has obtained the outcome 0, he

knows that she has chosen the setting 0;

• If Bob choses the setting 1, obtains the outcome 1 and knows that A has obtained the outcome 0, he

knows that she has chosen the setting 1;

• If Bob choses the setting 0, obtains the outcome 1 and knows that A has also obtained the outcome

1, he knows that she has chosen the setting 1;

• If Bob choses the setting 1, obtains the outcome 1 and knows that A has also obtained the outcome

1, he knows that she has chosen the setting 0.

6 Conclusion

In a world in which settings (and not only outcomes) are shared and so there would be kinds of non–

local settings, this would imply that also information codification is shared. Indeed, it can be shown

that information codification deals with the choice of a basis which in a measurement context is the

choice of a setting. In other words, in a world showing hyper–correlations based on the sharing of

settings, information codification would be no longer a local procedure.

The fact that this is forbidden justifies quantum information as a general theory of information

since

• It satisfies and saturates the bounds that are imposed by the principle of information causality, and

in so doing

• It also sets specific constraints on both the possible interdependencies and the possible interactions

(also causal interconnections) in our universe.

The most general conclusion is that information can be defined as correlation among possible out-

comes or events, as we have seen above for the mutual–information expression of entanglement.
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