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Abstract. For ν > −1/2 and x real we shall establish explicit bounds
for the Bessel function Jν(x) which are uniform in x and ν. This work
and the recent result of L. J. Landau [7] provide relatively sharp in-
equalities for all real x.

1. Introduction

Although asymptotic results for the Bessel function Jν(x) have a long
history, not much is known about explicit bounds. Only recently L. J.
Landau [7] gave in a sense best possible upper bounds for real x and ν ≥ 0,

|Jν(x)| ≤ min {bν−1/3, c|x|−1/3}, (1)

where b = 0.674885 . . . , and c = 0.7857468704 . . . . In fact these inequalities
are sharp only in the transition region, i.e. for x around jν,1, the least
positive zero of Jν(x). Here, using an approach developed in [3], [4], [6], we
will establish pointwise inequalities for the monotonicity and the oscillatory
regions, provided ν > −1/2. Together with (1) they yield a rather precise
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set of bounds on the whole real axis. It will be convenient to introduce the
parameter µ = (2ν + 1)(2ν + 3) > 0. We shall prove the following

Theorem 1. Let ν > −1/2, then

(i) for 0 ≤ x ≤
√
µ

2
,

J ′ν(x)
Jν(x)

≤
4x2 − 12ν − 6 +

√
(µ− 4x2)3 + µ2

2x
(
(2ν + 1)(2ν + 5)− 4x2

) ; (2)

(ii) for 0 ≤ x ≤ ν +
1
2

,

J ′ν(x)
Jν(x)

≥
√

(2ν + 1)2 − 4x2 − 1
2x

; (3)

(iii) for ν +
1
2
< x <

√
µ+ µ2/3

2
, if ν >

1
2

, and for ν +
1
2
< x <

√
µ

2
if

−1
2
< ν ≤ 1

2
,

J ′ν(x)
Jν(x)

≥
4x2 − 12ν − 6−

√
(µ− 4x2)3 + µ2

2x
(
(2ν + 1)(2ν + 5)− 4x2

) . (4)

Theorem 2. Let ν > −1/2, then for x >
√
µ+ µ2/3/2,

J2
ν (x) ≤

4
(
4x2 − (2ν + 1)(2ν + 5)

)
π
(
(4x2 − µ)3/2 − µ

) . (5)

Moreover, the estimate is sharp in the sense that

J2
ν (x) ≥

4
(
4x2 − (2ν + 1)(2ν + 5)

)
π
(
(4x2 − µ)3/2 + µ

) , (6)

at all the roots of the equation:

J ′ν(x)
Jν(x)

=
(x2 − 1)

√
4x2 − µ+ x2 − µ

x(
√

4x2 − µ+ µ− 2x2)
,

that is at a point between every two consecutive zeros of Jν(x).

Comparing (2)–(4) with the well-known asymptotic formulae one can see
that upper bound (2) is essentially more precise than (3), (4). Concerning
Theorem 2 it is worth noticing that

jν1 > ν + 1.85576ν1/3 >

√
µ+ µ2/3

2
for ν ≥ 0, [9, 10]. Thus, (5) provides bounds for the envelope of |Jν(x)|
in the whole oscillatory region with an error of order O

(
ν/(4x2 − ν2)

)
for
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sufficiently large ν and x. However in the transition region both theorems
become very poor and should be replaced by (1). Nevertheless, since our
approach is applicable in more general situations, it is worth noticing that
there is a way to interpolate between the regions of Theorems 1 and 2. We
shall provide some details in the sequel.

Our main tools are the following inequalities

U2(f) = f ′
2 − ff ′′ ≥ 0, (7)

U4(f) = 3f ′′2 − 4f ′f ′′′ + ff (4) ≥ 0, (8)

which are special cases of a more general result

U2m(f(x)) =
1
2

2m∑
j=0

(−1)m+j
(

2m
j

)
f (j)(x)f (2m−j)(x) ≥ 0, (9)

m = 0, 1, . . . . These inequalities are valid for f ∈ L − P, i.e. the Laguerre-
Polya class consisting of real entire functions having a representation of the
form

c xne−αx
2+βx

ω∏
k=1

(1 +
x

xk
)e−x/xk (ω ≤ ∞),

where c, β, xk are real, α ≥ 0, n is a nonnegative integer and
∑
x−2
k < ∞,

[5], [11]. The significance of this class of functions stems from the fact that
it consists of these and only these functions which are uniform limits, on
compact subsets of the complex plain, of polynomials with only real zeros,
see e.g. [8]. The following well-known product representation

Jν(x) =
xν

2ν Γ(ν + 1)

∞∏
i=1

(
1− x2

j2
ν,i

)
,

where jν,1 < jν,2 < . . . , are the positive zeros of Jν(x), shows that u =
x−νJν(x) is an entire function having exclusively real zeros and moreover
u ∈ L − P. Exponential factors in the product are canceled due to the
symmetry of the zeros with respect to the origin.

It is worth also noticing that expression (9) arises from the expansion

|f(x+ iy)|2 = 2
∞∑
m=0

U2m
(
f(x)

)
(2m)!

y2m,

and thus, at least in principle, the knowledge of U2m
(
f(x)

)
for all m would

yield bounds on |f(x)| in the whole complex plane.
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2. Proofs

Clearly, we may restrict our considerations to x ≥ 0. In what follows we
will assume ν > −1/2, as fixed and omit it in the notation when it does not
lead to confusion. We refer to [12] for all basic formulae concerning Bessel
functions. It will be convenient to define the following two functions

u = u(x) = x−νJν(x), and v =
du

dx
.

It can be shown directly that

xu′′ + (2ν + 1)u′ + xu = 0. (10)

Using (10) to eliminate u′′ from (7) and (8), we get

U2(u) =u2 +
2ν + 1
x

vu+ v2 , (11)

U4(u) =
4x2 − µ
x2 u2 +

(4ν + 2)(2x2 − 2ν2 − 5ν − 3)
x3 vu

+
4x2 − 4ν2 − 12ν − 5

x2 v2.

(12)

It will be convenient to view both expressions as quadratics in u and v.
Notice also that the following proof yields a relatively tight bound on jν,1,
namely

jν,1 >

√
µ+ µ2/3

2
= ν + 0.31498ν1/3 + 1 +O(ν−1/3), if ν >

1
2
,

and

jν,1 >

√
(2ν + 1)(2ν + 5)

2
, if − 1

2
< ν ≤ 1

2
.

Proof of Theorem 1. Put t = t(x) = v/u. Using 2J ′ν(x) = Jν−1(x) −
Jν+1(x), we get

J ′ν(x)
Jν(x)

= t(x) +
ν

x
.

Since

t′(x) = (
v

u
)′ = −U2(u)

u2 ≤ 0,

we conclude that t(x) is a decreasing function between any two consecutive
zeros of Jν(x). In particular, t(x) → −∞, for x → j

(−)
ν,1 . Moreover, using

the power series representation of the Bessel functions,

Jν(x) = xν
∞∑
i=0

(−1)i
x2i

2ν+2ii!Γ(i+ ν + 1)
,
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one easily obtains t(0) = 0. Thus, the graph of t(x) for x ≥ 0, consists of the
decreasing branches B0, B1, . . . , where the hyperbolic-shaped branch B0 is
defined on [0, jν,1) changing from 0 to −∞. The cotangent-shaped branches
Bi, i ≥ 1, are defined on (jν,i, jν,i+1) and change from ∞ to −∞.

To prove (3) we divide (11) by u2, giving

U2(u)/u2 = t2 +
2ν + 1
x

t+ 1 ≥ 0.

The inequality here means that for 0 ≤ x ≤ ν + 1/2, the function t(x) lies
beyond the region bounded by the roots t∗1,2 = t∗1,2(x), of the corresponding
quadratic equation t2 +

(
(2ν + 1)/x

)
t+ 1 = 0,

t∗1,2(x) = −
2ν + 1±

√
(2ν + 1)2 − 4x2

2x
.

Comparing the graph of t(x) with the graphs of t∗1,2(x), one readily finds
that this is possible only if u(x) has no zeros in the interval (0, ν+1/2], and
t(x) ≥ t∗2(x) > t∗1(x). Thus, we obtain

t(x) ≥ −
2ν + 1−

√
(2ν + 1)2 − 4x2

2x
,

which is equivalent to (3).
Now we establish (2) and (4) by using similar arguments applied to (12).

We shall prove the case ν > 1/2 in detail, the case −1/2 < ν ≤ 1/2 is
similar. As in the above proof of (3), the function t(x) cannot intersect the
solutions in t of the quadratic equation

4x2 − 4ν2 − 12ν − 5
x2 t2 +

(4ν + 2)(2x2 − 2ν2 − 5ν − 3)
x3 t+

4x2 − µ
x2 = 0,

corresponding to (12). Multiplying this by x3 one finds that the discriminant
of the obtained quadratic is ∆ = (µ − 4x2)3 + µ2, and ∆ ≥ 0 for x ≤√
µ+ µ2/3/2. The solutions are (t∗1(x) corresponds to the + sign)

t∗1,2(x) =
(4ν + 2)

(
2x2 − (ν + 1)(2ν + 3)

)
±
√

∆
2x
(
(2ν + 1)(2ν + 5)− 4x2

) .

Let

A =
√
µ

2
, B =

√
(2ν + 1)(2ν + 5)

2
, C =

√
µ+ µ2/3

2
.

An elementary investigation of t∗1,2(x) yields that for ν > 1/2, t∗2(x) is a
continuous function on (0, C), changing from the value −∞ at x = 0 to the
value

t∗2(C) =
1 + µ1/3 +

√
1 + µ

(2− µ1/3)
√

1 + µ1/3
,
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whereas t∗1(x) consists of two branches with the asymptote at x = B.
Namely, t∗1(0) = t1(A) = 0, t∗1(x) < 0 for x ∈ (0, A), t∗1(B−) = ∞,
t∗1(B+) = −∞, and t∗1(C) = t∗2(C). A quick inspection of the graphs of
t∗1(x), t∗2(x) and t(x) reveals that t(x) cannot have an asymptote in (0, C],
since t(0) = 0 and t(j−ν,1) = −∞, and hence jν,1 > C. Moreover, the only
possibility is that

t∗2(x) ≤ t(x) ≤ t∗1(x), (13)

where the lower bound holds on [0, C) and the upper one on [0, B). It can
be checked that t(x) is negative on (0, C). Hence t∗1(x) yields only a trivial
upper bound for x > A. Now the inequalities (13) are equivalent to (2) and
(4) and the result follows.

Remark. Sharper results can be achieved on using U2m for m > 2, but
they include polynomials of higher degree. For instance, U4 gives the value
of J ′ν(ν)/Jν(ν) with an order of precision O(ν−1/2).

To prove Theorem 2 we need the following lemma.

Lemma 1. Let Φ(x) = U4(u)x2ν+4, then for ν > −1/2 and x >
√
µ/2,

(4x2 − µ)3/2 − µ
π

≤ Φ(x) ≤ (4x2 − µ)3/2 + µ

π
. (14)

Proof. First we shall prove the following claim: the function

Φ1(x) =
Φ(x)

(4x2 − µ)3/2 + µ

increases in x for x >
√
µ/2; whereas the function

Φ2(x) =
Φ(x)

(4x2 − µ)3/2 − µ

decreases for x >
√
µ+ µ2/3/2. To demonstrate this, define

Fi(x) = Φ′(x)− ziΦ(x), i = 0, 1,

where

zi =
6y
√
r + y2

r(y3 + (−1)i)
,

and r = µ1/3, y =
√

4x2 − µ/r. We have

F0(x) =
3x2ν+1

(
ru
√
r + y2 + (ry − 1 +

√
r3 + 1 )v

)2

y3 + 1
,
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F1(x) = −
3x2ν+1

(
ru
√
r + y2 − (ry + 1−

√
r3 + 1 )v

)2

y3 − 1
.

Hence for y ≥ 0, Φ′(x)/Φ(x) ≥ z0, and for y > 1, Φ′(x)/Φ(x) ≤ z1. Inte-
grating in x the inequalities

z0 ≤
Φ′(x)
Φ(x)

≤ z1

and getting rid of the logarithm we get

Φ(x2)
Φ(x1)

≥ (4x2
2 − µ)3/2 + µ

(4x2
1 − µ)3/2 + µ

,

√
µ

2
< x1 ≤ x2;

and
Φ(x2)
Φ(x1)

≤ (4x2
2 − µ)3/2 − µ

(4x2
1 − µ)3/2 − µ

,

√
µ+ µ2/3

2
< x1 ≤ x2.

This justifies the claim.
Finally, using the well-known asymptotic formula

Jν(x) =

√
2
πx

cos
(
x− π(2ν + 1)

4

)
+O(x−3/2),

we obtain

lim
x→∞

Φ(x)
x3 =

8
π
.

Now (14) follows on letting x2 →∞, in Φ1(x),Φ2(x) and noticing that for
√
µ

2
< x <

√
µ+ µ2/3

2
the left hand side of (14) trivially holds by Φ(x) ≥ 0.

Proof of Theorem 2. The proof readily follows by rewriting (12) as

U4(u) =
(4x2 − µ)3 − µ2

4x4
(
4x2 − (2ν + 5)(2ν + 1)

)u2

+

(
x
(
4x2 − (2ν + 5)(2ν + 1)

)
v + (2ν + 1)

(
2x2 − (2ν + 3)(ν + 1)

)
u
)2

x4
(
4x2 − (2ν + 5)(2ν + 1)

) ≥ 0,

which implies

u2 ≤
4x4
(
4x2 − (2ν + 5)(2ν + 1)

)
(4x2 − µ)3 − µ2 U4(u), (15)
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for x >
√
µ+ µ2/3/2. Combining this with the upper bound of the previous

lemma which gives

U4(u) ≤ (4x2 − µ)3/2 + µ

π x2ν+4 ,

we obtain (5). To establish (6) it is left to consider the case of equality in
(15) and apply the lower bound of the lemma.

Since asymptotics in the transition region include the transcendental Airy
function one could not expect that our approach would yield precise results
in this case. But the following idea appearing in a similar context in [2]
looks promising and leads to another interesting relation between f(x) and
U2m

(
f(x)

)
. An explicit expression for U2m

(
f(x)

)
in the polynomial case,

immediately implying positivity, is known [1],

U2m
(
f(x)

)
= f2(x)

∑ (2m)!
(x− xi1)2 . . . (x− xi2m)2 , (16)

where f(x) = (x − x1)(x − x2) . . . (x − xk), and the sum is carried over all
2m−combinations (i1, . . . , i2m) of {1, 2, . . . , k}. Let now x1 be the least zero
of f(x). It is easy to see that for any polynomial p(x) = (x−a1) . . . (x−as),
a1 < . . . < as, and c < a1, we have |p(c)| > |p(y)| for c < x < 2a1 − c.
Applying this to the denominators of each term of (16) yields

f2(x) < f2(c)
U2m

(
f(x)

)
U2m

(
f(c)

) , (17)

for c < x < 2x1 − c. Simple limiting arguments applied to a truncated
infinite product of Jν(x) show that this inequality is valid for f(x) = u(x).
Thus (17) enables one to extrapolate the values of f(x) from the monotonic-
ity to the transition region, provided f(c) and U2m(x) are known. In this
connection notice that analogously to Lemma 1 one gets

2x− 2ν − 1
π

≤ U2(u)x2ν+2 ≤ 2x+ 2ν − 1
π

,

yielding bounds for all x.

References

[1] Dilcher, K., Stolarsky, K. B., On a class of nonlinear differential operators acting on
polynomials, J. Math. Anal. Appl. 170 (1992), 382–400.

[2] Erdelyi, T., Magnus, A. P., Nevai, P., Generalized Jacobi weights, Christoffel functions,
and Jacobi polynomials, SIAM J. Math. Anal. 25 (1994), 602–614.

[3] Foster, W. H., Krasikov, I., Bounds for the extreme roots of orthogonal polynomials,
Int. J. Math. Algorithms 2 (2000), 121–132.

[4] Foster, W. H., Krasikov, I., Explicit bounds for Hermite polynomials in the oscillatory
region, LMS J. Comput. Math. 3 (2000), 307–314.



UNIFORM BOUNDS FOR BESSEL FUNCTIONS 91

[5] Jensen, J. L. W. V., Recherches sur la theorie des equations, Acta Math. 36 (1913),
181–195.

[6] Krasikov, I., Nonnegative quadratic forms and bounds on orthogonal polynomials, J.
Approx. Theory 111 (2001), 31–49 .

[7] Landau, L. J., Bessel functions: monotonicity and bounds, J. Londom Math. Soc. (2)
61 (2000), 197–215.

[8] Levin, B. Ja., Distribution of Zeros of Entire Functions, Transl. Math. Monographs
5, Amer. Math. Soc., Providence, RI, 1964, revised ed. 1980.

[9] Lang, T., Wong, R., “Best possible” upper bounds for the first two positive zeros of the
Bessel function Jν(x) : the infinite case, J. Comput. Appl. Math. 71 (1996), 311–329.

[10] Lorch, L., Uberti, R., “Best possible” upper bounds for the first positive zeros of the
Bessel function — the finite case, J. Comput. Appl. Math. 75 (1996), 249–258.

[11] Patrick, M.L., Extension of inequalities of the Laguerre and Turan type, Pacific J.
Math. 44 (1973), 675–682.

[12] Watson, G. N., A Treatise on the Theory of Bessel Functions (2nd ed.), Cambridge
Univ. Press, Cambridge, 1995.

Ilia Krasikov

Department of Mathematical Sciences

Brunel University

Uxbridge UB8 3PH

United Kingdom

e-mail: mastiik@brunel.ac.uk


