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Abstract. A stationary low pressure system and elevated lev-
els of precipitable water provided a nearly continuous source
of precipitation over Louisiana, United States (US), starting
around 10 August 2016. Precipitation was heaviest in the re-
gion broadly encompassing the city of Baton Rouge, with a
3-day maximum found at a station in Livingston, LA (east
of Baton Rouge), from 12 to 14 August 2016 (648.3 mm,
25.5 inches). The intense precipitation was followed by in-
land flash flooding and river flooding and in subsequent
days produced additional backwater flooding. On 16 August,
Louisiana officials reported that 30 000 people had been res-
cued, nearly 10 600 people had slept in shelters on the night
of 14 August and at least 60 600 homes had been impacted to
varying degrees. As of 17 August, the floods were reported
to have killed at least 13 people. As the disaster was unfold-
ing, the Red Cross called the flooding the worst natural dis-
aster in the US since Super Storm Sandy made landfall in
New Jersey on 24 October 2012. Before the floodwaters had
receded, the media began questioning whether this extreme
event was caused by anthropogenic climate change. To pro-
vide the necessary analysis to understand the potential role
of anthropogenic climate change, a rapid attribution analy-
sis was launched in real time using the best readily available
observational data and high-resolution global climate model
simulations.

The objective of this study is to show the possibility of
performing rapid attribution studies when both observational
and model data and analysis methods are readily available

upon the start. It is the authors’ aspiration that the results be
used to guide further studies of the devastating precipitation
and flooding event. Here, we present a first estimate of how
anthropogenic climate change has affected the likelihood of
a comparable extreme precipitation event in the central US
Gulf Coast. While the flooding event of interest triggering
this study occurred in south Louisiana, for the purposes of
our analysis, we have defined an extreme precipitation event
by taking the spatial maximum of annual 3-day inland max-
imum precipitation over the region of 29–31◦ N, 85–95◦W,
which we refer to as the central US Gulf Coast. Using ob-
servational data, we find that the observed local return time
of the 12–14 August precipitation event in 2016 is about
550 years (95 % confidence interval (CI): 450–1450). The
probability for an event like this to happen anywhere in the
region is presently 1 in 30 years (CI 11–110). We estimate
that these probabilities and the intensity of extreme precip-
itation events of this return time have increased since 1900.
A central US Gulf Coast extreme precipitation event has ef-
fectively become more likely in 2016 than it was in 1900.
The global climate models tell a similar story; in the most
accurate analyses, the regional probability of 3-day extreme
precipitation increases by more than a factor of 1.4 due to
anthropogenic climate change. The magnitude of the shift in
probabilities is greater in the 25 km (higher-resolution) cli-
mate model than in the 50 km model. The evidence for a re-
lation to El Niño half a year earlier is equivocal, with some
analyses showing a positive connection and others none.
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1 Introduction

In the second week of August, a storm system developed in
the United States (US) Gulf Coast region and resulted in in-
tense precipitation across south Louisiana in the region sur-
rounding the city of Baton Rouge. The highest concentration
of precipitation fell over the 3-day period of 12–14 August
(Fig. 1a–d). On Saturday, 13 August the greatest total mag-
nitude of precipitation and the broadest surface area of in-
tense precipitation during the storm were experienced. The
National Oceanic and Atmospheric Administration (NOAA)
Climate Prediction Center (CPC) unified gauge-based grid-
ded analysis of daily precipitation exhibits 25◦× 25◦ km area
boxes with precipitation maxima reaching up to 534.7 mm
(21.1 inches) over the 3-day period. In station observations (a
single point), a rain gauge in Livingston, LA (east of Baton
Rouge), experienced an even higher 3-day precipitation total
of 648.3 mm (25.5 inches). In places, the 3-day precipitation
totals in Louisiana exceeded 3 times those of the climatolog-
ical August totals (historical average total precipitation that
occurs over 31 days; Fig. 1e) and 3 times the average annual
3-day precipitation maximum (Fig. 1f).

The intense precipitation formed due to a low pressure
system that originated near Florida/Alabama on 5 August.
At that time, the National Hurricane Center stated that the
low pressure system might transform into a tropical depres-
sion if it moved to the Gulf of Mexico (Schleifstein, 2016).
Instead, the system remained over land and moved west-
ward slowly. On 12 August, it became near stationary over
Louisiana (Fig. 1a–c) allowing for the continuous develop-
ment of thunderstorms in a localized area to the south and
southeast of the low pressure center. The stationary storm
system and anomalously moist atmospheric conditions (pre-
cipitable water exceeding 65 mm) created optimal conditions
for high precipitation efficiencies and intense precipitation
rates. Though the system had a warm core and some simi-
larities to a tropical depression, it never formed the closed
surface wind circulation about a well-defined center that is
needed to be classified as a tropical depression (National
Weather Service, 2016; New Orleans area forecast discus-
sions (PIL=AFDLIX), 2016).

Historic freshwater flooding in the region encompassing
Baton Rouge, Louisiana, followed the extreme precipita-
tion event. Provisional reports from 18 August 2016 showed
stream gauges managed by the United States Geological Sur-
vey (USGS) registering above flood stage levels (levels at
which overflow of natural banks starts to cause damage in
the local area) at 30 sites and found that, out of 261 sites in
all of Louisiana, 50 were overtopped by floodwaters (Burton
and Demas, 2016). This was a complex event where rivers re-
sponded to local precipitation as well as upstream and down-
stream conditions (Fig. 2). For example, on the Comite River,
a major drainage river for north Baton Rouge and its out-
lying districts, the provisional gauge height data exceeded
the National Weather Service (NWS) flood stage from 12

to 16 August and exceeded the previous height record (set
19 May 1953). The Comite River hit its NWS flood stage
level before the maximum precipitation fell in the central US
Gulf Coast. Floodwaters were slow to recede due to flood
stages downstream causing backwater flooding (upstream
flooding caused by conditions downstream) in many neigh-
borhoods (Burton and Demas, 2016). Further downstream on
the Amite River, provisional data showed that water levels
exceeded the NWS flood stage from 13 to 23 August and also
exceeded the previous height record (set 25 April 1977). Its
levels declined more slowly and did not fall below flood stage
until late on 23 August, due to drainage from the Comite and
other tributaries upstream that hit peak flood stage days ear-
lier (Burton and Demas, 2016).

On 12 August, the NWS issued flash flood warnings for
parishes in south Louisiana and activated the national Emer-
gency Alert System which urged residents to move to higher
ground. The Louisiana Coast Guard, National Guard and
civilian volunteers mobilized to rescue over 30 000 people
from their flooded homes and cars (Broach, 2016). By Au-
gust 14, the federal government declared a major disaster,
indicating that the severity of damage exceeded the local
and state governments’ combined capability to respond, ini-
tiating federal assistance for individuals and public infras-
tructure (Davies, 2016; FEMA, 2016; Stafford, 2000). The
flooding impacted the state’s agriculture industry with losses
estimated in excess of USD 110 million (Allen and Burgess,
2016). Initial estimates also show that at least 60 600 homes
were damaged and 13 people were killed due to the floods
(Strum, 2016). The American Red Cross, with FEMA and
other federal and local agencies, provided shelter and emer-
gency relief for 10 600 people initially displaced by the dis-
aster, and the American Red Cross estimates that its ongoing
relief efforts will cost USD 30 million (American Red Cross,
2016a, b). To date, more than 110 000 people have registered
for federal disaster assistance (FEMA, 2016).

South Louisiana is a region where a number of phenomena
can lead to flooding. For example, as a coastal region, it can
experience saltwater flooding from a storm surge, when the
low pressure and winds of a storm moving towards the coast-
line push coastal saltwater inland. This occurred in August
2005 when Hurricane Katrina impacted a broad swath of the
Gulf Coast, including New Orleans, LA, with a large storm
surge. Inland, precipitation can directly cause pluvial flood-
ing by producing runoff in a region independent of a body
of water (i.e., when more rain falls than can be soaked up
by the ground) or fluvial flooding when water levels exceed
the capacity of the river environment. For inland freshwa-
ter flooding, land surface conditions prior to an extreme pre-
cipitation event may increase the susceptibility of a region
to both types of flooding, by saturating the soil (Tramblay
et al., 2010; De Michele and Salvadori, 2002) or increasing
river levels (Pinter et al., 2006). Inland flood conditions can
also be induced by water flowing through the river system
after a storm due to capacity limitations, as evident along the
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Figure 1. (a, b, c) Daily precipitation (shaded colors) and sea level pressure (grey contours, interval 1 hPa, 1015 hPa contour thickened, lower
contours dashed) for 12, 13 and 14 August 2016. (d) The 3-day precipitation sum for 12–14 August 2016. (e) August climatological total
precipitation (1948–2015). (f) Average annual maximum 3-day precipitation event (1948–2015). Orange box in (d) shows the geographic
region used for the analysis (29–31◦ N, 85–95◦W). Data are from CPC unified gauge-based analysis of daily precipitation over the contiguous
US (2016 data are from the real-time archive) and ECMWF operational analysis.
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Figure 2. Hydrographs of gauge levels, NWS flood stage value and previous historical record for USGS station (a) 07378000 on the Comite
River and (b) 07380200 on the Amite River. Shaded pink areas indicate the 3-day period of maximum precipitation (12–14 August 2016).
Observed stream gauge information was downloaded 25 August 2016 from the USGS: http://waterdata.usgs.gov/la/nwis/uv?; provisional
USGS data are subject to adjustment: http://help.waterdata.usgs.gov/policies/provisional-data-statement.

Amite River in August 2016 (Fig. 2b) due to upstream flood
conditions making their way downstream. Flooding can be
influenced by remote meteorological conditions as river net-
works connect regions over vast areas. Louisiana had most
recently experienced widespread inland flooding in March–
April 2016. Although inland freshwater flooding occurs due
to a combination of the level of extreme precipitation and
its interaction with the land surface and river system, includ-
ing human modifications to those systems and responses to
events, we have chosen to focus our rapid attribution study
on one portion of the problem: understanding the present and
potentially climate-change-influenced probability of extreme
precipitation events like the one which occurred in August
2016.

Synoptic forcing for precipitation extremes in the Gulf
Coast region includes both midlatitude weather (cold-core
systems fueled by baroclinic instability) and tropical weather
(warm-core systems with barotropic instability). Extreme
precipitation has historically been classified into three types
of events: frontal systems, tropical systems and air mass sys-
tems. Each of these categories can be further broken down:
e.g., tropical systems ranging from easterly waves to hur-
ricanes, frontal systems including interactions between the
polar jet and moist air masses from the gulf, squall lines or
mesoscale convective systems and air mass systems that may
include heavy rainfall from upper air disturbances, or con-
vective storms that form because of daytime heating (Keim
and Faiers, 1996). The variety of weather systems that can
give rise to precipitation extremes in the region complicates
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the statistical analysis of the extremes and requires climate
models to capture the entire distribution in a realistic man-
ner. Also, the response to radiative forcing may be nonlinear:
thermodynamic and/or dynamic changes may be different for
different weather systems (O’Gorman, 2015).

In this article, we analyze the historical context and
changes in statistics of extreme precipitation like the one ex-
perienced during August 2016 in south Louisiana by defining
an extreme event by its local or regional maximum 3-day pre-
cipitation. We have focused our analysis on stations or land
surface grid cells in the region of 29–31◦ N, 85–95◦W (il-
lustrated by the orange box in Fig. 1d), which we hereafter
refer to as the central US Gulf Coast. Here, we report the
results of our rapid attribution study conducted by several or-
ganizations within 2 weeks of the event. The need for a rapid
attribution study arises from the current intense public dis-
cussion that results from the significant societal impacts of
this particular event and a continuous general interest in cli-
mate change. Media coverage following the event has linked
into the growing body of scientific evidence that precipitation
extremes are expected to increase due to the greater mois-
ture content of a warmer atmosphere following Clausius–
Clapeyron scaling (O’Gorman, 2015; Lenderink and Attema,
2015; Scherrer et al., 2016): e.g., “Disasters like Louisiana
floods will worsen as planet warms, scientists warn” (Mil-
man, 2016), “Flooding in the South looks a lot like cli-
mate change” (Bromwich, 2016). However, specific scien-
tific statements for the event as observed in south Louisiana
cannot be made based on general assessments of the con-
nection of global warming and extreme rainfall. While attri-
bution studies at a more traditional scientific pace (several
months up to a year later) are important and add to scien-
tific understanding of changing extremes, reporting results
recently after an extreme event may enhance the societal un-
derstanding of climate change and extreme weather and pro-
vide often-requested information for management decisions
following the event.

The methodologies employed in this study are used reg-
ularly in the literature and were previously applied to the
rapid attribution of the French and German 2016 flooding
event (van Oldenborgh et al., 2016) and of Storm Desmond
over the UK in 2015 (van Oldenborgh et al., 2015). The pre-
sented analysis builds upon these methodologies for event at-
tribution and also explores the role of climate variability. We
have made a few carefully considered, crucial assumptions
to facilitate the analysis. For example, these include assump-
tions on the statistical distribution of 3-day precipitation in
the area, the suitability of observational data and global cli-
mate models and the connection between extreme precipita-
tion and global mean surface temperature. Please see Sect. 7
for a detailed discussion of all crucial assumptions and their
potential impact on the results.

The present study is limited to investigation of changing
precipitation statistics. Rapid attribution of flood risk was not
feasible within the time frame and given our access to suit-

able data and models. Note that a “climate attribution” is fun-
damentally different from a deterministic synoptic attribu-
tion, a detailed analysis of the chain of events that led to the
extreme rainfall is not provided. The trends and internal cli-
mate variability of extreme precipitation are investigated in
station observations, gridded gauge-based precipitation anal-
ysis and high-resolution global climate model simulations.
Since this paper aims to provide a first attribution assessment
of the 2016 south Louisiana extreme event, we have provided
a detailed data and methods section (Sect. 2) in which our
data sets, statistical calculations for return periods and trends
and data set validation methodologies are described. The rest
of the paper is organized as follows: Sect. 3 provides obser-
vational analysis. In Sect. 4, we evaluate the suitability of the
global climate models. Model analysis is provided in Sect. 5.
Section 6 synthesizes our conclusions. In Sect. 7, we pro-
vide a detailed discussion of crucial assumptions and their
potential impact on the results, further avenues of research
and implications of this work.

2 Data and methods

2.1 Observational data

We utilize both point station observations and gridded anal-
ysis in this paper. The point station data are from the Global
Historical Climatology Network daily product (GHCN-D)
version 3.22 (Menne et al., 2012, 2016). The data set pro-
vides daily observations for stations worldwide. Data are
quality controlled before becoming available in near-real
time. Inside the defined central US Gulf Coast (Fig. 1d), 324
stations with a minimum of 10 years of data are available for
the period 1891 to present (August 2016). However, not all
stations provide data for the entire period, and spatial prox-
imity between stations means that not all data points provide
independent information (see Sect. 7.1). Therefore, for some
analyses, a smaller selection of the available stations is taken
into account. Selection criteria are described in the relevant
sections.

The gridded analysis used here is the product of the
NOAA CPC unified gauge-based analysis of daily precipita-
tion over the contiguous US (Higgins et al., 2000). The data
set interpolates point station data on a 0.25◦× 0.25◦ uniform
latitude–longitude grid, based on the optimal interpolation
scheme of Gandin and Hardin (1965). The CPC data set cov-
ers the period 1 January 1948 to present (August 2016); data
from 2007 onwards have been made available in real time.
Because this is a gridded product, daily precipitation sums
represent an areal average (0.25◦× 0.25◦) rather than a point
measurement. Therefore, precipitation extremes are expected
to be of smaller magnitude in the gridded product (Chen and
Knutson, 2008), as was noted for the south Louisiana event
above (3-day total maxima of 534.7 mm in the CPC gridded
versus 648.3 mm in the point station data). The gridded anal-
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ysis and the individual station data are not independent, as
the precipitation station data are the underlying source for
the gridded analysis; consequently, changes in gauge station
density in space and time (as discussed above for GHCN-D)
also impact the gridded analysis. We note that for compar-
isons with climate models – in which precipitation represents
area averages and not point values – the area-averaged pre-
cipitation values from the gridded analysis are likely more
meaningful for comparison with models than point station
data (Chen and Knutson, 2008; Eggert et al., 2015).

We use the National Aeronautics and Space Admin-
istration (NASA) Goddard Institute for Space Science
(GISS) surface temperature analysis (GISTEMP Team,
2016; Hansen et al., 2010) for estimates of the development
of global mean surface temperature over time. This grid-
ded data set is based on the GHCN point station data over
land, NOAA Extended Reconstructed Sea Surface Tempera-
ture (ERSST; Huang et al., 2015) version 4 over oceans and
Scientific Committee on Antarctic Research (SCAR) point
station data for Antarctica.

2.2 Model and experiment descriptions

Many of the meteorological phenomena that cause extreme
precipitation at the central US Gulf Coast are small in scale;
therefore, only high-resolution models can simulate them re-
alistically. We verified that the Royal Netherlands Meteo-
rological Institute (KNMI) EC-Earth 2.3 T159 experiments
(∼ 150 km; Hazeleger et al., 2012) and the United Kingdom
(UK) Met Office HadGEM3-A N216 (∼ 60 km; Christidis et
al., 2013) models do not realistically represent precipitation
extremes in the region.

We therefore use two higher-resolution global climate
models in our analysis from the NOAA Geophysical Fluid
Dynamics Laboratory (GFDL). Both models were developed
from the GFDL Coupled Model version 2.1 (CM2.1; Del-
worth et al., 2006) using a cubed-sphere finite volume dy-
namical core (Putman and Lin, 2007) with 32 vertical lev-
els. Atmospheric physics are taken from the GFDL Coupled
Model version 2.5 (CM2.5; Delworth et al., 2006, 2012). The
two models share the same ocean and sea ice components
with a 1◦ horizontal resolution but differ in their atmosphere
and land horizontal resolution. In the forecast-oriented low
ocean resolution model (FLOR, Vecchi et al., 2014), there
are 180 points along each cubed-sphere finite volume dy-
namical core face (FV3-C180), which relates to a resolution
of 0.5◦ per cell along the Equator. This has been interpo-
lated to a 0.5◦× 0.5◦ uniform latitude–longitude grid. In the
high-resolution version of the model (HiFLOR; Murakami et
al., 2016), there are 384 points along each face (FV3-C384)
on the cubed-sphere finite volume dynamic core, which re-
lates to a resolution of 0.23◦ per cell along the Equator. This
has been interpolated to a 0.25◦× 0.25◦ uniform latitude–
longitude grid. For FLOR, we use a flux-adjusted version of
the model (FLOR-FA), in which atmosphere-to-ocean fluxes

of momentum, enthalpy and freshwater are adjusted to bring
the simulated fields closer to their observed climatological
state. This procedure reduces model biases of, for example,
sea surface temperatures (SSTs), tropical cyclones (Vecchi et
al., 2014) and precipitation patterns. We assume the modeled
response to changes in radiative forcing is not impacted by
the flux adjustment (see Sect. 7.1). The adjustment method
is described in detail in Vecchi et al. (2014). Descriptions on
how to access the data used in this study are provided in the
data availability section.

Table 1 describes six different global coupled model ex-
periments that have been performed using FLOR-FA and Hi-
FLOR, which – for each model – differ in the type of radia-
tive forcing that is prescribed, thus allowing us to assess the
impact of radiative forcing on the statistics of weather ex-
tremes in these models. With FLOR-FA, there are two sets of
experiments. First, we made use of a multicentennial integra-
tion in which values of radiative forcing agents (solar forcing,
anthropogenic and natural aerosols, well-mixed greenhouse
gases, ozone, etc.) are prescribed to remain at levels repre-
sentative of a particular time – the mid-19th century in this
case (Jia et al., 2016); radiative forcing agents are prescribed
at the 1860 values following the protocol of the Fifth Coupled
Model Intercomparison Project (CMIP5, Taylor et al., 2012).
These types of experiments with global climate models are
often referred to as “control” experiments (“pre-industrial
control” in this particular case) but here we label this class of
experiments as “static radiative forcing” experiments, since
with HiFLOR we fix radiative forcing at a number of levels.
In the static radiative forcing experiments, the years of the
integration bear no relation to the real-world calendar. The
second set of experiments with FLOR-FA is a suite of five
realizations (or “ensemble members”) in which the radiative
forcing is prescribed to follow estimates of past and future
radiative forcing changes over the period 1861–2100 (Jia et
al., 2016); the forcing agents for the period 1861–2005 are
prescribed to follow the CMIP5 historical experiment proto-
col, and for the period 2005–2100 they follow the CMIP5
Representative Concentration Pathway 4.5 (RCP4.5), which
represents the medium-range greenhouse gas emissions sce-
nario (Van Vuuren et al., 2011). The five realizations of the
1861–2100 experiments differ only in their initial conditions
on 1 January 1861, which are taken from five different years
from the long FLOR-FA pre-industrial static forcing experi-
ment. In these experiments, the calendar of the experiments is
connected to the history of radiative forcing – but the internal
climate variations (e.g., El Niño events) and weather fluctu-
ations (e.g., individual storms) are not constrained to follow
their observed sequence. The static climate experiment has
a slow drift because the slow climate components, notably
the deep ocean, were not in equilibrium at the beginning of
the run; this is most noticeable in the first 1000 years of the
integration.

With HiFLOR, there are four experiments to explore the
climate sensitivity of the statistics of weather events through
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Table 1. Global coupled model experiments performed with the FLOR-FA and HiFLOR models.

Model Type of forcing Representative No. of No. of modeled
year of forcings ensembles years in total

FLOR-FA Static radiative forcing 1860 1 3550
FLOR-FA Time-varying radiative 1861–2100 5 1200 (five realizations

forcing of 240 years)
HiFLOR Static radiative forcing 1860 1 200
HiFLOR Static radiative forcing 1940 1 75
HiFLOR Static radiative forcing 1990 1 300
HiFLOR Static radiative forcing 2015 1 70

static radiative forcing experiments at levels representative of
particular times: pre-industrial conditions (fixed at 1860 val-
ues), mid-20th century (fixed at 1940 values), late 20th cen-
tury (fixed at 1990 values) and early 21st century (fixed at
2015 values). The value of radiative forcing agents in these
experiments is prescribed from either the CMIP5 historical
forcing protocol (for the 1860, 1940 and 1990 static forc-
ing experiments) or from the CMIP5 RCP4.5 protocol (for
the 2015 static forcing experiment); the coupled atmosphere–
land–ocean–sea ice state of the model is left to evolve freely.
These simulations have been integrated for different lengths
of time (Table 1, last column), over which they generate their
own climate under the fixed forcing; longer integrations al-
low us to better estimate the statistics of climate extremes,
but these were the lengths of integrations available as of
15 August 2016.

There are many fewer model years available with Hi-
FLOR than FLOR-FA because the HiFLOR model was de-
veloped more recently, and because the HiFLOR model is
substantially more computationally intensive (∼ 6 times the
computer resources required for 1 year of integration) than
FLOR-FA. The four HiFLOR static forcing experiments are
initialized from the same ocean, atmosphere, land and sea ice
initial conditions, which are representative of the observed
state in the late 20th century, and the four experiments are
not in radiative balance through the length of integration (the
1860 experiment has a negative top-of-atmosphere balance,
while the 1940, 1990 and 2015 experiments have positive
balances). Therefore, these static climate experiments each
exhibit an initial rapid (∼ 20 years) adjustment away from
the late 20th century observed initial conditions and a slower
climate drift reflecting the top-of-atmosphere imbalance over
the length of the integration. We exclude the first 20 years of
each integration from our analysis and assume that the im-
pact of the slow climate drift in each model experiment on
the statistics of precipitation extremes is small (see justifica-
tion in Sect. 7.1).

In addition to the coupled model experiments discussed
above, in which the history of SSTs in the models emerges
from the dynamics of the models and the changes in radia-
tive forcing, for HiFLOR a set of variable forcing experi-

ments were run over 1971–2015 in which the model is con-
strained by both historical radiative forcing and the observed
history of monthly SST (Table 2). These experiments can be
used to connect the statistics of rainfall extremes to the de-
tailed history of SSTs that occurred over the past 45 years,
part of which was a response to radiative forcing changes
and part of which emerged from internal climate variations.
Furthermore, by construction, these experiments have a sub-
stantially smaller SST bias than the free-running versions of
HiFLOR, as the statistics of weather extremes and their con-
nection to larger-scale climate can be substantially affected
by SST biases (e.g., Vecchi et al., 2014; Krishnamurthy et
al., 2015; Pascale et al., 2016). These experiments are de-
scribed in more detail in Murakami et al. (2015) and Van der
Wiel et al. (2016). The model SST was restored to the inter-
annually varying observed field (SSTT ) Met Office Hadley
Centre SST product (HadISST1.1; Rayner et al., 2003) by
adding an extra term to the modeled SST tendency:

dSST
dt
=O +

1
τ
(SSTT −SST) , (1)

with τ the restoring timescale (three ensemble members were
produced with τ = 5 days, three with τ = 10 days).

2.3 Defining an extreme event and its statistics

To classify the August 2016 south Louisiana precipitation
event, we must choose a definition for the event to guide our
statistical analysis of observations and model experiments.
We have chosen to classify extremes using multi-day aver-
aged precipitation rather than single-day precipitation, to re-
flect the aspects of the event that resulted in the flooding of
several rivers in the area. The following steps are taken to
calculate our event statistics in the model and observations.

1. We create 3-day precipitation averages in station
points/grid cells over land found in the central US Gulf
Coast at 29–31◦ N, 85–95◦W, which has a relatively
homogenous average precipitation extreme magnitude
(Fig. 1f). This provides us with, for each point in space,
365 values per year (366 in leap years) for each sta-
tion point/grid cell, except the last and first years in
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Table 2. Restored SST experiments performed with the HiFLOR model.

Model Type of forcing Representative No. of No. of modeled
year forcings ensembles years in total

HiFLOR Time-varying radiative forcing (CMIP5 Historical and RCP4.5); 1971–2015 6 270 (six realizations
SSTs restored to observed monthly observations of 45 years)

the record when there are 364 values per year (365 in
leap years), since the first 1 January and last 31 Decem-
ber are dropped.

2. We then, at each point in space, calculate the annual
maximum for each year and define it as the local ex-
tremum for the year to create a set of extreme values for
further analysis.

3. For some analyses, we then take the maximum over the
central US Gulf Coast region. We have carefully docu-
mented in the main text when this is the case.

4. In the static forcing model experiments, we disregard
the first 20 years of data to allow for some initial spinup
of the model in each new static forcing state.

In order to estimate the observed return periods using the
3-day annual events found above, we fit the resulting data to a
generalized extreme value (GEV) distribution (Coles, 2001)
in a similar manner as previously done for rapid attribution
of the 2015 storm Desmond over the UK (van Oldenborgh
et al., 2015) and for the rapid attribution of the 2016 flood-
ing in France and Germany (van Oldenborgh et al., 2016).
We first analyze the GEV distribution of observations and
model simulations to determine if they represent the statis-
tics of extreme precipitation events sufficiently to employ
them in further work. To account for possible changes due
to anthropogenic climate change over time, we scale the dis-
tribution with the 4-year smoothed global mean temperature
(GISTEMP for observational analysis, modeled global mean
2 m air temperature for model analysis), a measure of the uni-
form global climate response to forcing. The GEV function
is represented by

F (x)= exp

[
−

(
1+ ξ

x−µ

σ

)1/ξ
]

µ= µ0 exp
(
αT ′

µ0

)
,

σ = σ0 exp
(
αT ′

µ0

)
, (2)

where µ is the location parameter, σ is the scale parameter
and ξ represents the shape parameter of the curve. The ratio
of σ/µ reduces to the constant σ0/µ0. The fit is estimated
using a maximum likelihood method where σ , µ0, σ0 and
ξ are varied. There is a penalty term on ξ : a Gaussian with

a width of 0.2 is added to the likelihood function such that
values larger than ∼ 0.4 are penalized as unphysical. This is
mainly used to restrain fits to the 1000-member nonparamet-
ric bootstrap that is used to estimate uncertainty. All years
are assumed to be independent for this analysis; however,
correlations between proximate stations or ensemble mem-
bers (when available) are taken into account with a moving
block bootstrap technique (Efron and Tibshirani, 1998). The
average number of dependent stations will be noted in the
analysis.

The GEV is first estimated for observational data to pro-
vide a baseline for validation. We then evaluate the individual
models by assessing the extent to which the GEV fit param-
eters (µ, σ and ξ) are similar to those fitted to the longest
available observational analysis (GHCN-D). As in van Old-
enborgh et al. (2016), multiplicative bias correction is em-
ployed for the model data, which tends to improve the simi-
larity of the GEV fit from the model and the observations.

After a conditional GEV fit has been computed, with
global mean surface temperature as the covariate, Eq. (2)
can be inverted to find the probability of the south Louisiana
event in any year. We thus estimate the probability for the
south Louisiana event in 2016, p1, and its probability in some
earlier year, p0 taken as 1860, 1900 or the first year with
available data (if that is later). This year is taken as represen-
tative for a climate that has not yet been strongly influenced
much by anthropogenic climate change. The probabilities for
an event with a magnitude at least as great as that observed
in south Louisiana in each year, i, can be expressed as return
times, τi , by

τi = 1/pi . (3)

The ratio of probabilities or return periods from differ-
ent years is known as the risk ratio (RR) where

RR= p1/p0 = τ0/τ1. (4)

The risk ratio is a measure of how the likelihood of an event
has changed in the target year (e.g., 2016) versus a refer-
ence year (e.g., 1900). An RR value of 1 would mean that
the likelihood has not changed in the baseline year versus the
target year. This ratio is therefore an indicator of changes in
likelihood, but alone it cannot attribute this difference to a
given mechanism.

There are multiple methods available to evaluate the im-
pact of radiatively forced climate change on the change in
likelihood of events. For FLOR-FA, we repeat the analy-
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sis for the observations using data from the transient ex-
periments. The natural variability from an ensemble mem-
ber of the model is uncorrelated with that of other ensem-
ble members, or the real world, so common changes in the
ensemble members are therefore due to the prescribed ex-
ternal forcings. Multidecadal changes over the past century
are dominated by anthropogenic forcings. For the highest-
resolution global climate model, HiFLOR, we fit a concate-
nated time series of maximum precipitation and the corre-
sponding global mean temperatures from the four static forc-
ing experiments to Eq. (2). Furthermore, in HiFLOR, we fit
the trends in extremes in the variable forcing six-member en-
semble covering 1971–2015. These simulations feature re-
stored SSTs which reduce oceanic temperature biases com-
pared to a fully free-running ocean component and include
the same oceanic variability as the real world (e.g., El Niño
events, North Atlantic decadal variability).

We use the same procedure to investigate the effect of the
El Niño–Southern Oscillation (ENSO) on extreme precipita-
tion on the central US Gulf Coast, replacing the smoothed
global mean temperature by an index of the strength of El
Niño as a covariate in Eq. (2). As the 2016 flooding occurred
half a year after a strong El Niño event, we take as an in-
dex a detrended version of the Niño 3.4 index with a lag of
6 months. The detrending is done by subtracting the average
SST over 30◦ S–30◦ N.

3 Observational analysis

We here describe the character of the statistical distribution
of observed precipitation extremes and their trends in the
GHCN-D point station data and the CPC gridded analysis
by fitting to a time-dependent GEV distribution (described
in Sect. 2.3). Due to the many different meteorological phe-
nomena that can lead to precipitation extremes in the cen-
tral US Gulf Coast, we assess the extent to which the GEV
gives a satisfactory description of the underlying data. We
frame the results around measures of the probability per year
of an event at least as intense as the 2016 south Louisiana
event (expressed as a return time) and the change of return
time from the beginning of the data set to present (risk ra-
tio). These return times can be assessed at a local scale (the
expected wait time for an event at a particular place) or at a
regional scale (the expected return time for an event some-
where in the central US Gulf Coast). Because the spatial
scale of the most extreme precipitation events is substan-
tially smaller than the whole region, the local return times
are longer than the regional return times. This observational
analysis on its own is only able to detect whether a trend is
present but cannot ascribe cause(s) to these trends. Note that
from here onwards we will principally report 3-day average
precipitation values rather than 3-day precipitation sums, un-
less stated otherwise.

3.1 Point station data

We first analyze point station data, as extremes are affected
by interpolation and station density, using the GHCN-D
v3.22 data set. This first analysis does not take the spatial
maximum (Step 3 in Sect. 2.3) but analyzes all stations in
the region with at least 10 years of data. This gives 324 sta-
tions with 12536 station years with data (Fig. 3a), though
it is crucial to note that they are not all statistically in-
dependent. The highest observed value at these gauges in
2016 is 216.1 mm day−1 at Livingston, LA, on 12–14 Au-
gust (648.3 mm, 3-day sum).

Fitting these data to a time-dependent GEV distribution as
described in Sect. 2.3 gives a reasonable description of the
data (Fig. 3c, e), although the fit is shaped mainly by the
lower-intensity events, and the highest-intensity events align
closer to the lower bound. It should be noted that for each
point station in the data set, on average another 18 are corre-
lated with r > 1/e, so the number of degrees of freedom is
much less than the number of points. Overall, it is surpris-
ing that all different meteorological situations that can give
rise to extreme precipitation (as laid out in Sect. 1) can be
described with a single GEV function.

The local return time of a 216.1 mm day−1 event at a sta-
tion in 2016 is about 550 years (95 % confidence interval,
CI, 450–1450 years). The probability of a 3-day precipita-
tion event at a station with 216.1 mm day−1 or more has in-
creased by a factor of 4.5 (CI 3.0–5.5) since 1900 in this
analysis. This corresponds to an increase in intensity for a
given return time of 22 % (CI 16–22 %).

This fit of all data available may be influenced by the spa-
tially and temporally varying numbers and locations of sta-
tions. We therefore evaluate the impact of these changes in
sampling on the results by limiting the analysis to stations
with at least 80 years of data and at least 0.5◦ of spatial sep-
aration between stations. This leaves 19 stations with 1849
station years (Fig. 3b), which results in 2.3 stations per de-
gree of freedom on average. This analysis gives similar re-
sults: a return time of about 500 years (CI 360–1400) and an
increase in probability of a factor of 2.8 (CI 1.7–3.8), corre-
sponding to an increase in intensity of 17 % (CI 10–21 %);
Fig. 3d, f. The increase in probability is less than in the full
station sample, although compatible within the 2σ uncertain-
ties.

Our final analysis of point station data focuses on the
most intense events only by considering the spatial maximum
of 3-day averaged precipitation anywhere in the central US
Gulf Coast (Step 3 in Sect. 2.3). This answers the question
how likely an event, like that in south Louisiana in 2016 (or
worse), was anywhere in the region, rather than at a specific
place. In the point station data, the spatial maximum is only
homogeneous when the number of stations does not vary by
much. We therefore again consider only those stations with at
least 80 years of data but do not require a minimum distance
this time. The number of stations increases up to around 40
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Figure 3. Fit of the annual maximum 3-day average GHCN-D station precipitation on the central US Gulf Coast to a GEV that scales with
smoothed global mean surface temperature. (a) Location of all GHCN-D stations with minimum 10 years of data, (c) observations (blue
marks), location parameter µ (thick red line versus global mean temperature anomalies, relative to 1980–2010), µ+ σ and µ+ 2σ (thin red
lines); the two vertical red lines show µ and its 95 % CI for the two climates in (e). (e) Gumbel plot of the GEV fit in 2016 (red line, with
95 % uncertainty estimates) and 1900 (blue line); marks show data points drawn twice: scaled up with the trend to 2016 and scaled down to
1900. The yellow square (line) denotes the intensity of the observed event at Livingston, LA. Panels (b, d, f) are the same as (a, c, e) but for
19 GHCN-D stations with a minimum 80 years of data and minimum spatial separation of 0.5◦.

in 1950–1980 and decreases again to the present. On aver-
age, 1.3 stations are correlated at r>1/e with each of these
stations. We consider the period 1930–2016. The decrease in
number of stations at the end implies that a trend in extremes
will be negatively biased. The number of events is lower than
before (1 per year instead of 19/324 events per year), so the
uncertainties are larger.

A fit of a time-dependent GEV to the annual and spatial
maximum of 3-day averaged precipitation describes the data
well (Fig. 4). The return time for an event like that in south
Louisiana in 2016 anywhere in the central US Gulf Coast is
currently around 30 years (between 11 and 110 years with
95 % CI). This is a factor of 6.3 (CI 2.1–50) more than it
was in the climate of 1930, corresponding to an increase of
intensity of about 25 % (CI 12–35 %).

Analyses of station data analogous to the ones above but
for the season July–August–September (JAS) show some-
what smaller trends but with larger error margins. The es-
timated ranges of the JAS analyses and the all-year analyses
overlap.

3.2 Gridded analysis

To compare with the model data, we also analyzed the CPC
0.25◦× 0.25◦ gridded precipitation analysis of 1948–2016.
Because the spatial extent of 3-day averaged precipitation ex-
tremes is larger than the grid boxes, we first averaged these
to a 0.5◦× 0.5◦ latitude–longitude grid. The highest value
in 2016 is then 158.77 mm day−1, which is the highest in the
record. This is lower than at a single grid point due to the spa-
tial averaging. A GEV fit of all 0.5◦ grid points (not shown)
gives a return time of 550 years with an uncertainty from 300
to 2000 years, compatible with the station analysis but with
larger uncertainties. The probability has increased by a factor
of 3.5 (CI 2.0–11) since 1948, corresponding to an increase
in intensity of 15 % (CI 9–24 %).

Taking the spatial maximum of the original 0.25◦× 0.25◦

grid we find that the highest observed value in 2016 is
178.2 mm day−1 on 12–14 August (534.7 mm in 3 days). The
record is too short to draw robust conclusions from a fit of a
GEV depending on global mean temperature except that the
precipitation maxima also increase in this data set (Fig. 5). In
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Figure 4. Fit of the spatial and annual maximum 3-day average GHCN-D station precipitation on the central US Gulf Coast to a GEV that
scales with smoothed global mean surface temperature. (a) Observations (blue marks), location parameter µ (thick red line), µ+ σ and
µ+ 2σ (thin red lines versus global mean temperature anomalies); the two vertical red lines show µ and its 95 % confidence interval for the
two climates in (b). (b) Gumbel plot of the GEV fit in 2016 (red line, with 95 % uncertainty estimates) and 1930 (blue line); marks show data
points drawn twice: scaled up with the trend to 2016 and scaled down to 1900. The yellow square (line) denotes the intensity of the observed
event at Livingston, LA.

this data set, the return time for an event like the one in 2016
anywhere on the central US Gulf Coast is currently between
9 and 200 years (best estimate is 25 years). This is about a
factor of 5 (CI 1.1–60) larger than it was around 1948, which
equates to an increase in intensity for an event like the one in
2016 of roughly 15 % (CI 0.4–30 %).

As for station data, analyses of CPC similar to the ones
above but for the season JAS show somewhat smaller trends
but with larger error margins. The estimated ranges of the
JAS analyses and the all-year analyses overlap.

3.3 Influence of natural variability

We investigate the influence of natural variability on the
probability of an event like the one in south Louisiana in
2016 by using indices of detrended SST as covariates in
the time-dependent GEV fits. We first examine the influence
of ENSO by using as a covariate a 6-month lagged Niño
3.4 index (5◦ S–5◦ N, 170–120◦W) minus SST averaged of
30◦ S–30◦ N to remove to first order the effects of global
warming. This is inspired by the heavy rain events after the
1997/1998 El Niño event. A comparison of recent Niño 3.4
conditions with those from a year following the strongest La
Niña year (1917) in a fit of all 324 stations with more than
10 years of data suggests that anomalously warm tropical Pa-
cific SSTs significantly (p < 0.1) increase the probability of
an event like the one in south Louisiana in 2016 but not by
much. In the year after El Niño, the probability is a factor
of 1.3 (CI 1.0–1.9) higher than in a year following a very
strong La Niña. However, the maximum of stations with at
least 80 years, which represents the largest events, does not
show a signal, albeit with a large uncertainty of a factor of
0.5 decrease to a factor of 1.7 increase.

Simultaneous correlations with global SSTs indicate a re-
gion in the North Atlantic that has a significant relationship
with central US Gulf Coast extreme precipitation at p < 0.1

(Fig. 6). Although the field significance is very low, the re-
gion is a well-known source of decadal variability and pre-
dictability (e.g., Hazeleger et al., 2013), so we still consider
it a possible source of decadal variability of extreme precip-
itation. We use an area average of SSTs between 45–60◦ N
and 50–20◦W as a covariate in the GEV fit. The region was
anomalously cold in 2016, so we compare the changed prob-
ability with a warm year (2006). In this statistical analysis,
North Atlantic SSTs are significantly correlated (p < 0.01)
to central US Gulf Coast precipitation (by design, as we
chose the region that has a significant correlation), with re-
cent below-average SSTs decreasing the probability of an
event like the one in 2016 (risk factor 0.37, CI 0.11–0.81). To
ascertain whether this is a physical connection and not just a
coincidence by picking the region of largest correlations, we
need to analyze model results.

4 Model evaluation

We here describe an evaluation of simulated precipitation ex-
tremes in the two global coupled models (model descrip-
tions in Sect. 2.2). Precipitation is a notoriously difficult
field to simulate, as many coupled climate models exhibit
large biases (Dai, 2006; Flato et al., 2013). Though FLOR-
FA and HiFLOR underestimate the intensity of central US
Gulf Coast precipitation extremes slightly, this bias is signif-
icantly reduced in these high-resolution models compared to
standard-resolution models (Van der Wiel et al., 2016).

4.1 Annual cycle and intensity

First we analyze the annual cycle of extreme precipitation
intensity. We consider the median and 97.5 percentile of the
monthly maximum of the spatial maximum of 3-day aver-
aged precipitation (Fig. 7). The 97.5 percentile events are of
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Figure 5. The same as Fig. 4 but for the spatial and annual maximum 3-day average of 1948–2016 0.25◦× 0.25◦ gridded CPC analysis.

Figure 6. Correlation coefficient between central US Gulf Coast spatial and annual maximum of 3-day extreme precipitation intensity and
annual mean SST (ERSST v4) with a linear regression on the global mean temperature removed at each grid point.

smaller magnitude than the south Louisiana observed event
(100–150 mm day−1 versus 200 mm day−1), but we consider
smaller magnitude events to increase the number of events in
the calculation and hence decrease uncertainties.

The observed precipitation extremes in spring and sum-
mer are generally more intense than in autumn and winter
(Fig. 7a). There is no agreement between the two observa-
tional products on which season sees the most intense precip-
itation extremes (97.5 percentile; Fig. 7b), though extremes
in March–October are more intense than in winter. This pe-
riod of stronger extremes is longer than the hurricane season,
which provides a fraction of these extremes. In this region,
the models underestimate the intensity of extreme precipi-
tation, which was also noted in Van der Wiel et al. (2016).
FLOR-FA has a peak season for extreme precipitation in-
tensity in JAS which is not found in the observational data.

The HiFLOR SST-restored experiment, in which global SST
biases are decreased compared to the free-running experi-
ments, shows a similar peak in JAS. The HiFLOR 1990 static
forcing experiment, however, does not show this peak. In-
stead, it has a similar annual cycle structure to the observa-
tional data, though with a smaller amplitude.

4.2 Meteorological conditions

Next, we investigate the meteorological conditions generat-
ing extreme precipitation events in both models and compare
these to the observed ones. For this analysis, we consider the
longest static forcing experiments for each model: 1860 for
FLOR-FA and 1990 for HiFLOR and the CPC gridded pre-
cipitation analysis. The selection of these events is limited to
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Figure 7. Annual cycle of monthly and spatial maximum 3-day averaged precipitation for point station data (GHCN-D, dark blue line),
gridded observational data (CPC, light blue line) and model simulations (FLOR-FA, orange line, and HiFLOR, red lines). For HiFLOR,
the 1990 static forcing experiment (solid red line) and the variable forcing SST-restored experiment (dashed red line) are included. Shown
are (a) the median value of the monthly extremes and (b) the 97.5 percentile.

(a) 19–21 Jul 1997 max = 543 (b) 12–14 Aug 2016 max = 535 (c) 27–29 Sep 1998 max = 516

(d) 1–3 Sep 2008 max = 467 (e) 10–12 Sep 1961 max = 409 (f) 16–18 Sep 1963 max = 397

(g) 25–27 Jul 1979 max = 390 (h) 29–31 Jul 1975 max = 390 (i) 17–19 Sep 1957 max = 385
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Figure 8. Top nine extreme precipitation events in the central US Gulf Coast (29–31◦ N, 85–95◦W) for the CPC gridded precipitation
analysis. The 3-day precipitation sum (millimeters, shaded colors, as in Fig. 1d), 850 hPa height for the middle day (grey contours, interval
25 m, 1500 m contour thickened, lower contours dashed) from NCEP/NCAR Reanalysis 1 (Kalnay et al., 1996) and tropical cyclone track if
system is classified as a tropical cyclone (orange line, IBTrACS). These extreme events are calculated for the 3-month period JAS.

the region of interest (central US Gulf Coast) and the months
JAS to facilitate comparison to the south Louisiana event.

Precipitation totals and circulation patterns for the nine
largest extreme precipitation events in the CPC analysis (JAS
season only) are shown in Fig. 8. Note that the 2016 south
Louisiana event ranks as number 2; heavy precipitation re-
lated to Hurricane Danny in 1997 was stronger, though it was
confined to a smaller area. Seven of these nine events were
associated with a tropical cyclone/hurricane making landfall
(78 %, orange tracks are the International Best Track Archive
for Climate Stewardship, IBTrACS, track estimate; Knapp et
al., 2010); the exceptions are July 1975 and, as noted be-
fore, August 2016. Note that the GEV analysis in Sect. 3.2
was based on annual maxima, for which the ranked extreme

events are different than the ones shown in Fig. 8 (these are
9 of the top 14 events when all data are taken into account;
ranks 1 and 2 are the same).

A similar figure for FLOR-FA is included in Fig. 9. We
now show the 18 most extreme events (approximate return
period 3530/18≈ 200 years) in FLOR-FA. The return period
in the model for these events is much larger than the return
period for the observed events in the CPC analysis (approxi-
mate return period 69/9≈ 8 years). Despite the negative bias
of precipitation extreme intensity (Sect. 4.1), the precipita-
tion sums for these events are therefore larger than those in
the observed data. All events are associated with a low pres-
sure system, of which eight (44 %, orange tracks in Fig. 9)
are tropical cyclones based on the tropical cyclone tracking
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(a) 12–14 Aug 2957 max = 581 (b) 17–19 Aug 3207 max = 574 (c) 8–10 Aug 2622 max = 562

(d) 8–10 Jul 1614 max = 557 (e) 19–21 Aug 228 max = 553 (f) 21–23 Sep 1922 max = 534

(g) 13–15 Aug 1136 max = 530 (h) 26–28 Jul 572 max = 524 (i) 18–20 Jul 2941 max = 522

(j) 4–6 Sep 878 max = 517 (k) 21–23 Aug 749 max = 509 (l) 29–31 Jul 1520 max = 508

(m) 10–12 Jul 587 max = 508 (n) 13–15 Aug 889 max = 506 (o) 20–22 Aug 417 max = 503

(p) 20–22 Sep 3219 max = 503 (q) 18–20 Jul 938 max = 503 (r) 28–30 Jul 524 max = 499

0
50

100
150

200
250

300
400

500
mm

Figure 9. The same as Fig. 8 but for the top 18 maximum extreme precipitation events in the 1860 FLOR-FA static forcing experiment. Note
that years are model years and do not resemble dates on the real-world calendar and that the model provides precipitation information over
ocean grid boxes too.

methodology of Harris et al. (2016) as implemented in Mu-
rakami et al. (2015). Note that the low pressure systems of the
top four events do not classify as tropical cyclones, showing
the precipitation potential of non-tropical cyclone low pres-
sure systems in the model.

Because the HiFLOR 1990 static forcing experiment is of
smaller length, it is not possible to sample the 200-year re-
turn period event, as was done for FLOR-FA, adequately. In
Fig. 10, we show the six most extreme events (approximate
return period 280/6≈ 50 years; the top two events are sam-
ples of events with return periods of about 150 years). In Hi-
FLOR, the most extreme precipitation events are the result of
a tropical cyclone, though storm intensity (storms in Fig. 10a,
b are tropical storms; storms in Fig. 10c, d are hurricanes at
the time of landfall) is not related to resulting precipitation
magnitude. Note that the strongest event in HiFLOR exceeds

900 mm over a 3-day period, which is much stronger than the
observed values in south Louisiana.

In conclusion, though the precipitation extremes are of
smaller magnitude in both models and the annual cycle in
observations is not recovered well (Sect. 4.1), the meteoro-
logical system leading to these precipitation extremes in JAS
are realistic and resemble observed systems (Sect. 4.2).

5 Model analysis

In order to attribute the observed trend to external forcing,
we use global climate models that isolate the different forc-
ings. The model and experimental description can be found
in Sect. 2.2.
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(a) 23–25 Aug 151 max = 950 (b) 8–10 Jul 130 max = 431 (c) 16–18 Sep 29 max = 346

(d) 18–20 Aug 275 max = 338 (e) 2–4 Jul 157 max = 335 (f) 30 Aug–1 Sep 32 max = 333
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Figure 10. The same as Fig. 8 but now for the top six maximum extreme precipitation events in the 1990 HiFLOR static forcing experiment.
Note that years are model years and do not resemble dates on the real-world calendar and that the model provides precipitation information
over ocean grid boxes too.

5.1 FLOR-FA

A fit of all land grid boxes (0.5◦× 0.5◦, 23095 data points) to
a time-dependent GEV distribution is shown in Fig. 11. The
uncertainties take into account the dependencies by moving
spatial blocks of 7.7 grid points on average. In contrast to
the observations (Fig. 3), the distribution cannot be described
with a single GEV function: the extremes with return times
larger than about 100 years (80 mm day−1) diverge from the
fit that is determined mainly by the less extreme precipita-
tion events. This so-called “double population” problem re-
sults from different meteorological mechanisms for extreme
events. We therefore cannot use this fit for attribution.

Taking the spatial maximum of all grid boxes selects only
the high end of the distribution. Figure 12a, c show the GEV
fit to these extremes using data for simulated years 1861–
2015. The fit is still not completely satisfactory as the highest
five events (all in the early years of the experiments) fall on
the upper boundary of the 95 % CI around the fit to the rest of
the distribution. Due to this, the shape parameter ξ and scale
parameter σ of the GEV distribution are higher than they are
in the observations. Because of model bias, we define our
event to have the same return period as the gridded observa-
tions in 2016 (around 30 years, 115 mm day−1). This gives a
trend in this model that is significantly greater than zero at
p < 0.05 (one-sided). However, the factor of 1.3 (CI 1.0–1.9)
increase in probability, corresponding to an increase in in-
tensity of 5 % (CI −1–14 %), is much less than the observed
one.

Assuming that the relationship with global mean surface
temperature does not change in the model world up to 2100,
in spite of a different mix of anthropogenic forcings (green-
house gases and aerosols), we can improve the signal-to-
noise ratio of the fit by using all data in the variable forcing
experiment (Fig. 12b, d). For the spatial and annual maxi-
mum of 3-day averaged precipitation, this gives an increase
in probability of a factor of 1.8 (CI 1.4–2.0) corresponding
to an increase in intensity of 11 % (CI 7–12 %) up to now.

Analogous analyses but for the season JAS show similar
results, although with larger error margins. We looked for an
effect of ENSO in the long static forcing experiment in the
same way as in the observations. This does not show any
influence of El Niño averaged over the 12 months of July–
June preceding the year of extreme precipitation events.

5.2 HiFLOR

The HiFLOR model at a higher 25 km resolution has a more
realistic seasonal cycle but underestimates extreme precipi-
tation by 25 % for a 1-in-1-year event and by 35 % for 1-in-
1000-year extremes. We correct for this bias as we did for the
FLOR-FA experiment (the 30-year event is 103 mm day−1).
We concatenated the four static forcing experiments that we
have available, leaving out the first 20 years of each, to create
a 655-year record. To decrease dependencies, we averaged
2× 2 grid boxes into a 0.5◦ grid; this results in each grid box
being correlated with 10.3 others with r>1/e on average.

As was found for FLOR-FA, the GEV fit to all grid points
results in a double population; therefore, we disregard that
analysis and instead focus on the spatial maximum precipita-
tion extreme. Similar for FLOR-FA, taking the spatial maxi-
mum of this 50 km data set selects mainly events in the more
extreme population and does give a good fit to the GEV dis-
tribution (Fig. 13). The outlier event is a tropical cyclone in
the 1990 static forcing event that was discussed in Sect. 4.2
(Fig. 10a). The external forcing, which is the only change
between the static forcing experiments, causes an increase in
probability of a 103 mm or stronger event of a factor of 2.0
(CI 1.4–2.5), in agreement with the FLOR-FA experiment up
to 2100 (Fig. 12b, d). This corresponds to an increase in in-
tensity of 10 % (CI 5–12 %).

An analysis of these data, using the annual averaged de-
trended Niño 3.4 index lagged by 6 months as a covari-
ate, shows a relatively strong influence of El Niño in this
model, with an increase in probability from the year follow-
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Figure 11. The same as Fig. 4 but for the annual maximum 3-day average precipitation in the FLOR-FA variable forcing experiment (based
on the complete experiment, 1861–2100).
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(a) FLOR-FA variable forcing 1861– 2015: location parameter
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(b) FLOR-FA variable forcing 1861– 2100: location parameter
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(c) FLOR-FA variable forcing 1861– 2015: return period
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Figure 12. The same as Fig. 4 but for the annual and spatial maximum 3-day average precipitation in the FLOR-FA variable forcing
experiment, with (a, c) taking into account years 1861–2015 and (b, d) taking into account 1861–2100.

ing strongest La Niña to the strongest El Niño of a factor of
about 4.2 (CI 1.7–6.7).

We followed the same procedure on the six ensemble
members of the variable forcing HiFLOR experiment (1971–
2015). These simulations do not have a negative bias in
extreme precipitation. The restored SSTs eliminate a 2 K
cold bias in the subtropical Atlantic that is present in the
static forcing experiments, which may have caused the bias
in precipitation extremes on the central US Gulf Coast in
those simulations. Again there is one outlier event with
452.8 mm day−1 over 3 days (1351 mm total).

The spatial and annual maximum of 3-day averaged ex-
treme precipitation increases by a factor of 1.8 (CI 1.2–3.3)
in these experiments over the period 1971–2015, correspond-
ing to a change in intensity of 14 % (CI 4–27 %; Fig. 14).

Although the restoring of SSTs increases the fidelity of the
simulation, it also includes the non-forced natural variability
of the real world, so these numbers do not isolate the forced
change but show the full change including the effects of nat-
ural variability. Assuming these are small compared to the
trend, we can extrapolate to the full change since 1900; the
period 1971–2015 only includes about two-thirds of global
warming since pre-industrial times. This translates to a fac-
tor of 2.4 (CI 1.3–6) increase in probability and 22 % (CI 6–
41 %) in intensity, which is very similar to the trend found in
the observational data.

Analyses of the season JAS show similar to somewhat
smaller trends, but with larger error margins, overlapping the
all-year error margins.
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(a) HiFLOR static forcing: location parameter
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Figure 13. The same as Fig. 4 but for the annual and spatial maximum 3-day average precipitation in the HiFLOR static forcing experiments.
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(a) HiFLOR variable forcing: location parameter
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Figure 14. The same as Fig. 4 but for the annual and spatial maximum 3-day average precipitation in the HiFLOR variable forcing restored
SST experiments.

6 Summary

In this section, we summarize the principal observational and
model-based results as described in Sects. 3 and 5. We have
analyzed two observational data products (GHCN-D point
station data and CPC 0.25◦× 0.25◦ gridded analysis), to es-
timate the probability and changes in probability and inten-
sity of a 3-day precipitation event as large as that observed
in south Louisiana in 2016. The analysis was confined to
the central US Gulf Coast (29–31◦ N, 85–95◦W) and relied
on time-dependent GEV fits to the data. First, we investi-
gated probabilities and changes at a single station, i.e., the
probability of such an event at a fixed place in the region.
Second, we investigated regional probabilities and changes,
i.e., the probability of such an event anywhere in the region.
The spatial scale of the most extreme precipitation events
is significantly smaller than the region considered; there-
fore, the second probability is lower than the first. To at-
tribute the observed changes to forced anthropogenic climate
change, we repeat the analysis using high-resolution global
climate model data from GFDL FLOR-FA and GFDL Hi-
FLOR. GEV fits for the local analysis were unsatisfactory;
therefore, we only report the regional change in probabili-
ties.

The expected return period of a comparable 3-day precip-
itation event at a single station as high as the maximum ob-
served is 450 to 1450 years (best estimate is 550 years). Re-
turn periods like these are often written as a 1-in-1000-year
event. The return time for observing an event anywhere in
the region is lower: between 11 and 110 years (best estimate
is 30 years). All observational analyses found clear positive
trends, with an increase in probability for the regional event
of about a factor of 6.3 (97.5 % certain more than 2.1) and an
increase in intensity of 12 to 35 % (Table 3). Estimates based
on CPC gridded data are comparable but have larger ranges
due to the shorter period of data availability.

The sensitivity of precipitation extremes from both mod-
els is consistent with that estimated from the gridded obser-
vations. The lower-resolution FLOR-FA model shows lower
trends than the HiFLOR model. For the HiFLOR model, the
sensitivity estimated from the SST-restored experiment for
1971–2015 is larger than that from the coupled simulations.
Taking into account all modeling results, the probability of an
event like the one in south Louisiana in 2016 has increased
at least by a factor of 1.4 due to radiative forcing; the two
HiFLOR experiments and the analysis of the full data set
from FLOR-FA suggest central values close to a doubling
of probability. Such an increase in probability may be ex-
plained as follows: what used to be an event with a return
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Table 3. Summary of observed (first two rows) and modeled (third row and down) changes in regional rainfall extremes in the central US
Gulf Coast. Note that the modeled changes can be attributed to anthropogenic climate change.

Data source (years used for calibration) Baseline regional return Years change Change of return period Change in intensity of regional
period for 2016 event calculated in present day over 30-year return event in 2016
(95 % confidence range, over given years (95 % since beginning of record
observations only) confidence range) (95 % confidence range)

GHCN-D rain gauges, minimum 80-year data (1930–2016) 30 years (11 . . . 110) 1930–2016 6.3× (2.1 . . . 50) +25 % (12 % . . . 35 %)
CPC 0.25◦× 0.25◦ gridded data (1948–2016) 25 years (9 . . . 200) 1948–2016 5.4× (1.1 . . . 60) +15 % (0.4 % . . . 30 %)
FLOR-FA variable forcing experiment (1861–2015) 1900–2016 1.3× (1.0 . . . 1.9) +5 % (−0.5 . . . 14 %)
FLOR-FA variable forcing experiment (1861–2100) 1900–2016 1.8× (1.4 . . . 2.0) +11 % (7 % . . . 12 %)
HiFLOR static forcing experiment (1860, 1940, 1990, 2015) 1860–2015 2.0× (1.4 . . . 2.5) +10 % (5 % . . . 12 %)
HiFLOR variable forcing experiment (1971–2015), 1900–2015 2.4× (1.3 . . . 8) +22 % (6 % . . . 41 %)
extrapolated to 1900–2015

time of 100 years should now be expected to occur, on aver-
age, once every 70 years or likely even more frequently. This
trend is expected to continue over the 21st century as past
and projected future greenhouse forcing continues to warm
the planet.

The evidence for an influence of the strong 2015/2016 El
Niño increasing the probability of the 2016 event is equiv-
ocal. The full station data set shows a statistically signif-
icant but small increase in probability, but we do not find
the same for the spatial maximum, which represents the
strongest events. The FLOR-FA model similarly does not
have an ENSO effect, whereas the HiFLOR model again
shows a higher probability after a large El Niño. We have
found some evidence for decadal Atlantic variability affect-
ing precipitation in the observations, which would have de-
creased the likelihood in 2016 if confirmed.

7 Discussion

We have presented a rapid attribution to climate change and
climate variability of the south Louisiana intense precipita-
tion event. Here, we lay out the crucial assumptions made to
conduct our assessment, further lines of inquiry to investigate
the validity of the crucial assumptions and the sensitivity of
our results to changes in these assumptions, suggestions for
further study on related topics not investigated here and ques-
tions that arise from this work. Finally, we note some societal
impacts of the findings.

7.1 Crucial assumptions

In performing these analyses, we have made the following
crucial assumptions about the statistical distribution of pre-
cipitation extremes, the observations, the relationship be-
tween temperature and precipitation extremes and the mod-
els. We have tested the sensitivity of our results to some of
these assumptions in the results sections (Sects. 3–5) and dis-
cuss them below.

1. We assume that the local annual maxima of 3-day av-
eraged precipitation over the region of analysis (29–

31◦ N, 85–95◦W) can be grouped together and that their
statistical distribution follows a GEV distribution. Un-
derlying this is the assumption that the region has homo-
geneous extreme precipitation characteristics (Fig. 1f).
Furthermore, we assume that all the annual maxima of
3-day averaged precipitation are drawn from the same
statistical distribution, in spite of the many different
mechanisms that led to extreme precipitation in this re-
gion, and that this distribution can be represented well
by a GEV distribution. We further assume that the spa-
tial maximum over the region can also be described by
a GEV.

2. We assume that analyzing all seasons together provides
a fuller distribution of the population of extreme pre-
cipitation events than isolating the analysis to seasons
proximate to August (the month in which the south
Louisiana event occurred). In part, the choice to ana-
lyze annual extreme events was motivated by the fact
that a variety of meteorological phenomena can lead to
extreme precipitation in this region, flooding can occur
in any season and precipitation extremes may change in
various seasons (Lehmann et al., 2015; Van der Wiel et
al., 2016). All extreme value analyses were repeated fo-
cusing only on the JAS season and the qualitative nature
of the results was the same as those presented.

3. We assume that the inhomogeneities in point station
data due to station changes, incomplete records and geo-
graphic coverage are smaller than the trends and have no
coherent sign. We have checked this by performing the
analysis on all stations and for a subset of stations with
long (at least 80-year) records and sufficient (0.5◦) spa-
tial separation.

4. We assume that the methods that create the gridded ob-
servationally based precipitation data result in an accu-
rate representation of 3-day average precipitation at the
grid scale. The decorrelation scale of 3-day precipitation
is about twice the grid scale, so the largest uncertainty is
the inhomogeneous distribution of the gauge stations in
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Figure 15. Summary of observed (GHCN-D, CPC, blue colors) and modeled (FLOR-FA, HiFLOR, yellow, red color) changes in regional
precipitation extremes in the central US Gulf Coast. Ranges written in black are the time periods for which the change is shown over.
Calibration for the calculations is done over separate time periods for noted models. See Table 3 for specific numeric values.

space and time. A comparison of the results with point
station data shows that the differences are not large.

5. We assume that, for the assessment of trends in GEV
statistics, global mean surface temperature represents
a relevant covariate to capture the a priori expected
connection between precipitation extremes and tem-
perature (e.g., O’Gorman, 2015). A physical motiva-
tion for this expected connection is the dependence
of the saturation-specific humidity of air on temper-
ature through Clausius–Clapeyron (see Sect. 1). The
underlying assumption is that multidecadal tempera-
ture changes exhibit “pattern scaling”, such that global
mean temperature change is a sufficient parameter to
describe the long-term changes of temperature; fur-
thermore, global mean temperature helps increase the
signal-to-noise ratio of fits to temperature changes. If
there is substantial spatial heterogeneity to temperature
changes on multidecadal timescales, the assumption
that global mean temperature is the relevant metric be-
comes suboptimal. Furthermore, if dynamical changes
(changes in the statistics of storms, changes in the dom-
inant moisture sources for extremes, etc.) dominate the
observed multidecadal precipitation extreme changes,
this assumption will also be suboptimal.

6. We assume that the probability density function of pre-
cipitation extremes scales with a covariate, for exam-
ple, (smoothed) global mean temperature, and does not
exhibit other changes in shape. This assumption is sup-
ported by large-sample statistics from modeling experi-
ments such as Weather@Home (Massey et al., 2015) in
other regions, but it is not a priori obvious that these re-
sults should also hold for the central US Gulf Coast with
its wide variety of weather phenomena causing extreme
precipitation. Furthermore, the Massey et al. (2015) re-
sults were from models of resolution too low to resolve
many of the meteorological phenomena that led to ex-

treme precipitation (e.g., tropical cyclones) in this re-
gion.

7. We assume that, beyond an initial rapid (∼ 20-year) ad-
justment to different static radiative forcings, the statis-
tics of precipitation extremes in the static forcing model
experiments depend on global mean temperature in the
same way as the changes arising from slow drift due to
top-of-the-atmosphere radiative disequilibria and slow
ocean adjustment. The latter changes are smaller than
the forced trend, so the impact of slow model drift on
the results is small.

8. We assume that the CMIP5 historical forcings (1860–
2005) and RCP4.5 forcings (2005–2100), as imple-
mented in the models, are sufficiently accurate repre-
sentations of the actual changes in radiative forcing that
occurred in the real climate system to allow meaning-
ful comparison of modeled changes in precipitation ex-
tremes to those observed.

9. We assume that the FLOR-FA and HiFLOR modeled re-
sponses to changes in radiative forcing are meaningful
estimates of the sensitivity of precipitation extremes in
the real climate system, since these models capture mul-
tiple physical factors affecting precipitation extremes in
a physically based and internally consistent framework.
This assumption is motivated in part because of the abil-
ity of these models to simulate large-scale precipitation
and temperature over land (e.g., Van der Wiel et al.,
2016; Delworth et al., 2015; Jia et al., 2015, 2016), pre-
cipitation extremes over the US (Van der Wiel et al.,
2016), modes of climate variability (e.g., Vecchi et al.,
2014; Murakami et al., 2015), the meteorological phe-
nomena that led to precipitation extremes and their re-
lationship to modes of climate variability (e.g., Vecchi
et al., 2014; Krishnamurthy et al., 2015; Murakami et
al., 2015, 2016; Zhang et al., 2015, 2016; Pascale et al.,
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2016), and that these models show skill at seasonal pre-
dictions of large-scale climate, regional hydrometeorol-
ogy and the statistics of weather extremes across a broad
range of climatic regimes (e.g., Vecchi et al., 2014; Jia et
al., 2015, 2016; Yang et al., 2015; Msadek et al., 2014;
Murakami et al., 2015, 2016). However, it is important
to note that climate models can show a range of global
and regional climate sensitivities to changing radiative
forcing (e.g., Kirtman et al., 2013; Collins et al., 2013).

These assumptions were crucial to enable a rapid assess-
ment of the climate context of the extreme precipitation of
the August 2016 south Louisiana event. Subsequent analyses
should further assess the validity of these assumptions and
the quantitative impact of failures in their validity. Below we
outline our present evaluation of the implications of these
choices and potential areas of further research.

Sensitivity experiments should be produced by varying the
parameters of our study. We did not conduct analysis of how
the size of our defined box for the central US Gulf Coast
affects our results (crucial assumption 1). If the region is al-
tered to remove points that have greater risks relative to those
included, the findings may change. Changes in extreme pre-
cipitation risks in the central US Gulf Coast should not be
applied elsewhere without further investigation. Temporally,
we were able to validate the seasonal distribution of precipi-
tation extremes in models and observations (Sect. 4.1) and re-
did the analysis for JAS only, which gave larger uncertainties
and somewhat smaller trends (crucial assumption 2). Future
work could further quantify seasonal differences in extremes
and their response to climate forcing. Similarly, to sample the
spread in sensitivity to future RCP forcings (crucial assump-
tion 8, used for any modeled years beyond 2005), our results
may be revised with different climate forcings. For the near
term, however, this is likely not an issue in HiFLOR (used
to produce climates for 2005–2015 in the static forcing and
nudged SST runs) as climate variability tends to be greater
than the climate response to different scenarios during this
time period (Forster et al., 2013; Hawkins and Sutton, 2009;
Kirtman et al., 2013) but may affect future climate results in
the FLOR-FA variable forcing experiment at the end of the
century (in 2100; Hawkins and Sutton, 2009). Furthermore,
the appropriateness of GEV fits in general should be tested
(crucial assumptions 1 and 6).

Sensitivity experiments of our results to model bias and in-
tegration length (or length of the observed record) should be
produced (crucial assumptions 3 and 7). Short records limit
the reliability of the statistics of precipitation extremes. This
is important for our model validation of the annual cycle of
extremes (Sect. 4.1) and for the comparison of modeled and
observed GEV fits (Sect. 5). The statistics of precipitation
extremes in HiFLOR are closer to those observed than the
statistics in FLOR-FA. However, we note that the model ex-
periments with FLOR-FA are significantly longer and there-
fore provide better statistics of its (biased) climate than the

experiments with HiFLOR or the observed record. It can-
not thus be fully excluded that the double distribution of ex-
tremes in FLOR-FA or the large peak in JAS in extreme pre-
cipitation intensity is purely a result of model bias.

A portion of the beginning of the static forcing experi-
ments have been disregarded to allow the model to spin up in
response to radiative forcing. GEV fits were originally cal-
culated by disregarding the first 10 years of data to allow for
spinup but were extended to 20 years to provide the simulated
climate more time to approach equilibrium (crucial assump-
tion 7). The results are only altered slightly by this sensitivity
test. Given the length of the available ensemble suite of static
forcing experiments, disregarding more years in the begin-
ning of the simulation would reduce our ability to sample ex-
tremes. With longer integrations of static forcing experiments
and additional ensemble members, we would have more in-
formation to assess how model spinup may affect our results.
Similarly, longer integrations would allow for an assessment
of the impact of model drift due to ocean adjustment (crucial
assumption 7).

The attribution to climate change presented here depends
on our assumption that changes in precipitation extremes
scale with global mean temperature and do not arise from
changes in the shape of their underlying distribution (crucial
assumptions 5 and 6). The thermodynamic basis of this as-
sumption is based on a large body of research (O’Gorman,
2015); however, as noted before, there is a large variety of
synoptic systems that may cause precipitation extremes in
the Gulf Coast region. It is not obvious that possible impacts
of changes in synoptic weather patterns scale with global
mean temperatures. For example, the frequency, track lo-
cation and/or intensity of tropical cyclones (responsible for
seven out of the nine most extreme events in JAS related to
tropical cyclones; Fig. 8) can each change in complex ways
that need not scale with each other or global mean temper-
ature (e.g., Vecchi and Soden 2007; Murakami and Wang,
2010; Emanuel and Sobel, 2013; Emanuel et al., 2013; Knut-
son et al., 2013; Vecchi et al., 2013; Walsh et al., 2015) and
could cause changes to the statistics of extreme rainfall in
the central US Gulf Coast. Further research must investi-
gate what the impact of dynamic changes (e.g., frequency of
occurrence of various synoptic systems, dominant moisture
sources, precipitation efficiency) is on the presented trend of
precipitation extremes.

To investigate the sensitivity of the results to the chosen
observational data sets (both based on rain gauge measure-
ments; crucial assumptions 3 and 4), we suggest repeating the
current analysis with an independent observational estimate
of current and historical precipitation along the Gulf Coast
(e.g., estimates based on satellite data). Furthermore, though
we use two global climate models (FLOR-FA and HiFLOR;
crucial assumptions 7 and 9) and various experimental se-
tups (static radiative forcing, time-varying radiative forcing
and restoring observed SST variability), the models are part
of the same NOAA/GFDL family. Consequently, they exhibit
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similar patterns of (surface temperature) bias and rely on the
same parameterization schemes for precipitation. Further in-
quiry for understanding model-specific biases that may im-
pact the results may still be warranted. For example, there
is a North Atlantic cold bias in the models, thought to be
connected in part to inadequate eddy parameterizations and
a resulting cloud feedback (Delworth et al., 2006, 2012; Vec-
chi et al., 2014; Murakami et al., 2015). This may be the
source of higher magnitudes of modeled extreme precipi-
tation found due to climate variability in the HiFLOR re-
stored SST experiments. An assessment using different cli-
mate models would therefore add value to allow for a sam-
pling of risk across models, as well as across experimental
setups. These will be available shortly in the HighResMIP
project (Haarsma et al., 2016).

7.2 Future work and broader impacts

As described in the introduction and methods, we have pur-
posefully focused our present assessment on one aspect of
the flooding problem: the risk of extreme precipitation events
that have the potential to produce inland flooding. We have
provided provisional stream gauge data in the introduction
(Fig. 2) to illustrate the effect of the August 2016 event but
have not examined flood risks in the region from stream
gauge data directly. Part of the reason for this is that real-time
stream gauge data are provisional and subject to revision,
which can be exacerbated during a flood when gauges can be
overtopped and have missing data due to high water volumes
or stream gauge malfunctions (Rantz, 1982). The USGS
advises users to cautiously consider the use of provisional
stream gauge data for decision making (official USGS pro-
visional policy available at https://water.usgs.gov/wateralert/
provisional/). A complimentary modeling study of land sur-
face conditions and interactions with the river environment
also requires a more local modeling approach, potentially
with a hydrologic model with information on the river system
and small-scale water processes and conceivably including
an estimate of the impact of direct human impacts (through
urbanization, water diversion and management, etc.). Under
our time constraints, data access and present capabilities of
our climate models, this was presently was not feasible.

It is important to distinguish extreme precipitation events
that are the topic of this study, motivated by the August 2016
rain event that led to devastating “freshwater” or “inland”
flooding in south Louisiana, from events that led to “coastal”
or “saltwater” flooding. In particular, the climate change con-
text of saltwater flooding must include an assessment of the
regional sea level change contributions and meteorological
conditions that can influence these types of events (e.g., Kats-
man et al., 2008; Sterl et al., 2012; Lin et al., 2012, 2014;
Little et al., 2015). While certain meteorological conditions,
such as landfalling tropical cyclones, can lead to both fresh-
water and saltwater flooding (e.g., Lin et al., 2012; Villarini
et al., 2014), the assessments and discussions presented here

are only relevant to extreme rainfall events that have the po-
tential to initiate inland flooding; we do not address changes
in storm surges, nuisance flooding (Moftakhari et al., 2015)
or other saltwater flooding events.

Dependence of the statics of extreme precipitation events
in the central US Gulf Coast on large-scale climate drivers
could provide a scientific basis for seasonal predictions of
the odds of these events, much as is now regularly done for
the statistics of hurricanes. However, as we show in Sect. 3.3,
we are unable to find strong connections between the statis-
tics of these extreme precipitation events and modes of SST
variability (e.g., ENSO), which suggests the possibility for
limited seasonal predictability for these events beyond the
multidecadal increase in probability from long-term climate
warming. However, potential sources of predictability may
be uncovered by future refined analyses.

The extent to which the changing risk of extreme rainfall
events like that in south Louisiana has implications for stake-
holders, such as homeowners, local and federal governments,
the humanitarian system and the insurance industry, will de-
pend on details of the exposure, vulnerability and the dis-
aster preparedness and response strategies available to each.
Changes to the physical system are a key factor in adaptation
and decisions, but these factors operate in a complex land-
scape. Through a disaster management lens, the increased
frequency of this type of event found in this study may place
strains on humanitarian responders and institutions now and
in the future. Knowing the change in return periods of the
most extreme events can help to provide insight into how
humanitarian institutions can evolve to be prepared for the
future, in addition to adapting to a broader trend of increas-
ing hydrometeorological disasters globally (CRED, 2015). A
worthwhile topic to explore in further assessment of this and
related events is the extent to which public and media per-
ception both before (local preparedness, willingness to evac-
uate) and after (nationwide media coverage and awareness of
impacts) may have been impacted by the fact that the storm
was not named. However, there is an insufficiency of peer-
reviewed literature on this topic, even as media outlets in the
UK and US have started naming winter storms following the
German example (Cutlip, 2013; van Oldenborgh et al., 2015).

It is essential to note that this analysis has pursued an as-
sessment of the climate change context of extreme precipita-
tion events (a climate attribution study) in which we evalu-
ate the impact of climate conditions and changes in radiative
forcing on the probability of extreme rainfall events in south
Louisiana and the central US Gulf Coast. This analysis is
fundamentally different in nature from (and complementary
to) assessments of the synoptic chain of events that led to the
particular Louisiana extreme precipitation event in August
2016 (we would label that “synoptic attribution”). Synoptic
attribution of the event generally involves a clear chain of
events that led to the extreme rainfall event in a relatively de-
terministic fashion. Meanwhile, the climate attribution pre-
sented here is fundamentally probabilistic. Although we rec-
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ognize that the synoptic context of this particular extreme
event is unique (in fact, all events are unique in detail), we
have sought to understand the climate context of the prob-
abilities of a class of events that causes extreme precipita-
tion in the central US Gulf Coast of which this event (flood-
inducing extreme precipitation in south Louisiana) is a mem-
ber (Otto et al., 2016). Furthermore, it is possible to assess
the climatic context in more detail by assessing more proxi-
mate climate drivers than global mean temperature or radia-
tive forcing (e.g., by looking at the impact of particular pat-
terns of SST) or by a more refined assessment of the detailed
impact of the superposition of modes of climate variability
and multidecadal climate change (e.g., Delworth et al., 2015;
Jia et al., 2016). For any particular event, a spectrum of at-
tribution studies (from purely synoptic to purely climatic)
could, and perhaps should, be pursued in order to unravel
the various factors relevant to that event. Moreover, some of
these studies are feasible at rapid attribution timescales while
others require more time and focused resources to produce
the specific and targeted modeling experiments and observa-
tional analyses.

Climate attribution studies such as this one can only be
performed with pre-existing multicentennial global simula-
tions with high spatial resolution models. This allowed us
to efficiently assess the impact of radiative forcing changes
on regional extreme precipitation events. These simulations,
obviously, necessitated the long-term research aimed at de-
veloping these high-resolution models (e.g., Putman and Lin,
2007; Delworth et al., 2012; Vecchi et al., 2014; Murakami et
al., 2015). Furthermore, this work was enabled by a body of
work using these models that provided the necessary under-
standing of the characteristics and fidelity of these models to
simulate large-scale and regional climate and weather events
over a broad range of scales and phenomena (e.g., Vecchi et
al., 2014; Msadek et al., 2014; Delworth et al., 2015; Jia et
al., 2015, 2016; Murakami et al., 2015, 2016; Krishnamurthy
et al., 2015; Zhang et al., 2015, 2016; Pascale et al., 2016;
Van der Wiel et al., 2016).

In particular, this paper follows on a recent analysis of
the climatology and CO2 sensitivity of extreme precipitation
events over the US in these same models, showing that FLOR
and HiFLOR in particular are uniquely capable of captur-
ing central US Gulf Coast precipitation extremes, which have
large biases in coarser-resolution models (Van der Wiel et al.,
2016). Though the analysis of extreme precipitation events in
Van der Wiel et al. (2016) is of a different nature (focusing
on much lower return period events, using different statistical
methods and focusing at the grid-point scale rather than re-
gional events), the results presented there are consistent with
the current analysis. The previous paper showed that in re-
sponse to increasing CO2 levels in the atmosphere, precipi-
tation extremes along the central US Gulf Coast increase in
intensity, with less likely events exhibiting larger fractional
intensity increases.

We have here sought to provide a scientifically rigorous
rapid assessment of the climate context of this precipitation
event, which had tragic consequences, to provide meaning-
ful grounding to the public discussions of this event, given
both the intense interest in this specific event and our ongo-
ing work on the general subject of climate and extremes (and
precipitation extremes in the US in particular; Van der Wiel
et al., 2016). We hope that this study, including our explicit
discussion of the assumptions needed to pursue this accel-
erated assessment, will help push the scientific conversation
forward to improve our understanding of the risks and re-
turn periods of extreme precipitation in the central US Gulf
Coast. The field of rapid attribution analysis is still nascent
and may one day lead to such assessments being the normal
course of action in response to an extreme event, in order to
help provide scientific basis for real-time discussions and in
longer-term disaster response and rebuilding. Until that time,
studies such as this will likely only be done for select regions
and event types where there are sufficient easily accessible
data, and a team of scientists with the necessary expertise
and ability to make time in their schedules to provide a rapid
assessment. We expect that these early efforts at event attri-
bution will expand our knowledge and capabilities on this
subject and facilitate further inquiry.

8 Data availability

NOAA GFDL climate model data are not readily available
globally at all grid points and for all simulations owing to the
size of daily global climate model output for high-resolution
models with thousands of years of simulations (on the order
of hundreds of terabytes). We have made the precipitation
data for the central US Gulf Coast, global temperature and
ENSO data that were used in this study available at the Cli-
mate Explorer: http://climexp.knmi.nl/selectfield_att.cgi.
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