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Abstract—In this paper, we considers the optimal
portfolio strategies and expected wealth with stochas-
tic cash flows under inflation protection for an invest-
ment company (IC). The IC trade on a complete dif-
fusion model, receives a stochastic cash inflows and
pays a stochastic outflows to its holder. The cash
inflows are invested into a market that is character-
ized by a cash account, an inflation-linked bond and a
stock. The inflation risks associated with the invest-
ment could be hedged by investing in inflation-linked
bond. The utility function is assumed to be a quasi-
concave function of the value of wealth of the IC. It
was found that as the market evolve, parts of the
inflation-linked bond and stock portfolio values should
be transferred to cash account. It was also found that
the portfolio processes involved inter-temporal hedg-
ing terms that offset any shock to both the stochastic
cash inflows and cash outflows.

Index Terms—optimal portfolios, stochastic cash

flows, cash inflows, cash outflows, inflation protection,

quasi-concave.

AMS Subject Classifications. 91B28, 91B30, 91B70,
93E20.

I. INTRODUCTION

This paper consider optimal portfolios and investment
strategies for IC who received continuous-time stochastic
cash inflows and pays continuously a stochastic cash out-
flows to its holder. The cash inflows are invested into
a cash account, an inflation-linked bond and a stock.
Inflation-linked bonds are bonds with interest rates that
varies according to inflation. An inflation-linked bond,
for example, may pay a fixed coupon plus an additional
coupon with the amount adjusted periodically according
to some inflation indicator, such as the Consumer Price
Index. If these bonds are held to maturity, then the in-
vestor guarantees that the return will exceed the rate of
inflation. Inflation-linked bonds exist to provide a low-
risk investment vehicle in which the return is guaranteed
not to fall below the rate of inflation. They are also called
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indexed bonds. Inflation-linked bonds are generally less
risky than stocks, as they attract interest at a predeter-
mined rate and have guaranteed returns. Inflation-linked
bonds can be used to hedge inflation risk.
A non-linear partial differential equation (Hamilton-
Jacobi-Equation (HJB)) was derived from the expected
utility of wealth and then, the optimal portfolio values
for the IC were determined using power utility function.
It was assumed that the underlying assets, cash inflows
and cash outflows are driven by a standard geometric
Brownian motion with constant drifts and volatilities.
Today, inflation risk is of increase. As a result of tremen-
dous increase in inflation risk in nations economy, invest-
ment companies have started investing optimally, the in-
flows paid by the holders into inflation-linked bonds. Al-
though, according to [11], the demand in inflation-linked
bonds among private investors is rather low. It is there-
fore, strongly recommended for firms whose profits are
indeed negatively correlated with inflation. Example of
such firms are insurance companies, pension funds com-
panies, e.t.c.
In related literature, [4] examined the rationale, nature
and financial consequences of two alternative approaches
to portfolio regulations for the long-term institutional in-
vestor sectors of life insurance and pension funds. [3] con-
sidered the deterministic life styling (the gradual switch
from equities to bonds according to preset rules) which
is a popular asset allocation strategy during the accu-
mulation phase of a defined contribution pension plans
which is designed to protect the pension funds from a
catastrophic fall in the stock market just prior to retire-
ment. They shown that this strategy, although easy to
understand and implement can be highly suboptimal. [1]
modeled and analyzed the ex ante liquidity premium de-
manded by the holder of an ”illiquid annuity”. The an-
nuity is an insurance product that is similar to a pension
savings account with both an accumulation and ”decu-
mulation” phase. They computed the yield needed to
compensate for the utility welfare loss, which is induced
by the inability to re-balance and maintain an optimal
portfolio when holding an annuity. [5],[6],[7] considered
the optimal design of the minimum guarantee in a de-
fined contribution pension fund scheme. They studied
the investment in the financial market by assuring that
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the pension fund optimizes its retribution which is a part
of the surplus, that is the difference between the pension
fund value and the guarantee. [17] considered the optimal
management and inflation protection strategy for defined
contribution pension plans using Martingale approach.
They derived an analytical expression for the optimal
strategy and expresses it in terms of observable market
variables. Our aim is to determine the portfolio values
and expected terminal wealth for the IC. Also, to deter-
mine to which extent cash inflows and outflows should
be hedged. [13],[14],[15] studied the variational form of
classical portfolio strategy and expected wealth for a pen-
sion plan member. They assumed that the growth rate of
salary was linear function of time and that the the cash
inflow was stochastic.
The remainder of this paper is organized as follows. In
section 2, we present the problem formulation and finan-
cial market models. Section 3 presents the wealth dy-
namics of the IC. In section 4, we present the discounted
cash inflows and cash outflows processes, the definition of
present value of the expected flows of future cash inflows
process as well as the expected cash outflows process.
Section 5 present the dynamics of the values of the wealth
process for the IC. In section 6, we present the optimal
portfolio strategies for the IC. In section 7, we present
the optimal expected value of wealth at time t and at
the terminal period for the IC. Section 8 presents some
special cases arising from the problem. Finally, section 9
concludes the paper.

II. PROBLEM FORMULATION

Let (Ω,F , P) be a probability space. Let F(F) = {Ft :
t ∈ [0, T ]}, where Ft = σ(W I(t),WS(t) : s ≤ t),
the Brownian motions W (t) = (W I(t),WS(t))′ is a 2-
dimensional process, defined on a given filtered probabil-
ity space (Ω,F , F(F), P), t ∈ [0, T ], where P is the real
world probability measure, t the time period, T the ter-
minal time period. W I(t) is the Brownian motion with
respect to source of uncertainty arising from inflation and
WS(t) is the Brownian motion with respect to source of
uncertainty arising from the stock market. σS = (σS

1 , σS
2 )

and σI = (σI , 0) are the volatility vector of stock and
volatility vector of the inflation-linked bond with respect
to changes in WS(t) and W I(t). µ is the appreciation
rate for stock. Moreover, σS and σI referred to as the co-
efficients of the market and are progressively measurable
with respect to the filtration F .
We assume that the IC faces a market that is charac-
terized by a risk-free asset (cash account) and two risky
assets, all of whom are tradeable. In this paper, we allow
the stock price to be correlated to inflation. Also, we cor-
related the cash inflows and outflows to stock market in
other to determine the extent to which cash inflows and
outflows should be hedged. The dynamics of the under-
lying assets are given by (1) to (3)

dC(t) = rC(t)dt,
C(0) = 1 (1)

dS(t) = µS(t)dt + σS
1 S(t)dW I(t) + σS

2 S(t)dWS(t),
S(0) = s0 > 0

(2)
dB(t, Q(t)) = (r + σIθ

I)B(t, Q(t))dt + σIB(t, Q(t))dW I(t),
B(0) = b > 0

(3)
where,
r is the nominal interest rate,
θI is the price of inflation risk,
C(t) is the price process of the cash account at time t,
S(t) is stock price process at time t,
Q(t) is the inflation index at time t and has the dynam-
ics:
dQ(t) = E(q)Q(t)dt + σIQ(t)dW I(t),
where E(q) is the expected rate of inflation, which is the
difference between nominal interest rate, r and real in-
terest rate R (i.e. E(q) = r −R).
B(t, Q(t)) is the inflation-indexed bond price process at
time t.
Then, the volatility matrix

Σ :=
(

σI 0
σS

1 σS
2

)
(4)

corresponding to the two risky assets and satisfies
det(Σ) = σIσ

S
2 6= 0. Therefore, the market is complete

and there exists a unique market price θ satisfying

θ :=
(

θI

θS

)
=

 θI

µ− r − θIσS
1

σS
2

 (5)

where θS is the market price of stock risks and θI is the
market price of inflation risks (MPIR). We now define
the following exponential process which we assumed to
be Martingale in P:

Z(t) = exp(−θ′W (t)− 1
2
‖θ‖2t). (6)

where, W (t) = (W I(t),WS(t))′. We assume in this pa-
per that the cash inflows process ϕ(t) at time t and cash
outflows process L(t) at time t follow the dynamics, re-
spectively presented in (7) and (8).

dϕ(t) = ϕ(t)(ωdt + σϕ
1 dW I(t) + σϕ

2 dWS(t)),
ϕ(0) = ϕ0 > 0 (7)

dL(t) = L(t)(δdt + σL
1 dW I(t) + σL

2 dWS(t)),
L(0) = L0 > 0 (8)

where, ω > 0 is the expected growth rate of the cash in-
flows and σϕ

1 is the volatility caused by the source of infla-
tion, W I(t) and σϕ

2 is the volatility caused by the source
of uncertainty arises from the stock market, WS(t), and
δ > 0 is the expected growth rate of the cash outflows
and σL

1 is the volatility caused by the source of inflation,
W I(t) and σL

2 is the volatility caused by the source of
uncertainty arises from the stock market, WS(t).
We now define the cross correlation matrices
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Σϕ,S :=
(

σϕ
1 σS

1

σϕ
2 σS

2

)
,ΣL,S :=

(
σL

1 σS
1

σL
2 σS

2

)
,

ΣI,ϕ :=
(

σI σϕ
1

0 σϕ
2

)
,ΣI,L :=

(
σI σL

1

0 σL
2

)
,

ΣS,I :=
(

σS
1 σI

σS
2 0

)
.

Applying Itô Lemma on (7) and (8), we have the follow-
ing

ϕ(t) = ϕ0 exp((ω − 1
2
‖σϕ‖2)t + θ′W (t)), (9)

where, σϕ = (σϕ
1 , σϕ

2 )′.

L(t) = L0 exp((δ − 1
2
‖σL‖2)t + θ′W (t)), (10)

where, σL = (σL
1 , σL

2 )′.

III. THE WEALTH PROCESS

Let X∆,ϕ,L(t) be the wealth process at time t, where
∆(t) = (∆I(t),∆S(t)) is the portfolio process at time
t and ∆I(t) is the proportion of wealth invested in the
inflation-linked bond at time t and ∆S(t) is the pro-
portion of wealth invested in stock at time t. Then,
∆0(t) = 1 − ∆I(t) − ∆S(t) is the proportion of wealth
invested in cash account at time t.

Definition 1. The portfolio process ∆ is said to be self-
financing if the corresponding wealth process X∆,ϕ,L(t),
t ∈ [0, T ], satisfies

dX∆,ϕ,L(t) = ∆S(t)X∆,ϕ,L(t)
dS(t)
S(t)

+∆I(t)X∆,ϕ,L(t)
dB(t, Q(t))
B(t, Q(t))

+(1−∆S(t)−∆I(t))X∆,ϕ,L(t)
dC(t)
C(t)

+(ϕ(t)− L(t))dt,
X∆,ϕ,L(0) = x.

(11)

IV. DISCOUNTED CASH FLOW PROCESSES

Definition 2. The expected value of discounted future
cash inflows process is defined as

Ψ(t) = E[
∫ T

t

Λ(u)
Λ(t)

ϕ(u)du|F(t)], (12)

where, Λ(t) =
Z(t)
C(t)

= exp(−rt)Z(t) is the stochastic dis-

count factor which adjusts for nominal interest rate and
market price of risks, and E(.|F(t)) is a real world condi-
tional expectation with respect to the Brownian filtration
(F(t))t≥0. For detail on real world measure P, see [12],
[15], [16].

Proposition 1. Let Ψ(t) be the expected value of the
discounted future cash inflows (EVDFCI) process, then

Ψ(t) =
ϕ(t)
φ

(exp[φ(T − t)]− 1), (13)

where φ = ω − r − θϕ · θ.

Proof : By definition,

Ψ(t) = E[
∫ T

t

Λ(u)
Λ(t)

ϕ(u)du|F(t)]

= ϕ(t)E[
∫ T

t

Λ(u)ϕ(u)
Λ(t)ϕ(t)

du|F(t)].

But, the processes Λ(.) and ϕ(.) are geometric Brownian

motions and it follows that
Λ(u)ϕ(u)
Λ(t)ϕ(t)

is independent of

the Brownian filtration F(t), u ≥ t. Hence,

Ψ(t) = ϕ(t)E[
∫ T−t

0

Λ(s)
ϕ(s)
ϕ(0)

ds]

= ϕ(t)E[
∫ T−t

0

exp(−rs)Z(s) exp((ω

− 1
2
‖σϕ‖2)s + σϕ′W (s))ds]

= ϕ(t)E[
∫ T−t

0

exp(−rs− 1
2
‖θ‖2s− θ′W (s))

+ (ω − 1
2
‖σϕ‖2)s + σϕ′W (s))ds]

= ϕ(t)E[
∫ T−t

0

exp((ω − r)s exp(−1
2
(‖θ‖2

+ ‖σϕ‖2)s + (σϕ − θ)′W (s)ds]

= ϕ(t)E[
∫ T−t

0

exp((ω − r − σϕ · θ)s exp(−1
2
(‖σϕ

− θ‖2s + (σϕ − θ)′W (s)ds]

= ϕ(t)[
∫ T−t

0

exp(φs)ds]

where, φ = ω − r − σϕ · θ.
Therefore,

Ψ(t) =
ϕ(t)
φ

[exp(φ(T − t)− 1]. (14)

Proposition 1 tells us that the value of expected future
cash inflows process Ψ(t) is proportional to the instan-
taneous total cash inflows process ϕ(t). Observe that at
time T , the value of the inflow of cash is zero. This is
because the value Ψ0 has been invested while setting up
the investment.
Taking the differential of both sides of (14), we obtain

dΨ(t) = Ψ(t)[(r + σϕ
1 θI + σϕ

2 θS)dt + σϕ
1 dW I(t)

+σϕ
2 dWS(t)]− ϕ(t)dt.

(15)

Definition 3. The expected discounted cash outflows pro-
cess at time t is defined as

Φ(t) = E

[∫ T+t

t

Λ(u)
Λ(t)

L(u)du|F(t)

]
, T ≥ t. (16)

The contingent claim L(t) that matures at the stopping
time t ∈ [0, T ] is an F(t)-measurable non-negative payoff
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that possesses a finite expectation. As outlined in [14],
the value Φ(t) (the cash outflows process) can be obtained
at time t by the real-world pricing formula given in (16).

Proposition 2. Let Φ(t) be the expected discounted cash
outflows (EDCO) process, then

Φ(t) =
L(t)
β

(1− exp[−βT ]) , (17)

where β = δ − r − σL · θ.
Proof : By definition,

Φ(t) = E

[∫ T+t

t

Λ(u)
Λ(t)

L(u)du|F(t)

]

= L(t)E

[∫ T+t

t

Λ(u)L(u)
Λ(t)L(t)

du|F(t)

]
.

But, the processes Λ(.) and L(.) are geometric Brownian

motions and it follows that
Λ(u)L(u)
Λ(t)L(t)

is independent of

the Brownian filtration F(t), u ≥ t. Adopting change of
variables, we have

Φ(t) = L(t)E

[∫ T

0

Λ(τ)
L(τ)
L(0)

dτ

]

= L(t)E

[∫ T

0

exp(−rτ)Z(τ)
L(τ)
L(0)

dτ

]
Using (10), we have

Φ(t) = L(t)E[
∫ T

0

exp(−rτ)Z(τ) exp((δ

−1
2
‖σL‖2)τ + σL′W (τ))dτ ]

(18)

Applying parallelogram law on (18), we have

Φ(t) = L(t)E[
∫ T

0

exp(δ − r)τ exp((−1
2
‖σL

−θ‖2 − σL · θ)τ + (σL − θ)′W (τ))dτ ]
(19)

Simplifying, (19), we have

Φ(t) = L(t)E[
∫ T

0

exp(δ − r − σL · θ)τ exp((−1
2
‖σL

− θ‖2)τ + (σL − θ)′W (τ))dτ ]

= L(t)
∫ T

0

exp(δ − r − σL · θ)τdτ

= L(t)
∫ T

0

exp(βτ)dτ

where β = δ − r − σL · θ.
Therefore,

Φ(t) =
L(t)
β

[1− exp(−βT )]. (20)

Proposition 2 tells us that the expected discounted cash
outflows process Φ(t) is proportional to the instantaneous
total cash outflows process L(t).

Lemma 1. Let Φ(t) be the expected discounted cash out-
flows process, then

dΦ(t) = Φ(t)[αdt + σ1
LdW I(t) + σ2

LdWS(t)]− L(t)dt,

where α =
δ(1− exp(−βT )) + β

1− exp(−βT )
.

Proof : Taking the differential of both sides of (20), we
obtain

dΦ(t) =
(

1− exp(−βT )
β

)
dL(t)

=
(

1− exp(−βT )
β

)
L(t)((δ +

β

1− exp(−βT )
)dt

+ σ1
LdW I(t) + σ2

LdWS(t))− L(t)dt

=
(

1− exp(−βT )
β

)
L(t)(αdt

+ σ1
LdW I(t) + σ2

LdWS(t))− L(t)dt

Therefore,

dΦ(t) = Φ(t)(αdt + σ1
LdW I(t) + σ2

LdWS(t))− L(t)dt,
(21)

where, α =
δ(1− exp(−βT )) + β

1− exp(−βT )
.

Obviously, the dynamics of the cash outflows and cash
inflows processes in this paper have similar features. The
difference is that the formal is seen as a form of cash
outflow to be received by the holder at the maturity date
while the later is seen as a form of cash inflow that is
invested optimally by the IC.

V. WEALTH VALUATION OF THE IC

Definition 4. The value of wealth process of the IC at
time t is define as

V (t) = X∆,ϕ,L(t) + Ψ(t)− Φ(t). (22)

The value of wealth, V (t) equals the wealth, X∆,ϕ,L(t)
plus the discounted expected value of future cash inflows,
Ψ(t) less the discounted expected value of cash outflows,
Φ(t).

Proposition 3. The change in wealth of the IC is given
by the dynamics

dV (t) = (∆S(t)X∆,ϕ,L(t)(µ− r)
+∆I(t)X∆,ϕ,L(t)θIσI + rX∆,ϕ,L(t)
+Ψ(t)(r + σϕ · θ)− αΦ(t))dt
+(∆S(t)X∆,ϕ,L(t)σS

1 + ∆I(t)X∆,ϕ,L(t)σI

+Ψ(t)σϕ
1 − σL

1 Φ(t))dW I(t) + (∆S(t)×
X∆,ϕ,L(t)σS

2 + Ψ(t)σϕ
2 − σL

2 Φ(t))dWS(t),
V (0) = v = x + Ψ(0)− Φ(0).

(23)

Proof : Taking the differential of both sides of (22) and
substituting in (11) and (15), the result follows. In the
next section, we present the optimal portfolio strategies
for the IC.
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VI. OPTIMAL PORTFOLIO STRATEGIES FOR THE
IC

In this section, we consider the optimal portfolio process
for the IC. We define the general value function

J(t, V∆,∆) = E[u(V∆(T ))|X∆,ϕ,L(t) = X,
Ψ(t) = Ψ,Φ(t) = Φ]

where V∆(t) is the path of V (t) given the portfolio strat-
egy ∆(t) = (∆S(t),∆I(t)). Define A(V ) to be the set of
all admissible portfolio strategy that are FV -progressively
measurable, and let U(V (t)) be a quasi-concave function
in V (t) such that

U(V (t)) = sup∆∈A(V ) E[U(V (T ))|X∆,ϕ,L(t) = X,

Ψ(t) = Ψ,Φ(t) = Φ] = sup∆∈A(V ) J(t, V∆,∆)
(24)

Then U(t, V ) satisfies the HJB equation

Ut + sup∆∈A(V )H(t, V, ∆) = 0,

subject to:U(T, v) =
1
γ

vγ .
(25)

where,

H(t, V, ∆) = (∆S(t)X(µ− r) + ∆I(t)XσIθ
I)UX

+
1
2
((σS

1 )2X2∆S(t)2 + σI
2X2∆I(t)2

+(σS
2 )2X2∆S(t)2)UXX + ∆S(t)∆I(t)X2σS

1 σIUXX

+∆S(t)ΨXσS
1 σϕ

1 UXΨ −∆S(t)ΦXσS
1 σL

1 UXΦ

+∆I(t)ΨXσIσ
ϕ
1 UXΨ −∆I(t)ΦXσIσ

L
1 UXΦ

+∆S(t)ΨXσS
2 σϕ

2 UXΨ −∆S(t)ΦXσS
2 σL

2 UXΦ + rXUX

+Ψ(r + σϕ · θ)UΨ − ΦαUΦ +
1
2
(σϕ

1 )2Ψ2UΨΨ

−1
2
(σL

1 )2Φ2UΦΦ −ΨΦσϕ
1 σL

1 UΨΦ −ΨΦσϕ
2 σL

2 UΨΦ

+
1
2
Ψ2(σϕ

2 )2UΨΨ − 1
2
Φ2(σL

2 )
2
UΦΦ.

(26)
For the explicit solution of (25), see Appendix.
Since U is a quasi-concave function in V (t) and U(t, V ) ∈
C1,2(R× [0, T ]), then (25) is well defined. The HJB equa-
tion (25) was solve explicitly (See the Appendix). Finding
the partial derivative of H(t, V, ∆) with respect to ∆S(t)
and ∆I(t) and set to zero, we obtain the following

(∆S(t))∗ =
−(µ− r)UX −∆I(t)∗XσS

1 σIUXX

((σS
1 )2 + (σS

2 )2)XUXX

−Ψ(σS
1 σϕ

1 + σS
2 σϕ

2 )UXΨ + Φ(σS
1 σL

1 + σS
2 σL

2 )UXΦ

((σS
1 )2 + (σS

2 )2)XUXX

(27)
(∆I(t))∗ =
−θIUX −∆S(t)∗XσS

1 UXX −Ψσϕ
1 UXΨ + ΦσL

1 UXΦ

XσIUXX
.

(28)
Substituting (28) into (27), we obtain the following

(∆S(t))∗ =(
σS

1 θI − (µ− r)
)
UX −ΨσS

2 σϕ
2 UXΨ + ΦσS

2 σL
2 UXΦ

(σS
2 )2XUXX

.

(29)

Substituting (29) into (28), we obtain the following

(∆I)(t)∗ =

(
(µ− r)σS

1 − θI((σS
2 )2 + (σS

1 )2)
)

UX

XσI(σS
2 )2UXX

+
ΨσS

2 |Σϕ,S |UXΨ + ΦσS
2 |ΣL,S |UXΦ

XσI(σS
2 )2UXX

.

(30)

Proposition 4. Suppose that U(V ) =
V γ

γ
, γ < 1,γ 6= 0,

then the optimal portfolio values of the IC in stock market
and inflation-linked bond are respectively given as

(∆S(t))∗ = H1(t)
(

µ− r − σS
1 θI

(1− γ)(σS
2 )2

)
−H2(t)

σϕ
2

σS
2

−H3(t)
σL

2

σS
2

.

(31)

(∆I(t))∗ = H1(t)

(
θI((σS

2 )2 + (σS
1 )2)− (µ− r)σS

1

(1− γ)σI(σS
2 )2

)
+H2(t)

|Σϕ,S |
σS

2 σI
−H3(t)

|ΣL,S |
σS

2 σI
.

(32)

(∆0(t))∗ = 1 + H2(t)
(

σϕ
2

σS
2

− |Σϕ,S |
σS

2 σI

)
+H3(t)

(
|ΣL,S |
σS

2 σI
+

σL
2

σS
2

)
−

H1(t)

(
θI((σS

2 )2 + (σS
1 )2)− (µ− r)σS

1

(1− γ)σI(σS
2 )2

+
µ− r − σS

1 θI

(1− γ)(σS
2 )2

)
.

(33)

where, H1(t) =
X(t) + Ψ(t)− Φ(t)

X(t)
, H2(t) =

Ψ(t)
X(t)

,

H3(t) =
Φ(t)
X(t)

.

Proof : Given U(X, Ψ,Φ) =
(X + Ψ− Φ)γ

γ
. Then, find-

ing the following partial derivatives: UX , UΨ, UΦ, UXX ,
UXΨ, UXΦ and substitute into (29) and (30), the result
follows.

Numerical Example 1. The figures below, represent
the portfolio values of the investment in stock, inflation-
linked bond and cash, respectively. They are obtained by
taking L0 = 120 Naira, δ = 0.09, σL

1 = 0.31, σL
2 = 0.41,

µ = 0.1, r = 0.04, σS
1 = 0.35, σS

2 = 0.45, θI = 0.13,
γ = 0.5, ϕ0 = 100 Naira, ω = 0.08, σϕ

1 = 0.32, σϕ
2 = 0.4,

σI = 0.418 and T = 10 and Mathematica 6.0 was used
for the simulations.

We observed that: If we divide the right hand side of

(34) by H1(t) and then add
H2(t)
H1(t)

σϕ
2

σS
2

and
H3(t)
H1(t)

σL
2

σS
2

to the result, we obtain the classical portfolio strat-

egy,
µ− r − σS

1 θI

(1− γ)(σS
2 )2

in the stock market. In the same

vain, if we divide the right hand side of (35) by
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Figure 1: Portfolio value in stock. This figure is obtained
by setting L0 = 120 Naira, δ = 0.09, σL

1 = 0.31, σL
2 =

0.41, µ = 0.1, r = 0.04, σS
1 = 0.35, σS

2 = 0.45, θI = 0.13,
γ = 0.5, ϕ0 = 100 Naira, ω = 0.08, σϕ

1 = 0.32, σϕ
2 = 0.4,

σI = 0.418 and T = 10
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Figure 2: Portfolio value in inflation-linked bond. This
figure is obtained by setting L0 = 120 Naira, δ = 0.09,
σL

1 = 0.31, σL
2 = 0.41, µ = 0.1, r = 0.04, σS

1 = 0.35,
σS

2 = 0.45, θI = 0.13, γ = 0.5, ϕ0 = 100 Naira, ω = 0.08,
σϕ

1 = 0.32, σϕ
2 = 0.4, σI = 0.418 and T = 10
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Figure 3: Portfolio value in cash account. This figure is
obtained by setting L0 = 120 Naira, δ = 0.09, σL

1 = 0.31,
σL

2 = 0.41, µ = 0.1, r = 0.04, σS
1 = 0.35, σS

2 = 0.45,
θI = 0.13, γ = 0.5, ϕ0 = 100 Naira, ω = 0.08, σϕ

1 = 0.32,
σϕ

2 = 0.4, σI = 0.418 and T = 10

H1(t) and then add −H2(t)
H1(t)

|Σϕ,S |
σS

2 σI
and

H3(t)
H1(t)

|ΣL,S |
σS

2 σI

to the result, we obtain the classical portfolio strategy,
θI((σS

2 )2 + (σS
1 )2)− (µ− r)σS

1

(1− γ)σI(σS
2 )2

in inflation-linked bond.

Therefore, the first part of the portfolios in inflation-
linked bond and stock market are the variational form
of the classical optimal portfolio rule. The second parts

of the portfolios containing the function H2(t)
σϕ

2

σS
2

and

H2(t)
|Σϕ,S |
σS

2 σI
hedges the shock associated with the cash

inflows whose present value Ψ0 has been invested while
at the beginning of the planning horizon. The third parts

with the function H3(t)
|ΣL,S |
σS

2 σI
and H3(t)

σL
2

σS
2

hedges the

shock associated with the cash outflows. Therefore, the
second and the third terms in the portfolio values are
the inter-temporal hedging terms that offset any shock
to both stochastic inflows and outflows, respectively.
The above formulas depend on the optimal wealth value,
which consists of the optimal wealth level X∗(t), the ex-
pected future cash inflows, Ψ(t) and the expected cash
outflows, Φ(t). The first ones are observable, the second
parts reflect the expectation of the IC on the future cash
inflows, the third parts reflect the expectation of the IC
on the cash outflows, the fourth and fifth terms reflect
the inter-temporal hedging terms that simply offset any
shock to both the stochastic cash inflows and cash out-
flows. These inter-temporal hedging terms will in a way
protect the IC from a catastrophic fall in the risky as-
sets. Hence, protect the IC from the risk of not meeting
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its claims obligations to the holder.
Now, at t = 0, we have

(∆S(0))∗ =

H1(0)[
µ− r − σS

1 θI

(1− γ)(σS
2 )2

]−H2(0)
σϕ

2

σS
2

−H3(0)
σL

2

σS
2

.
(34)

(∆I(0))∗ =

H1(0)(
θI((σS

2 )2 + (σS
1 )2)− (µ− r)σS

1

(1− γ)σI(σS
2 )2

)

+H2(0)
|Σϕ,S |
σS

2 σI
−H3(0)

|ΣL,S |
σS

2 σI
.

(35)

where, H1(0) =
x0 + Ψ(0)

x0
, H2(0) =

Ψ(0)
x0

, H3(0) =

Φ(0)
x0

.

VII. EXPECTED VALUE OF WEALTH (EVW) FOR
THE IC

In this section, we consider the optimal value of wealth
for the investment company at time t and at the terminal
period. From (23), we have that

dE[V (t)] = E[∆S(t)∗X∆,ϕ,L(t)(µ− r)
+∆I(t)∗X∆,ϕ,L(t)θIσI + rX∆,ϕ,L(t)
+Ψ(t)(r + σϕ

1 θI + σϕ
2 θS)− αΦ(t)]dt,

E[V (0)] = v0,

(36)

where, v0 = x0 + Ψ0 − Φ0, Ψ0 =
ϕ0(exp(φT )− 1)

φ
,

Φ0 =
L0(1− exp(−βT ))

β
.

Substituting (14),(20),(29),(30) into (36) and for simplic-
ity, we set r = δ, to obtain

dE[V (t)] = [y1E(V (t)) + y2 exp(ωt)(exp(φ(T − t))− 1)
+y3 exp(rt)]dt

(37)
E[V (0)] = v0,
where,

y1 =
θS(µ− r)

1− γ
+

θI(θI + σS
1 θS)

1− γ
+ r,

y2 =
ϕ0

φ

(
θI |ΣS,ϕ|

σS
2

− σϕ
2 (µ− r)

σS
2

+ σϕ · θ
)

,

y3 =
L0(exp(−βT )− 1)

β
×(

σL
2 (µ− r)

σS
2

+
θI |ΣL,S |

σS
2

− σL · θ
1− exp(−βT )

)
,

By solving the ODE (37), we find that the expected value
of the wealth for the IC under optimal control at time t

is
E(V (t)) =(

v0 +
y2

ω − y1
+

y3

y1 − r
+

y3y
2
1

(ω − y1)(ω − φ− y1)(y1 − r)

)
× exp(y1t) +

y2 exp(φT )(exp(ωt)− exp((φ + y1)t))
ω − φ− y1

−y2 exp((ω + φ)t)
ω − y1

− y3 exp(rt)
y1 − r

.

(38)
At terminal time T , we have:

E(V (T )) =(
v0 +

y2

ω − y1
+

y3

y1 − r
+

y3y
2
1

(ω − y1)(ω − φ− y1)(y1 − r)

)
× exp(y1T ) +

y2 exp(φT )(exp(ωT )− exp((φ + y1)T ))
ω − φ− y1

−y2 exp((ω + φ)T )
ω − y1

− y3 exp(rT )
y1 − r

.

(39)
Therefore, the expected optimal value of final wealth for
the IC is given in (39).
Therefore, the optimal value of final wealth for
the IC is the sum of the fund, (v0 +

y2

ω − y1
+

y3

y1 − r
+

y3y
2
1

(ω − y1)(ω − φ− y1)(y1 − r)
) exp(y1T ) that

the IC would get investing the whole portfolio al-
ways in the risk-less asset and the risky assets,

plus the term,
y2 exp(φT )(exp(ωT )− exp((φ + y1)T ))

ω − φ− y1
−

y2 exp((ω + φ)T )
ω − y1

that depend both on the goodness of

the risky assets with respect to the risk-less asset and

the stochastic cash inflows, plus the term,
y3 exp(rT )

y1 − r
that depend on the risk-less asset, the risky assets and
the cash outflows. Thus, we observe by the definition of
θ and y1, that the higher the Sharpe ratio of the risky
asset, θ the higher the expected optimal value of final
wealth, everything else being equal. We take r = 0.04,
µ = 0.1, γ = 0.9, ω = 0.08, σS

1 = 0.35, σS
2 = 0.45,

σI = 0.418, ϕ0 = 10, 000 Naira, L0 = 12, 000Naira, and
x0 = 1, σϕ

1 = 0.32, σϕ
2 = 0.40, σL

1 = 0.31, σL
2 = 0.41,

T=20 to obtain figure 4. Figure 4 shows the expected
value of wealth for the IC at different value of MPIR
(θI) at time t. At the terminal time, observe that when
θI equals 0.10, the EVW is obtained to be 34,799,000
Naira; when θI is 0.13, the EVW is 43,562,000 Naira and
when θI equals 0.15, we have that the EVW is 55,107,000
Naira. We conclude therefore that for all other parame-
ters remain fixed, the higher the market price of inflation
risks, the higher the expected value of returns for the in-
vestment and vice versa. This is only true for t > 15. At
t < 15, observe the the reverse was the case.

VIII. THE SPECIAL CASE ϕ0 = 0, L0 = 0, ω = 0 and
δ = 0

By set ϕ0 = 0, L0 = 0, ω = 0 and δ = 0, we obtained
the usual portfolio selection problem. It is obvious from
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Figure 4: Expected value of wealth for the investment.

the previous analysis, that equalities still hold for (11),
if ϕ0 = 0, L0 = 0, ω = 0 and δ = 0 provided that the
initial wealth is greater than zero. We now summarize the
expected terminal wealth of the investor, taking ϕ0 = 0,
L0 = 0, ω = 0 and δ = 0 in (9) and (10).

Corollary 1. Assume that an investor wants to invest
a wealth of x0 > 0 for the time horizon T > 0 in a
financial market as in section (2.1) and wealth equation
(6). Assume that the investor maximizes the expected
utility of final wealth at time T . Then,
(i)E(V (T )) = v0 exp(y1T );
(ii) E(X(T )) = x0 exp(y1T );
(iii) E(V (T )) = E(X(T )).

Observe that if y2 = 0 and y3 = 0, the expected value
of final wealth becomes x0 exp(y1T ). We now have the
following corollary.

Corollary 2. Suppose that y2 = 0, y3 = 0 and x0 > 0 in
(39), then

E(V (T )) = x0 exp(y1T ).

Corollary 3. Suppose that y2 = 0, y3 = 0, θI = 0 and
x0 > 0 in (39), then

E(V (T )) = x0 exp(ȳ1T ),

where, ȳ1 =
θS(µ− r)

1− γ
+ r.

Corollary 4. Suppose that y2 = 0, y3 = 0, θI = 0, µ = r
and x0 > 0 in (39), then

E(V (T )) = x0 exp(rT ).

Corollary 5. Suppose that y2 = 0, y3 = 0, θS = 0 and
x0 > 0 in (39), then

E(V (T )) = x0 exp(z̄T ),

where, z̄ =
(θI)2

1− γ
+ r.

Corollary 3 presents the expected wealth from the usual
portfolio selection problem that involve investment into
a riskless asset (cash account) and a stock. Corollary 4
presents the expected wealth from the usual portfolio se-
lection problem that involves investment into a riskless
asset alone. Corollary 5 presents the expected wealth
from the usual portfolio selection problem that involve
investment into a riskless asset and an inflation-linked
bond.
Consider another special case were y1 = 0, y2 6= 0 and
y3 6= 0. In that case, the expected value of wealth for the
IC becomes

E(V (T )) = v0 −
y3

δ
(1− exp(δT )) + y2×(

exp(φT )(exp(ωT )− exp(φT ))
ω − φ

− exp((ω − φ)T )
ω

+
1
ω

)
.

It means that the cash inflows were either not invested
into any of the underlying assets, or there is no contri-
bution to the portfolio of the IC for investing into the
underlying assets. In that case, the expected value of
wealth for the IC can only be affected by the face value
of the cash inflows and cash outflows.

IX. CONCLUSION

The paper examined the optimal portfolios with stochas-
tic cash inflows and outflows and expected terminal
wealth for IC. The portfolio values and expected terminal
wealth that accrued to the IC were obtained. It was found
that the optimal share of portfolios in stock and inflation-
linked bond ultimately depend on cash inflows, cash out-
flows and the optimal wealth level of the investment at
time t. It was also found that as the markets evolve, parts
of the portfolio values in stock and inflation-linked bond
should be transferred to the cash account. The portfolio
processes were found to involved inter-temporal hedging
terms that offset any shock to the cash inflows and cash
outflows.
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APPENDIX

Therefore, substituting (29) and (30) into (25), we obtain
following the HJB equation

Ut + rXUX + Ψ(r + σϕ · θ)UΨ − αΦUΦ

+
1
2
((σϕ

1 )2 + (σϕ
2 )2)Ψ2UΨΨ

−ΨΦ(σϕ
1 σL

1 + σϕ
2 σL

2 )UΨΦ

−1
2
Φ2((σL

1 )2 + (σL
2 )2)UΦΦ

+
(µ− r)

(
a1U

2
X −Ψa2UXUXΨ + Φb2UXUXΦ

)
σS

2 UXX

+
θI
(
b1U

2
X + Ψa3UXUXΨ + Φa4UXUXΦ

)
(σS

2 )4UXX

+
Ψσϕ

1

(
b1UXUXΨ + Ψa3U

2
XΨ + Φa4UXΦUXΨ

)
(σS

2 )2UXX

−
ΦσL

1

(
b1UXUXΦ + Ψa3UXΨUXΦ + Φa4U

2
XΦ

)
(σS

2 )2UXX

+
(σS

1 )2(a2
1U

2
X + Ψ2a2

2U
2
XΨ + Φ2b2

2U
2
XΦ − 2Ψa1a2UXUXΨ)

2(σS
2 )4UXX

+
(σS

1 )2(2Φa1b2UXUXΦ − 2ΨΦa2b2UXΦUXΨ)
2(σS

2 )4UXX

+
(b2

1U
2
X + Ψ2a2

3U
2
XΨ + Φ2a2

4U
2
XΦ + 2Ψb1a3UXUXΨ

2(σS
2 )4UXX

+
2Φb1a4UXUXΦ + 2ΨΦa3a4UXΦUXΨ)

2(σS
2 )4UXX

+
σS

1

(
a1b1U

2
X + Ψ2a1a3UXUXΨ + Φa1a4UXUXΦ

)
(σS

2 )4UXX

−
σS

1

(
2Ψb1a2UXUXΨ + Ψ2a2a3U

2
XΨ

)
(σS

2 )4UXX

+
Ψ2a4a2UXΦUXΨ + b1b2ΦUXUXΦ

(σS
2 )4UXX

+
a3b2ΦΨUXΦUXΨ + Φ2a4b2U

2
XΦ)

(σS
2 )4UXX

+
(

ΨσS
1 σϕ

1

(σS
2 )2UXX

+
Ψσϕ

2

σS
2 UXX

)
(a1UXUXΨ

−Ψa2U
2
XΨ + Φb2UXΨUXΦ)

−
(

ΦσS
1 σL

1

(σS
2 )2UXX

+
ΦσL

2

σS
2 UXX

)
(a1UXUXΦ

−Ψa2UXΨUXΦ + Φb2U
2
XΦ) = 0.

(40)
where a1 = σS

1 θI − (µ − r), b1 = −(a1σ
S
1 + θI(σS

2 )2),
a2 = σS

2 σϕ
2 , b2 = σS

2 σL
2 , a3 = σS

2 |Σϕ,S |, a4 = σS
2 |ΣL,S |.

We assume the solution of the form U(t, v) =
(vg(t))γ

γ
such that g(T ) = 1. Then,

Ut = (vg(t))γ−1g′(t) (41)

UX = vγ−1g(t)γ (42)

UXX = (γ − 1)vγ−2g(t)γ (43)

UXΨ = (γ − 1)vγ−2g(t)γ (44)

UXΦ = −(γ − 1)vγ−2g(t)γ (45)

UΨ = vγ−1g(t)γ (46)
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UΨΨ = (γ − 1)vγ−2g(t)γ (47)

UΨΦ = −(γ − 1)vγ−2g(t)γ (48)

UΦ = −vγ−1g(t)γ (49)

UΦΦ = (γ − 1)vγ−2g(t)γ (50)

Substituting the partial derivatives (41)-(50) into (40),
we obtain the following HJB equation

v
g′(t)
g(t)

+ rv2 + (Ψσϕ · θ + σL · θΦ)v

+
µ− r

σS
2

(a1v −Ψa2 − Φb2) v

+
1
2
(((σϕ

1 )2 + (σϕ
2 )2)Ψ2 + 2ΨΦ(σϕ

1 σL
1

+σϕ
2 σL

2 )− Φ2((σL
1 )2 + (σL

1 )2))(γ − 1)

+
θI

(σS
2 )4

(b1v + Ψa3 − Φa4)v

+
Ψσϕ

1

(σS
2 )2

(b1v + (Ψa3 − Φa4)(γ − 1))

+
ΦσL

1

(σS
2 )2

(b1v + (Ψa3 + Φa4)(γ − 1))

+
Φ
σS

2

(
σS

1 σL
1

σS
2

+ σL
2

)
(a1v − (Ψa2 − Φb2)(γ − 1))v

+
(σS

1 )2

2(σS
2 )4

(a2
1v + (Ψa2 + Φb2)2×

(γ − 1)− 2Ψa1a2 − 2Φa1b2)

+
1

2(σS
2 )4

(b2
2v

2 + (Ψa3 + Φb4)2(γ − 1) + 2Ψb1a3

−2Φb1a4v) +
1

2(σS
2 )4

(a1b1v
2 + (Ψ2a1a3 −Ψb1a2

−Φa1a4)v −Ψ2a2a3(γ − 1)) +
1

(σS
2 )4

((Φ2a4b4 − ΦΨb2a3

−Ψ2a4a2)(γ − 1)− b1b2Φv) +
Ψ
σS

2

(
σS

1 σϕ
1

σS
2

+ σϕ
1

)
×(a1v − (Ψa2 + Φb2)(γ − 1)) = 0.

(51)
We now set ξ = rv2 + (Ψσϕ · θ + σL · θΦ)v

+
µ− r

σS
2

(a1v −Ψa2 − Φb2) v

+
1
2
(((σϕ

1 )2 + (σϕ
2 )2)Ψ2 + 2ΨΦ(σϕ

1 σL
1

+ σϕ
2 σL

2 )− Φ2((σL
1 )2 + (σL

1 )2))(γ − 1)

+
θI

(σS
2 )4

(b1v + Ψa3 − Φa4)v

+
Ψσϕ

1

(σS
2 )2

(b1v + (Ψa3 − Φa4)(γ − 1))

+
ΦσL

1

(σS
2 )2

(b1v + (Ψa3 + Φa4)(γ − 1))

+
Φ
σS

2

(
σS

1 σL
1

σS
2

+ σL
2

)
(a1v − (Ψa2 − Φb2)(γ − 1))v

+
(σS

1 )2

2(σS
2 )4

(a2
1v + (Ψa2 + Φb2)2 ×

(γ − 1)− 2Ψa1a2 − 2Φa1b2)

+
1

2(σS
2 )4

(b2
2v

2 + (Ψa3 + Φb4)2(γ − 1) + 2Ψb1a3

− 2Φb1a4v) +
1

2(σS
2 )4

(a1b1v
2 + (Ψ2a1a3 −Ψb1a2

− Φa1a4)v −Ψ2a2a3(γ − 1)) +
1

(σS
2 )4

((Φ2a4b4 − ΦΨb2a3

−Ψ2a4a2)(γ − 1)− b1b2Φv) +
Ψ
σS

2

(
σS

1 σϕ
1

σS
2

+ σϕ
1

)
× (a1v − (Ψa2 + Φb2)(γ − 1)),
so that (51) becomes

g′(t)
g(t)

+
ξ

v
= 0. (52)

Solving (52), we have

g(t) = g(0)e
−

ξ

v
t
. (53)

Therefore,

U(t, v) =
(vg(0))γ

γ
e
−

ξγ

v
t
.

But, U(0, v) =
(vg(0))γ

γ
. This is the present value of

expected future utility of wealth for the IC.
Hence,

U(t, v) = U(0, v)e
−

ξγ

v
t
.

This is the expected utility of the value of wealth accrued
to the IC at time t.
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