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Abstract—In applications where partial differential equations

are used to model populations, there is frequently a critical den-

sity threshold below which the population cannot be detected

in practice and the corresponding position is often termed the

leading edge of the distribution. Historically this position has

been investigated for large time problems, but little attention

has been afforded to understanding its short term dynamics. In

this work we describe a novel approach, utilizing the Laplace

decomposition method, that generates algebraic expressions for

the initial kinematic properties of the leading edge in terms

of the initial data and model parameters. The method is

demonstrated on two well-studied partial differential equations

and two established systems of equations (representing the

growth of fungal networks), all of which display travelling

fronts. The kinematics of these advancing fronts are determined

using our method and are shown to be in excellent agreement

with both exact solutions and numerical approximations of the

model equations.

Index Terms—Laplace decomposition method, partial differ-

ential equations, travelling wave, numerical solution, fungi.

I. INTRODUCTION

M
ANY systems of partial differential equations (PDEs)

display travelling wave solutions. Traditionally, and

especially in a single spatial dimension, the development

of such systems is investigated analytically, e.g. by using

substitutions of the form z = x − ct. However, for highly

non-linear equations, or complicated initial data, it may be

too complex to extract such solutions, even if they exist.

While numerical simulations can provide insight into the

behaviour of the system [1], parameter values and initial

data have to be chosen in advance and it is therefore often

difficult to isolate the influence of either on the entire

system. Furthermore, such solutions may only describe the

long term behaviour and not the initial development of the

system which is influenced by initial data [2] and can be

especially important when considering population dynamics.

For example, in infectious diseases, the early dynamics of

the disease in a spatially-organized population is determined

by its initial distribution [3], in ecology the progress of non-

native species invading an otherwise empty environment is of

interest [4], and in medicine the progress of a drug towards

a tumour is dependent on the initial concentration of the

drug [5].

An additional problem faced in applications when using

PDEs is that the equations can predict the presence of a

population at low densities that are, in practice, impossible

to measure in the physical system being considered. Thus

the tracking of a leading edge of the population, namely the

position at which a population can be first detected, is crucial
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to allow comparison between theoretical and experimental re-

sults. In this work an analytical approach is proposed that can

be used to describe the behaviour of such leading edges by

constructing algebraic expressions for their initial kinematics.

This novel approach, described in Section II, is based on

constructing a series solution of the model equations utilizing

the Laplace decomposition method (LDM) and allows the

influence of the initial data and all model parameters to be

easily observed. In Section III the method is applied to an

advection equation with spatially-dependent velocity and the

Kawahara equation. An alternative practical application is

then considered in Section IV by using the method on a

class of systems of PDEs constructed by Edelstein-Keshet [6]

to describe the growth of fungal colonies. In both cases,

the method output is compared to analytical and numerical

solutions.

II. KINEMATICS OF THE LEADING EDGE OF A WAVE

FRONT

A. Formulation

Suppose u(x, t) satisfies ut = f(x, t, u, ux, uxx, . . .) for a

given function f with positive initial data u(x, 0) = u0(x)
representing an “invasive” population, i.e. u0(x) → 0 as x →
∞. To track how the distribution of u develops over time,

suppose x0 is the greatest value of x such that u(x0, t0) = uc

for some arbitrary uc at time t0 taken to be in the range of

u and that satisfies ux(x0, t0) < 0. The value uc, denoting

the leading edge of the distribution, can be best regarded as

representing a critical density below which the population

cannot be detected in practice. After a time ∆t has elapsed,

suppose the leading edge has moved a distance ∆x so that

u(x0 +∆x, t0 +∆t) = uc.

Since the position ∆x is a function of time ∆t we suppose

∆x =
∑∞

k=0 ak∆tk. Clearly a0 = 0 while a1 and 2a2
correspond to the velocity and acceleration respectively at

time t0. By taking a Taylor series of u(x0 +∆x, t0 +∆t),
setting both u(x0 +∆x, t0 +∆t) and u(x0, t0) equal to uc

and using ∆x =
∑∞

k=0 ak∆tk, it follows that

0 = ∆t [a1ux + ut]

+ ∆t2
[

a2ux +
a21
2
uxx + a1uxt +

1

2
utt

]

+O(∆t3).

Neglecting higher order terms and comparing coefficients al-

lows a1 and a2 to be determined and hence the instantaneous

velocity of the wave front at (x0, t0) is −ut/ux while the

acceleration is (2utuxuxt−uttu
2
x
−u2

t
uxx)/u

3
x

, provided ux

is non-zero.

While these formulae provide simple estimates of the

velocity and acceleration of the leading edge of an advancing

wave front, they require the solution of the corresponding

PDE to be known. If such a solution is unknown, a series
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solution can be obtained using the Laplace decomposition

method to generate corresponding formulae in terms of the

original model parameters.

B. Laplace Decomposition Method

For a given PDE ut = f(x, t, u, ux, uxx, . . .) with ini-

tial data u(x, 0) = u0(x) a series solution for u(x, t) is

assumed, i.e. u(x, t) =
∑∞

m=0 um(x, t). By taking Laplace

transforms of this series representation, iterative formulae are

constructed relating each term in the series to previous terms

and where the first term is constructed from the initial data

(see [7], [8], [9] for further details). The Laplace transform

of nonlinear terms are represented as Adomian polynomials,

which are essentially series representations constructed from

the previously calculated terms in the series for u(x, t) (see

[10], [11], [12], [13]). This method, termed the Laplace

decomposition method (LDM), has been widely used to

investigate an array of nonlinear differential equations (e.g.

[9], [14], [15], [16], [17], [18]). The convergence of the series

can be proven (e.g. [19], [20], [21], [22]) and, furthermore,

the series corresponds to a Taylor series of a closed form

solution, should one exist. The resultant series can therefore

be written as

u(x, t) = u0(x) + u1(x)t+ u2(x)t
2 + . . .

and hence the initial velocity of the leading edge of the wave

front (i.e. when t = 0) at x0 is

− ut

ux

= −u1

u′
0

(1)

and the initial acceleration is

2utuxuxt − uttu
2
x
− u2

t
uxx

u3
x

=
2u′

0u1u
′
1 − 2u2(u

′
0)

2 − u2
1u

′′
0

(u′
0)

3
,

(2)

where prime denotes differentiation with respect to x and the

functions are evaluated at x0.

III. EXAMPLES

A. Advection equation with non-constant velocity

Consider the advection equation with spatially-dependent

velocity c(x)

ut = − (c(x)u)
x

(3)

and specified initial data u(x, 0) = u0(x). Applying Laplace

transforms to equation (3), rearranging and taking inverse

Laplace transforms yields

u(x, t) = u0(x) + L−1

[

−L[(c(x)u)′]

s

]

. (4)

Assuming the series solution is of the form u(x, t) =
∑∞

m=0 um(x, t), then equation (4) becomes

∞
∑

m=0

um(x, t) = u0(x) +

∞
∑

m=0

L−1

[

−L[(c(x)um)′]

s

]

giving the iterative formula

u0(x, t) = u0(x),

um+1(x, t) = −L−1

[

L[(c(x)um)′]

s

]

.
(5)
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Fig. 1. Equation (3) is solved numerically with initial data u(x, 0) =

2e−(x+1)2 and c(x) = 1 + ǫ sinx where ǫ = 0.5. The solutions for
u(x, t) are shown at times at times t = 0, 0.2, 0.4, 0.6, 0.8 and 1.0. The
distributions propagate from left to right as t increases.

For illustrative purposes, suppose the local velocity and

initial data are c(x) = 1+ ǫ sin(x) and u(x, 0) = 2e−(x+1)2

respectively. The resultant series constructed from (5) is then

u(x, t) = e−(x+1)2

[

2 +

{

4 + 4x

−2ǫ (cosx− 2(x+ 1) sinx)

}

t+

{

2 + 8x+ 4x2

+ǫ
(

(3 + 16x+ 8x2) sinx− 6(x+ 1) cosx
)

+ǫ2
(

1 + 4x(x+ 2) sin2 x− 6(x+ 1) sinx cosx
)

}

t2

]

+ · · ·
(6)

Suppose the critical value of the leading edge is taken

to be uc = 2e−1 so that x0 = 0. The initial velocity and

acceleration of the wave front as calculated by equation (1)

and (2) are respectively

1− ǫ

2
, and ǫ− 5

4
ǫ2. (7)

When ǫ = 0 equation (3) with the above initial data

has a travelling wave solution u(x, t) = 2e−(x−t+1)2 cor-

responding to the initial data propagating to the right with

a constant unit velocity, consistent with (7). For ǫ > 0
numerical solutions of (3) were obtained and demonstrate

the initial distribution also propagates to the right but at

a spatially-dependent rate (Fig. 1). These numerically ob-

tained distributions are in good qualitative and quantitative

agreement with the analytical approximation constructed in

equation (6) (Fig. 2). Furthermore, the initial velocities and

accelerations of wave fronts at the above critical value of uc

were calculated numerically for various ǫ and were compared

to the predictions from (7) (Table I).

B. Kawahara equation

The Kawahara equation

ut + αuux + βuxxx − µuxxxxx = 0 (8)

arises in the investigation of magneto-acoustic waves in

plasmas [23] and in shallow water waves [24]. The equation
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TABLE I
EQUATION (3) WAS SOLVED NUMERICALLY WITH INITIAL DATA u(x, 0) = 2e−(x+1)2 AND c(x) = 1 + ǫ sinx AND THE VELOCITIES AND

ACCELERATIONS OF THE LEADING EDGE OF THE WAVE FRONTS STARTING AT x0 = 0 WERE CALCULATED AT TIME t = 10−4 . THE INITIAL VELOCITY

AND ACCELERATION OF THE LEADING EDGE OBTAINED ANALYTICALLY FROM (7) ARE SHOWN FOR COMPARISON.

Parameter Wave front velocity Wave front acceleration
ǫ Equation (7) Numerical solution of (3) Equation (7) Numerical solution of (3)

0 1 1.0000 0 0.0006
0.5 0.75 0.7500 0.1875 0.1877
1.0 0.5 0.4999 −0.25 −0.2503
5.0 −1.5 −1.5028 −26.25 −26.2710

Fig. 2. The first thirty terms in the series solution from equation (6) are
used to produce distributions of u(x, t) at times t = 0, 0.2, 0.4, 0.6, 0.8
and 1.0 where ǫ = 0.5. These distributions propagate from left to right as
t increases (cf. numerical solutions in Fig. 1).

is known to exhibit a travelling wave solution in terms

of sech4 and the corresponding velocity can be calculated

exactly [25]. Hence suppose the initial data is given by

u(x, 0) =
105

169
sech4Φ (9)

where Φ = x−x̂

2
√
13

and x̂ is the location of the maximum value

of the distribution. The analytical solution of equation (8)

with α = β = µ = 1 is

u(x, t) =
105

169
sech4

(

1

2
√
13

(

x− 36

169
t− x̂

))

, (10)

which may be easily verified through substitution, and has

corresponding wave speed 36
169 (Fig. 3).

Taking Laplace transforms of equation (8), rearranging and

taking inverse Laplace transforms yields

u(x, t) = u(x, 0) + L−1

[

L [µuxxxxx − βuxxx − αuux]

s

]

(11)

Assuming the series solution is of the form u(x, t) =
∑∞

m=0 um(x, t), equation (11) yields

∞
∑

m=0

um(x, t) = u(x, 0)

+

∞
∑

m=0

L−1

[

L
[

µu(5) − βu′′′ −Am

]

s

]

where the nonlinear term αuux is decomposed into the

Fig. 3. Equation (10), representing the solution of equation (8) with initial
data (9), α = β = µ = 1 and x̂ = 2 is shown at times t = 0, 5, 10, 15, 20
and 25. The distribution propagates from left to right.

Adomian polynomials Am defined by

Am = α

k
∑

i=0

uiu
′
m−i

.

The iterative formula for u(x, t) is therefore

u0(x, t) = u(x, 0)

um+1(x, t) = L−1

[

L
[

µu(5) − βu′′′ −Am

]

s

]

, m ≥ 0

and with initial data (9) yields the following series

u(x, t) =
105

169
sech4Φ

+
105

√
13

371293
sech4Φ

[

210(α− µ) tanh5 Φ

+ 15(13β + 15µ− 28α) tanh3 Φ

+ (210α− 91β − 47µ) tanhΦ

]

t+ · · ·

(12)

Substituting the terms from equation (12) into equation (1)

shows the initial velocity is

1

338

[

210(α− µ) tanh4 Φ

+ 15(13β + 15µ− 28α) tanh2 Φ

+ (210α− 91β − 47µ)

]
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provided x− x̂ 6= 0 (i.e. provided u′
0(x) 6= 0, see Section II).

Notice that when α = β = µ the initial wave speed is

exactly 36α/169 and when α = β = µ = 1, the initial

wave speed is consistent with the analytical solution of

equation (10). Similarly by using series (12) and equation (2),

the acceleration of the distribution is

45
√
13

2970344 coshΦ sinhΦ

[

77350 tanh8 Φ
{

(α− µ)µ
}

+ 140 tanh6 Φ
{

286βµ+ 952µ2 − 143αβ − 1095αµ
}

+ tanh4 Φ
{

28756αβ + 92960αµ

− 6591β2 − 44330βµ− 70795µ2
}

+ 20 tanh2 Φ
{

589µ2 + 572βµ+ 169β2

− 455αβ − 875αµ
}

+
{

364αβ + 490αµ− 169β2 − 390βµ− 295µ2
}

]

,

provided x−x̂ 6= 0. When α = β = µ the above acceleration

simplifies to zero confirming the existence of a travelling

wave solution with constant velocity.

In addition to approximating the initial kinematic proper-

ties of the leading edge, equation (12) provides an alternative

means of tracking the position of the leading edge of the

distribution for larger times. To this end, truncated series

of equation (12) were constructed and solved to determine

the position of the leading edge of the distribution, i.e. the

maximum value of x such that uc =
∑

k

m=0 um(x, t) for

different series length k at various times t, where uc = 0.01
(Table II). When compared with the exact solution obtained

from equation (10), the accuracy of the position of the

leading edge obtained from the series decreases with time

but improves with the inclusion of more terms, similar to a

Taylor series approximation of a function [26].

IV. APPLICATIONS

Edelstein-Keshet [6] proposed a series of mathematical

models comprising systems of nonlinear PDEs to represent

the growth of a fungal network. These models correspond to

different morphological types of fungi colonizing a region by

a propagating travelling wave, and where the existence of the

solutions were proven by phase plane methods. Indeed, while

Edelstein-Keshet’s models have been refined and further

developed in recent years [27], [28], [29], [30], these newer

models all retain similar components.

A. Fungal growth model: decoupled equations

One morphology considered in [6] is represented by the

pair of equations

ρt = vn− γρ,

nt = −vnx + αn− βn2,
(13)

where ρ = ρ(x, t) and n = n(x, t) denote the density of

fungal material and v, α, β and γ are positive parameters

related to movement, creation, and loss of material. Since

the equations are decoupled, the second equation in (13) for

n(x, t) can be considered in isolation.

Fig. 4. The first twelve terms in the series solution from equation (17) are
used to produce distributions of n(x, t) at times t = 0, 0.25, 0.5 and 0.75.
All model parameters are set to unity.

Suppose the initial data for n(x, t) is of the form

n(x, 0) =
α

β

[

1− tanh(φx)

2

]

, (14)

representing the case where there is no fungi on the right

but a steady state density on the left, corresponding to

the equilibria determined from equation (13). While not

discussed in [6], equation (13) has a closed form solution

for n(x, t), which with initial data (14) can be shown to be

n(x, t) =
α

2β

(

1− tanh

(

φ

(

x−
[

v +
α

2φ

]

t

)))

.

Clearly this is a travelling wave solution with wave speed

v + α/(2φ). The series solution of equation (13) with

initial data (14) will now be constructed and the speed and

acceleration of the leading edge of the wave front calculated.

Applying Laplace transforms to the second equation in

(13), rearranging and then taking inverse transforms gives

n(x, t) = n(x, 0) + L−1

[

L[−vn′ + αn− βn2]

s

]

, (15)

where n(x, 0) is specified initial data. Assuming the series

solution for n(x, t) is of the form n(x, t) =
∑∞

m=0 nm(x, t),
then (15) yields

∞
∑

m=0

nm(x, t) = n(x, 0)+

∞
∑

m=0

L−1

[

L[−vn′
m
+ αnm −Am]

s

]

,

where the nonlinear term βn2 is decomposed and the related

Am terms, i.e. the Adomian polynomials, are given by

Am = β

m
∑

i=0

ninm−i.

Hence the iterative formula for constructing the terms in

n(x, t) is

n0(x, t) = n(x, 0),

nm+1(x, t) = L−1

[

L[−vn′
m
+ αnm −Am]

s

]

, m ≥ 0.

(16)
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TABLE II
THE POSITION OF THE LEADING EDGE OF EQUATION (8) (DETERMINED BY THE GREATEST VALUE OF x WHERE u(x, t) = 0.01) WITH

α = β = µ = 1, INITIAL DATA (9) AND x̂ = 2 IS CALCULATED USING THE ANALYTICAL SOLUTION (10) AND FROM TRUNCATED SERIES IN

EQUATION (12) COMPRISING RESPECTIVELY THE FIRST 2 AND 4 TERMS.

Time Equation (10) Series (12): 2 terms Series (12): 4 terms

0 14.202 14.202 14.202
2 14.628 14.588 14.628
4 15.054 14.910 15.052
6 15.480 15.187 15.473
8 15.906 15.428 15.885

10 16.332 15.643 16.287

Fig. 5. The first twelve terms in the series solution from equation (22) are
used to produce distributions of n(x, t) at times t = 0, 0.25, 0.5 and 0.75.
All model parameters are set to unity.

Thus equation (16) with initial data (14) generates

n(x, t) =
α

β

(

1− tanh(φx)

2

)

+
α

4β

(

2vφ+ α

cosh2(φx)

)

t

+
α

8β

(

(2vφ+ α)2 sinh(φx)

cosh3(φx)

)

t2 + . . .

(17)

and can be used to produce approximate solutions of equa-

tion (13) that display the travelling wave profile (Fig. 4).

The initial velocity of the leading edge from equation (1)

at x0 = 0 (i.e. uc is taken to be at the centre of the initial

distribution) is

−n1

n′
0

= v +
α

2φ
,

in agreement with the travelling wave structure of the closed

form solution, and the related acceleration from equation (2)

is easily shown to be zero, consistent with the constant

velocity of the travelling wave.

B. Fungal growth model: coupled equations

A second model proposed by Edelstein [6] is given by

ρt = vn− γρ,

nt = −vnx + αρ− βnρ,
(18)

where the model variables and parameters are consistent with

those above. These equations are coupled and have no known

closed form solutions.

Applying Laplace transforms to equation (18), rearranging

and then taking inverse transforms gives

ρ(x, t) = ρ(x, 0) + L−1

[

L[vn− γρ]

s

]

,

n(x, t) = n(x, 0) + L−1

[

L[−vn′ + αρ− βnρ]

s

]

.

(19)

Assuming ρ(x, t) =
∑

ρm(x, t) and n(x, t) =
∑

nm(x, t),
equation (19) yields

∞
∑

m=0

ρm(x, t) = ρ(x, 0)

+
∞
∑

m=0

L−1

[

L[vnm − γρm]

s

]

,

∞
∑

m=0

nm(x, t) = n(x, 0)

+
∞
∑

m=0

L−1

[

L[−vn′
m
+ αρm −Am]

s

]

,

where the nonlinear term βnρ is decomposed into the Ado-

mian polynomials

Am = β

m
∑

i=0

niρm−i.

Hence the iterative formula for constructing n(x, t) and

ρ(x, t) are

ρ0(x, t) = ρ(x, 0),

ρm+1(x, t) = L−1

[

L[vnm − γρm]

s

]

, m ≥ 0,

n0(x, t) = n(x, 0),

nm+1(x, t) = L−1

[

L[−vn′
m
+ αρm −Am]

s

]

, m ≥ 0.

(20)

Consistent with earlier work, we set the initial data to be

ρ(x, 0) =
vα

βγ

[

1− tanh(θx)

2

]

,

n(x, 0) =
α

β

[

1− tanh(φx)

2

] (21)

representing the case where the fungus is at its steady state

density as x → −∞ and absent as x → +∞. Equation (20)
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generates the series for n(x, t) (Fig. 5):

n(x, t) =
α

β

(

1− tanh(φx)

2

)

+

{

vαφ

2β
sech2(φx)

− vα2

4βγ
(tanh (φx) + 1) (tanh (θx)− 1)

}

t

+

{

v2αφ2 tanh (φx)

2β cosh2 (φx)

− v2α3 (tanh (φx) + 1) (1− tanh (θx))
2

16βγ2

− vα2 (tanh (φx) + 1) (tanh (φx)− tanh (θx))

8β

+
v2α2θ (tanh (φx) + 1)

8γβ cosh2 (θx)

− v2α2φ (1− tanh (θx))

4βγ cosh2 (φx)

}

t2 + · · ·

(22)

The initial velocity and acceleration of the leading edge of

the wave front of n(x, t) (where the critical value uc is again

taken to be at the centre of the initial distribution) calculated

by equation (1) and (2) at x0 = 0 are respectively

−n1

n′
0

= v +
vα

2γφ
(23)

2n′
0n1n

′
1 − 2n2(n

′
0)

2 − n2
1n

′′
0

(n′
0)

3
=

v2α (αφ− 2γθφ− 2αθ)

4γ2φ2
.

(24)

Thus the wave front will initially propagate to the right and

its velocity will change depending on parameter values.

As there is no known analytical solution against which

to compare the above expressions for the initial velocity

and acceleration of the leading edge of the wave front,

equation (18) is instead investigated numerically. The model

equations (18) were solved for a range of initial data (21) and

parameter values and the velocities and accelerations of the

advancing distributions in n(x, t) were calculated at various

times (Table III).

V. DISCUSSION

In many applications, the spread of a continuously-

distributed population is of interest. The speed and accelera-

tion of this spread, measured using the position of the leading

edge of a moving front, is determined by initial data and

model parameters. We have described a simple yet powerful

method utilizing the Laplace decomposition method (LDM)

that calculates the initial velocity and acceleration of this

leading edge in terms of the original model parameters and

initial data by constructing a series solution and have shown

it to be in excellent agreement with analytical and numerical

solutions (Tables I,III). This is, to the authors’ knowledge, the

first time that any decomposition method has been applied

to generate predictions on the movement of travelling fronts.

Indeed, this approach works equally well on systems of

partial differential equations containing nonlinear terms and

allows individual wave fronts from different model variables

to be tracked independently. Furthermore, the resultant series

can be used to successfully track the position of the leading

edge for larger times provided a sufficient number of terms

are used (Table II).

In this study attention was focussed on partial differential

equations (PDEs) containing only a first order derivative of

time, i.e. PDEs of the form ut = f(u, ux, uxx, . . .). However,

equations with higher time derivatives, e.g. the wave equation

utt = c2uxx, can be dealt with in a similar manner provided

suitable initial data is given so that the Laplace transforms of

the model variables can be determined. The iterative formula

can be constructed in a similar manner where the first terms

in the series again relate to the initial data.

Boundary conditions were largely ignored when describing

the application of the LDM since attention was focused

on the position of the leading edge of a distribution that

was assumed to be distal from a boundary. Indeed, if the

initial data, which forms the first term in the series solution,

satisfies a given boundary condition, the method applied in

this work ensures that the resultant series also satisfies the

same boundary condition as all the other terms in the series

vanish as x → ±∞. For example, the equilibrium values for

n in equation (13) were determined by setting the reaction

terms to zero giving n = 0 and n = α/β. These same values

arise as x → ±∞ in the initial data (14) which forms the

first term in the series solution. The iterative formula (16)

used to construct the second term in the series solution

involved the reaction terms from the initial data which vanish

as x → ±∞. Hence the second term, and similarly all

subsequent terms, vanish as x → ±∞. In cases where the

initial data does not satisfy the boundary conditions, the

iterative formula must be suitably adapted at each step to

ensure that the boundary conditions remain satisfied.

The algorithmic nature of the method allows for it to

be easily implemented into a computer algebra package.

Using only a small number of terms from the series, it is

possible to construct accurate solutions without specifying

parameter values in advance. Of course, these solutions are

only valid in regions where the series converges [22]. In this

study attention has been focused on small time problems

where such convergence is guaranteed. Clearly further work

is required to adapt the methods for their use in large time

problems.
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