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Abstract. Feature or variable selection when the number of features is relatively
large to the number of samples or n << p is a challenge in many machine learning
applications. A large number of statistical methods have been developed to ad-
dress this challenge. Each method uses different statistical assumptions about the
shape of the regression function relating the predicted variable to the predictors.
In this paper we propose an alternative: combining results from different feature
selection methods relying on disjoint assumptions about the regression function.
We show that our method will lead to better sensitivity than using different meth-
ods individually, on synthetic datasets and datasets from the UCI machine learn-
ing repository. Our empirical studies on data with n << p show that the accuracy
obtained when training deep neural networks with variables selected using our
method is at least as good as the accuracy obtained when not selecting variables
in advance. Our first conclusion is that the feature selection results are improved
by enlarging the body of limiting assumptions about the function relating the pre-
dicted variable to the predictors. Our second conclusion is that, feature selection
can improve accuracy in deep learning at least on data with n << p.

Keywords: combining feature selection, high-dimensional data, deep learning, non-
linear regression, variable selection.

1 Introduction

One of the main statistical problems, coming with large dimensionality of data is vari-
able or feature selection. When given a large number of variables or features, training
classifiers and regression algorithms using all of them could lead to results no better
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than random choice as shown for example in [1]. This is the case because most predic-
tion algorithms, which don’t have embedded feature selection mechanisms, attribute a
small, noisy contribution of a large number of wrong predictors to the response variable
or to the features extracted to fit the response response variable. This large number of
small noisy contributions to the response will in turn add up and lead to high prediction
errors [1]. Variable selection is therefore needed to select a small subset of variables
from a wider set, such that, the selected variables explain as much variability in a given
response, as possible.

This task is particularly important and challenging in high-dimensional data when
when the number of samples n is relatively small to the number of variables p. This is a
typical scenario in many machine learning applications as for example in bioinformatics
where, usually only several hundreds of samples are collected from cost and availability
reasons, yet each sample may contain thousands or even millions of biological mark-
ers. Different methods have been developed for feature selection and they usually rely
on simplifying assumptions regarding the shape of the underlying function connecting
the response to the predictor variables (an example of such simplifying assumption is
linearity of the regression function). That is because searching and scoring through the
features subsets space by training a highly non-linear prediction algorithm is compu-
tationally infeasable. In this context, we are firstly interested in selecting a few feature
selection methods that can cope with highly dimensional datasets particularly when
n << p. If these methods rely on partially different assumptions about the underlying
regression function that generated the response variable data then, combining their re-
sults will cover a larger set of possible underlying data generating function shapes (for
example the predictors could have small and large effect linear contributions, small ef-
fect non-linear contribution and small or large effect interactions contributions to the
predicted variable ). Therefore, our first hypothesis is that combining the results from
different methods as explained above will lead to better sensitivity or a larger number
of correctly selected features. The purpose of variable or feature selection is usually to
further train a classifier or prediction model using the selected variables. Therefore, we
are interested to which extent combining the results from different methods will also
lead to better accuracy of the prediction models in use. As prediction models, recently,
Deep Neural Network (DNNs) have gained popularity due to their high accuracy rates
in areas like speech or image recognition [2]. DNNs architectures have embedded fea-
ture extraction mechanisms in which a new layer of features are learned as functions of
the previous layer. In this context, we are lastly interested to which extent DNNs can
be used as prediction models in a typical n << p set-up and whether feature selection
methods are still useful a-priori training DNNSs.

Most feature selection research efforts were directed towards improving individual
techniques. Some recent state-of-the-art feature selection algorithms where focused for
example, on improving the regularization under the assumption of linear relationship
between the predictive features and the predicted variable [3], [4], [5]. Other recent
state-of-the-art methods [6], [7] such as the ones improving spectral feature selection
fall into the class of pair-wise feature selection which discards the possibility that the
response variable might be a complex function of multiple predictor variables, including
perhaps interactions. Another attempt to formalize pair-wise feature selection and thus
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focused on the class of assumptions mentioned above can be found in [8]. Few recent
approaches proposed combining several feature selection techniques in order to improve
results. In [9] different feature subsets selection methods and pair-wise methods, as
well as methods of combining their results were evaluated on para-linguistic speaker
trait data using nearest-neighbor classifier with Euclidean distance. It was found that
different methods perform best on different tasks but no inside was given about how
the underlying assumptions of each method or of the classifier used, contribute to the
results. In [10] PCA, Genetic Algorithms and decision trees where combined and tested
by training and predicting stock market data using ANNSs as classifiers. This study was
also purely empirical and no insides were provided as to why to choose these particular
three methods apart from the fact that they perform well individually on certain tasks.
Other strategies for combining feature selection methods proposed a voting systems
of feature selection procedures or a combinatorial approach i.e. combining a set of
methods in all possible ways for finding which combination performs best [11].

In this paper we firstly study the effect of certain classes of model assumptions
when used to select features from data generated by different response function shapes.
For example, we are interested in what happens when the assumed model is linear and
the underlying data generating function contains interactions or vice-versa. We further
show through our empirical results that one possible approach for improving feature
selection sensitivity is by joining the sets of variables identified by different methods,
relying on different assumptions. Lastly, we show that feature selection remains an
important step at least for the cases in which n << p when training DNNSs.

The paper is further organized as follows: in Section 2 we formally define the feature
selection problem and review the classes of methods used based on the assumptions
they make about the underlying function that generated the data and our hypotheses.
We then describe our method, the data and the implementation details we have used to
test our hypotheses. In Section 3 we discuss our results and in Section 4 we provide our
conclusions.

2 Materials and Methods

To formally describe the feature selection problem when given data for a single response
variable, we consider the following sets of variables: X% = {X{”,X{',.X7} and Y are
the given random variables in our data-set and XA = {X{, X3!, ..} is the set of variables
associated with the response Y, which may or may not be present in our data-set. We
denote by y',xi,..x}, the values of the i data-set unit and we consider we have n such
units. We assume the data-set units to be i.i.d.. The goal of non-causal variable selection
is to identify the elements of X = X¢ N XA. In most variable selection approaches it is
also considered that for two variables {X;,X;} € X9 N X4, X; is more important than X;
if it explains more variability in the response Y. In order to encompass all assumptions
made by a large body of variable selection methods either implicitly or explicitly about
the regression function linking the predicted variable to the predictors, we consider the
following model in which y (or a transformation of it) can be predicted as a combination
of linear, non-linear and interacting terms depending on the covariates x':
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Y =) =Bo+Bx' + Y ajgi(xi,xh.xl) + Y el (x), xh..xE) + & (1)
J k

where B = {Bi,..8,} and /(X ) are multivariate linear interaction terms of subsets
of X. We define the interaction terms as follows: two variables X, and X, € X interact
if their effect on the response Y is non-additive [12], that is ¥ cannot be expressed as
Y = fi(Xi) + f>(X;). Higher order interactions between more than two variables can be
defined in a similar manner. g ;(X) are non-linear terms of some variables X; € X, other
than interactions of the form /(X ), which in turn may have their own parameters used
to define the exact shape of the function. The error term &;, at general level may or may
not be dependent on the variables X; € X.

Variable selection methods have this far been classified into filters, wrappers and
embedded methods [13] [14]. Filters are considered prediction model independent, such
as pair-wise tests, wrappers are methods which select subsets independently and then
these are evaluated against the prediction model while embedded methods have the
variable selection mechanism included in the prediction algorithm. Our approach is to
evaluate variable selection methods based on the simplifying statistical assumptions
that they make about a general regression model as the one in Equation 1. First we
note that non-parametric methods do not attempt to find information about the sparsity
and values of the coefficients 3, a or v or the coefficients inside the g functions when
these are explicitly expressed. However, these methods may implicitly make assump-
tions regarding the relationship between Y and the possible predictors. For example,
non-parametric pair-wise tests such as Spearman [15] or Maximal Information Coeffi-
cient (MIC) [16] aiming at detecting linear and non-linear dependencies between two
variables, implicitly assume that the some coefficients f8; or % are large enough so that
f(X;) has a function-like shape when plotted against Y, regardless of other small con-
tributions from other terms, affecting Y. Using the general response model described
above, we classify the basic assumptions of variables selection methods as follows:

1. Linearity Assumption. It is assumed that at least some variables f;X; have an in-
dependent, linear effecton ¥ i.e. § # {0, ,,,0}. Under these assumptions, there are two
different strategies employed in variable selection. If it is considered that some vari-
ables X; exhibit a strong signal i.e. the X; have a strong influence on variation in Y, it
makes sense to test dependence between each X; and Y separately. There are numerous
cases in data mining applications falling into this class of assumptions. For example,
in bioinformmatics it is often assumed that a disease is mainly caused by a particular
gene variant independently and other potential factors may have small contributions to
it. Pairwise correlation tests statistics such as Pearson Correlation Test [17] are used
under this assumption. If it is assumed that multiple cumulated small linear effects of
the covariate variables add up to influence the value of the response, the effect of each
variable, if tested separately, might be weak and undetectable. Methods such as Reg-
ularized Linear Regression [18] under either the frequentist approach or the Bayesian
approach are widely used under this assumption.
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2. Interaction Assumption. It is assumed that some variables X; may statistically in-
teract in their effect on Y i.e. }; %4;(X) # 0. Examples here are Bayesian Variable Par-
tition Models [19], [20] which partition the variables in: variables that don’t have effect
on the response, variables that have a linear independent effect and variables that have
an effect by interacting with other variables. Markov Chain Monte Carlo (MCMC) [21]
methods are used to search over the space of the possible partitions in these methods.
Another example of models here are the Regularized Regression Models that include
interaction terms [22] but limit the assumption to pairwise interaction. Perhaps the most
commonly used models are Decision Trees [23] and Random Forests [24] which assume
interaction terms only. A few methods were proposed to include the additive assump-
tion of the interaction terms using decision trees [12].

3. Non-linearity Assumption. It is assumed that some variables X; have an inde-
pendent, non-linear effect on Y i.e. ¥.;g;(X) # 0. Similarly to the linearity assump-
tion we can search for variables exhibiting strong signals using pair-wise tests or we
can consider multiple small non-linear effects coming from several predictors. For
pairwise tests, examples here are the non-parametric correlation tests such as Spear-
man [15] or the mutual information based ones such as Maximal Information Coeffi-
cient (MIC) [16]. For multivariate case, some approaches perform a randomized feature
selection [25] and use as evaluation a machine learning algorithm capable of capturing
highly non-linear functions, such as Artificial Neural Networks (ANNs). Randomized
feature selection methods such as genetic algorithms and simulated annealing, rely on
a random search through the feature subsets space, each subset being evaluated on a
classification or regression method of choice. However, randomized feature selection
algorithms and MCMC-based approaches are either unlikely to converge or are compu-
tationally unfeasible for very large variable sets [25].

It is obvious from the classification above that some methods overlap at least par-
tially in their assumptions. For example MIC should identify predictors which can be
identified with Pearson Test but this doesn’t hold the other way around. However, it
is obvious that certain assumptions are disjunct: for example MIC may not identify
variables of small linear pair-wise interacting effect which can be identified with a
group-interaction regularized regression method. The aim of assumptions is to reduce
the search space of possible explanatory models. Therefore, our first hypothesis is that a
union of the variables subsets selected by different methods applicable to large datasets,
for which n << p, will lead to a better sensitivity than using each method individually.
That should be the case if we select methods with at least partially disjunct sets of as-
sumptions. Given that the joint set of the variables selected by different methods can be
used for a larger set of non-linear explanatory functions, we use as prediction model the
neural network model:

Jie = act (b + Wi fi—1) (2)
where fy = X is the input to the neural net, f; (for k > 0) is the output of the k,

hidden layer, which has weight matrix W and offset by. act is the activation function of
each node for example, logistic function act(x) = 1/(14 e~ (?+*9)) or hyperbolic tan-
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gent act (x) = tanh(b + wx) (note that we consider the same activation function for all
nodes) and for k > 2 layers the model above is a Deep Neural Network (DNN) model.
For k = 1 the neural network corresponds to a linear regression or logistic regression
depending on whether the activation logistic function is used or not for the output layer
and therefore maps to the linear terms in our model in Equation 1. By searching through
the space of possible architectures of neural networks (i.e number of layers and dimen-
sions of the weight matrices by and W; for each k), we therefore cover a large number
of non-linear explanatory functions. However in the n << p setting, similar to the lin-
ear and logistic regression, this model may fail to train for a high accuracy on test data
because of noise accumulated from the irrelevant variables [1] even if we had the com-
putational resources to train large architectures with a large number of input variables.
That is because the neural network model has no embedded mechanism of selecting
a small subset of the input variables. Hence, a variable selection method is necessary.
Here, we hypothesize that a union of the variables subsets selected by different meth-
ods applicable to large datasets, for which n << p, will cover a large body of possible
non-linear explanatory functions and will lead to a better prediction accuracy than us-
ing each method individually or not using any variable selection method when training
DNN models.

2.1 Combining variable selection methods

Our approach outputs a union of the variable selection results from three different meth-
ods relying on disjoint assumptions about the regression function. We considered as
selection criteria for these methods, the level of generalization in terms of data type
i.e. they can be applied to both discrete and continuous response variables, the fact that
they do not depend on data-specific priors and the fact that their assumptions about the
underlying shape of the response function are only partially overlapping. In a similar
manner other methods can be combined. We detail further below the three methods.

1. the first approach implies using a non-parametric test statistic able to detect non-
linear associations here we chose MIC [16] .

2. the second approach is using lasso regression by starting with all the variables in
the model and selecting the regularization parameter performing best over cross
validation data [18]. This method will identify variables of large linear effect or
when small linear contributions of multiple variables add up to explain variation in
the response variable.

3. the third approach implies using hierarchical network lasso regression with the aim
of discovering variables possibly involved in pairwise interactions [22] [26] with
small or large effect on the response variable.

We further detail the three methods enumerated above.
Maximal Information Coefficient (MIC) MIC is based on the mutual information of

two random variables. For the case of two continuous variables Y and X; the mutual
information is as follows:
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LY) — 0 M
1(X3;Y) —){i{l g(p(x)p(y)

For discrete variables the integrals are to be replaced with summations over all the
possible discrete values of the two variables. p(x,y) it is either the joint probability
distribution (in the case of discrete functions) or the joint probability density function
(in the case of continuous variables) and p(x) and p(y) are the marginal probability
distribution or density functions. Intuitively, the mutual information measures the in-
formation that X; and Y share i.e. it measures how much knowing one of these variables
reduces uncertainty about the other. This further implies that the more information the
two variables, the more likely it is that the data points on scatterplot grid of the two
variables will fall in particular boxes while others will be left empty. Based on this
idea, MIC uses an heuristic search over possible ways to grid the scatterplot and find
the maximum mutual information. But when the two variables share information, i.e.
knowing one of them enables us to find information about the value of the other, then
there is a functional relationship between the two variables. Therfore, MIC will iden-
tify variables with large linear or non-linear effect on the response however, it will lose
power when there are several small linear or non-linear effects on the response, because
it is a pair-wise test. MIC is thus applicable to large datasets with discrete or continuous
response functions.

Ydxdy

Linear regression with [; — regularization or Lasso The linear model reduces the
general model in Equation 1 to the following:

14
E(Y|X)=Y BiX;+& 3)
j=1

subject to Z;’:l |Bj| < K, for some positive value K. & is independent of X’s and
€1 v« N(0,0?). For binary response E(Y|X) is replaced with logit(P(Y = 1]|X)). A
data-dependent equivalent to the Z’i’:l |Bj| < K constraint is actually implemented in
practice. The role of it is to shrink the coefficients B; forcing some to be 0 and thus em-
bedding variable selection. The actual sparsity level corresponding to the size of K is
usually chosen via cross-validation. This model is expected to capture the linear terms
from our general model in Equation 1. As shown in Section 4 this method is prone to
explaining variation coming from non-linear terms and interactions by wrongly adding
irrelevant linear terms.

Group interaction Lasso The group interaction model reduces the general model in
Equation 1 to the following:

p
E(Y|X)= Z 0,X; + Z 0. X;.j +& 4

i=1 i<j
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subject to X-0_, 16;] + i<, [6::| < K, for some positive value K. & is independent of
X]’-s and & « N(0, 02). X;:; are interaction terms in the sense described in Section 2. For
binary response E(Y |X) is replaced with logif(P(Y = 1]X)).

The model above is called hierarchical if we impose the restriction of having vari-
ables appearing in the interaction terms also contributing linearly. There are two types
of hierarchy: weak hierarchy and strong hierarchy. Weak hierarchy model imposes that
at least one variable appearing in each interaction term to also contribute independently
to the response and strong hierarchy model imposes that all the variables appearing in
interaction terms also contribute independently. Similarly, to the regular lasso model,
the group interaction model imposes the sparsity constraint Z?zl 10;| +Xic10:j] <K
which forces most coefficients to be 0. In practice other constraints are used to limit
the number the search space of group interactions and also only pair-wise interactions
are usually assumed. We note that although the model above covers both linear and
interaction terms it only partially overlaps with the assumptions of the linear model in
Equation 3 and that is because it might prefer to explain variation through interacting
terms there where the model in Equation 3 may consider it noise or explain it through
linear terms. As it is shown in the Results Section this leads the algorithms implement-
ing the two models to cover slightly different true positives and false positives in their
results, depending on the underlying shape of the response function.

2.2 Experiments

We first studied on synthetic data how the assumptions of the methods we chose affect
the variable selection result and then drew conclusions about the general class of meth-
ods with similar assumptions. We then tested the first hypothesis on synthetic datasets,
for which the number of samples is relatively small to the number of variables. For
the second hypothesis, we used data from the UCI Machine Learning Repository and
calculated the prediction accuracy of DNNs trained with variables selected by the three
different methods. We then compared the results with accuracy of DNNs trained us-
ing the joint set of variables selected by all the methods. We finally compare with the
accuracy of DNNss trained using the whole set of variables available.

We have implemented our simulation in R statistical tool [27] and used the pack-
age glmnet [28] for lasso. For hierarchical lasso we have used the packages hiernet
when data had maximum 2000 variables and glinternet [26] for data with more than
2000 variables [22]. For training DNNs we used the neural networks package neural-
net [29]. For calculating MIC we have used the MINE application [16]. Each variable
was considered identified for a p — value threshold of 0.05 or for a non-zero coefficient
in the case of regression methods. The regression algorithms picked the best regular-
ization parameter using 100-fold cross-validation. For training DNNs we performed a
wide parallel search over a grid of possible number of layers in the network and nodes
in each layer. Our search methods stopped adding more layers and nodes in the DNN
architecture when the accuracy on the cross-validation started decreasing. We then se-
lected the model with the highest accuracy on cross-validation data. This method was
applied for each dataset separately. We used the logistic function as activation function.
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2.3 Synthetic Data Sets

Our first data set contained p = 2000 random variables with randomly generated dis-
tributions and parameters (Uniform, Gaussian, Gamma). We calculated the response Y
as follows: we selected r = 16 relevant variables at random and generated 3 from a
uniform distribution with 1/r mean and we used a normally distributed additive noise &
with mean 0 and variance 6 = 0.1. The first response function was linear. The second
response function was generated by having half of the relevant variables contributing
linearly and in pairwise interaction terms and the other half contributing only in interac-
tions terms, such that, at least one variable from an interaction term is also involved in
a linear term (i.e. weak hierarchy). The third function was generated by having half of
the relevant variables contributing linearly and the other half contributing non-linearly
(as sum of sine functions). Finally the forth function was calculated using non-linear
contribution from the predictors, as a sum of sine functions of each of the 16 relevant
variables.

2.4 UCI Machine Learning Repository Data Sets

We have selected three datasets from the UCI Machine Learning Repository: ’Dorothea’
[30], P53 Mutants’ [31] [32] [33] and ’Arcene’ [30] and selected a number of features
and samples in order to simulate the p >> n scenario. Dorothea is a drug discovery
dataset. Chemical compounds represented by structural molecular features must be clas-
sified as active (binding to thrombin) or inactive. From this dataset, we have used the
first 5000 features and 300 training and cross-validation samples for our experiments
and the rest of 1650 for testing. For the second dataset, the goal is to model mutant p53
proteins transcriptional activity (active vs inactive) based on data extracted from bio-
physical simulations. We have used the first 5000 features from this dataset, with 100,
200 and 300 respectively, training and cross-validation samples. The rest up to 3000
samples were used for testing. ARCENE'’s task is to distinguish cancer versus normal
patterns from 5480 mass-spectrometric features. We have used the 100 samples pro-
vided for training and validation and the rest of 100 samples provided were used for
testing.

3 Results and Discussion

Our results confirm our hypotheses that joining variables selected by methods relying
on different classes of assumptions into a single set increases sensitivity (i.e. the number
of correctly selected variables) and accuracy of DNNGs.
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Fig. 1: Percentages of correctly identified variables for the linear ground truth response function.
Black squares - MIC, Red triangles- Lasso, Green diamonds- Hierarchical Network Lasso, Blue
circles- Results Union.

For the linear function, it is clear from Fig.1 that the three models capture slightly
different sets of true positives, which is why the union model performs best. The model
which includes interactions returns a large number of false positives due to wrongly
explained variations (i.e over-fits the response function using wrong explanatory inter-
actions terms). These false positives are then reflected in the union result as we can see
in Fig.2. Although there are several univariate methods able to cope with non-linearity
in variable selection, they lose power when there are several covariates of small effect
in the data generating function.

474
I

187 260 332

no of false positives

25 85
LLLL 1L

T T T T
100 200 300 400 500

number of samples

Fig. 2: Number of wrongly selected variables for the linear ground truth response function. Black
squares - MIC, Red triangles- Lasso, Green diamonds- Hierarchical Network Lasso, Blue circles-
Results Union.
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Fig. 3: Percentages of correctly identified variables for the ground truth response function with
half of the variables contributing both linearly and in pairwise interaction terms and the other half
of the variables appearing only in pairwise interaction terms . Black squares - MIC, Red triangles-
Lasso, Green diamonds- Hierarchical Network Lasso, Blue circles- Results Union.

The multivariate linear models, such as regularized regression perform well even on
large data sets. Sensitivity of univariate methods relying on non-linearity assumption,
such as MIC, is well outperformed by multivariate methods such as lasso regression.
In the case of the functions with half of the variables included in interactions terms
only, the model with interactions captures all the true positives as seen in Fig.3. In this
case the interactions model includes the results of all the other models as the number of
samples increases.

225 344 412

no of talse positives

55 104

— ‘

T T
100 200 300 400 500

number of samples

0
Ll

Fig. 4: Number of wrongly selected variables for the ground truth response function with half
of the variables contributing both linearly and in pairwise interaction terms and the other half of
the variables appearing only in pairwise interaction terms . Black squares - MIC, Red triangles-
Lasso, Green diamonds- Hierarchical Network Lasso, Blue circles- Results Union.
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Fig. 5: Percentages of correctly identified variables for the ground truth response function with
half of the variables contributing linearly and the other half of the variables appearing only in non-
linear terms .Black squares - MIC, Red triangles- Lasso, Green diamonds- Hierarchical Network
Lasso, Blue circles- Results Union.

The explanation here is that the variation generated by the interaction terms in the
ground-truth function is explained by the wrong variables in the linear model.

354 479 562

no of false positives

19 81 145 218

T T T T T
100 200 300 400 500

number of samples

Fig. 6: Number of wrongly selected variables for the ground truth response function with half of
the variables contributing linearly and the other half of the variables appearing only in non-linear
terms . Black squares - MIC, Red triangles- Lasso, Green diamonds- Hierarchical Network Lasso,
Blue circles- Results Union.

As we tested our non-linear functions with different number of samples, we also
observed that, methods with embedded variable selection, like lasso and the hierarchical
network, tend to increase the number of variables included in the best fitted model, with
the increase in the number of samples, as we can see in Fig.5-8. This makes sense, as
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when the assumed shape of the function is wrong (e.g. lasso assumed a linear effect on
the response while our function is non-linear), with each new sample included in the
model comes the tendency of including more variables to explain for the extra sample
variation. This tendency is given by the fact that the assumed function shape is wrong
and therefore fails to explain variation in multiple samples with the same variables.
As a consequence, a larger number of variables in the model out of the total number
of variables in the data set, resulted in increased number of both false positives and
correctly identified variables.

93.75

% ot true posttives
50 625 75
1

125

L

T T T T T
100 200 300 400 500
number of samples

Fig. 7: Percentages of correctly identified variables for the non-linear ground truth response func-
tion. Black squares - MIC, Red triangles- Lasso, Green diamonds- Hierarchical Network Lasso,
Blue circles- Results Union.
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Fig. 8: Number of wrongly selected variables for the non-linear ground truth response function.
Black squares - MIC, Red triangles- Lasso, Green diamonds- Hierarchical Network Lasso, Blue
circles- Results Union.
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Our results on the UCI Machine Learning Repository datasets Tables 1-5 suggest
that variable or feature selection is useful for improving accuracy of DNNs. This step
is particularly important when few samples are available, relative to the number of
features. As seen in Tables 1-3 and 5-7, the results on the P53 mutants dataset and
Dorothea dataset suggest that as we increase the number of samples, DNN accuracy
becomes closer or the same regardless of use of feature selection prior to training. We
note however that these results were obtained on two-class classification rather than

regression tasks and DNNs perform best on classification.

Table 1. P53 data results - first 100 samples used for training

Method Acc. Neural Network Architecture
MIC + DNN 97.54%
Lasso 98.71%
Hierarchical Net 97.44%

Union of features selected
by the 3 methods above +
DNN

99.45%

12 hidden layer with 4 nodes each

Training DNN with all fea-
tures

99.33%

10 hidden layers with the following num-
ber of nodes each: 80 70 60 55 45 35 25 15
105

Table 2. P53 data results - first 200 samples used for training

Method Acc. Neural Network Architecture
MIC + DNN 99.44%
Lasso 97.75%
Hierarchical Net 97.75%

Union of features selected
by the 3 methods above +
DNN

99.45%

12 hidden layer with 4 nodes each

Training DNN with all fea-
tures

99.45%

hidden layers with the following number of
nodes each: 120 115 110 105 100 95 90 85
8075 70 65 60 555045 403530252015

105
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Table 3. P53 data results - first 300 samples used for training

Method Acc. Neural Network Architecture
MIC + DNN 97.75%
Lasso 99.15%
Hierarchical Net 99.05%

Union of features selected
by the 3 methods above +
DNN

99.55%

10 hidden layers with the following num-
ber of nodes each: 80 70 60 55453525 15
105

Training DNN with all fea-
tures

99.55%

hidden layers with the following number of
nodes each: 120 115 110 105 100 95 90 85
8075 70 65 60 55 5045 40 35302520 15
105

Table 4. Arcene data results

Method Acc. Neural Network Architecture
MIC + DNN 76%
Lasso 64%
Hierarchical Net 73%

Union of features selected
by the 3 methods above +
DNN

76%

hidden layers with the following number of
nodes each: 25,20,15,10,5

Training DNN with all fea-
tures

73%

hidden layers with the following number of
nodes each: 120 110 90 80 70 60 50 40 30
2015105

Table 5. Dorothea data results - first 100 samples used for training

Method Acc. Neural Network Architecture
MIC + DNN 78.04%
Lasso 84.24%
Hierarchical Net 88.22%

Union of features selected
by the 3 methods above +
DNN

93.46%

hidden layers with the following number of
nodes each: 110 90 80 70 60 50 40 30 20
15105

Training DNN with all fea-
tures

91.58%

hidden layers with the following number of
nodes each: 160 140 120 110 90 80 70 60
5040302015105
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Table 6. Dorothea data results - first 200 samples used for training

Method Acc. Neural Network Architecture

MIC + DNN 81.36%

Lasso 87.55%

Hierarchical Net 89.08%

Union of features selected|94.22% hidden layers with the following number of

by the 3 methods above + nodes each: 90 80 70 60 50 40 3020 15 10

DNN 5

Training DNN with all fea-|93.76% hidden layers with the following number of

tures nodes each: 120 110 90 80 70 60 50 40 30
2015105

Table 7. Dorothea data results - first 300 samples used for training

Method Acc. Neural Network Architecture

MIC + DNN 90.03%

Lasso 97.56%

Hierarchical Net 97.02%

Union of features selected|97.86% hidden layers with the following number of
by the 3 methods above + nodes each: 120 110 90 80 70 60 50 40 30
DNN 2015105

Training DNN with all fea-|97.86% hidden layers with the following number of
tures nodes each: 160 140 120 110 90 80 70 60

5040302015105

4 Conclusions

Our first contribution in this paper was to highlight the effects of assumptions implied
by different feature selection methods onto the results when the underlying function
connecting the response variable to the predictors takes different shapes. Our results
suggest that when the assumed model doesn’t include certain types of terms (e.g. non-
linear or interactions between the predictors) then wrong predictors will be selected to
explain variability coming from these terms. The number of wrong predictors tends to
increase as we increase the number of samples in the n << p set-up, as each sample
adds extra variability which needs which cannot be explained by the assumed model.
One way to overcome this problem could be to keep the number of selected variables
low or significantly lower than the number of samples when using regularized regres-
sion, to ensure that we reduce the number of false positives. This approach requires fur-
ther research though. Our second contribution is showing through our empirical studies
that one possible approach for improving feature selection sensitivity is by joining the
sets of variables identified by different methods, relying on different assumptions. Fu-
ture work in this direction could be classifying other methods based on the three main
simplifying assumptions we presented in this paper and testing other possible combina-
tions of feature selection methods using the same criteria of covering different classes
of assumptions. Our last contribution is showing through our empirical studies that de-
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spite deep learning capacity of training multivariate complex non-linear functions via
feature extraction, feature selection remains an important step at least for the cases in
which n << p. Future work here could be directed towards embedding feature selection
mechanisms in neural networks architectures.

s
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